A clean-room implementation of zmq_proxy_steerable().

It is contriubted under the MPL-2.0.

I had no knowledge of the previous implementation of zmq_proxy_steerable().

This version was developed based on expectations set in the old man page with one exception.  This version uses a REP/REQ for the proxy control protocol sockets.  The old man page example used PUB/SUB which is nonsensical given the STATISTICS command requires two way communication.
This commit is contained in:
Brett Viren 2023-10-08 19:56:03 -04:00
parent 8cdc4ed71a
commit 5712ad5138
8 changed files with 724 additions and 41 deletions

View File

@ -27,6 +27,7 @@ Bernd Prager
Bob Beaty
Brandon Carpenter
Brett Cameron
Brett Viren
Brian Buchanan
Burak Arslan
Carl Clemens

View File

@ -483,6 +483,7 @@ test_apps = \
tests/test_issue_566 \
tests/test_proxy_hwm \
tests/test_proxy_single_socket \
tests/test_proxy_steerable \
tests/test_proxy_terminate \
tests/test_getsockopt_memset \
tests/test_setsockopt \
@ -731,6 +732,10 @@ tests_test_proxy_single_socket_SOURCES = tests/test_proxy_single_socket.cpp
tests_test_proxy_single_socket_LDADD = ${TESTUTIL_LIBS} src/libzmq.la
tests_test_proxy_single_socket_CPPFLAGS = ${TESTUTIL_CPPFLAGS}
tests_test_proxy_steerable_SOURCES = tests/test_proxy_steerable.cpp
tests_test_proxy_steerable_LDADD = ${TESTUTIL_LIBS} src/libzmq.la
tests_test_proxy_steerable_CPPFLAGS = ${TESTUTIL_CPPFLAGS}
tests_test_proxy_terminate_SOURCES = tests/test_proxy_terminate.cpp
tests_test_proxy_terminate_LDADD = ${TESTUTIL_LIBS} src/libzmq.la
tests_test_proxy_terminate_CPPFLAGS = ${TESTUTIL_CPPFLAGS}

View File

@ -3,7 +3,7 @@ zmq_proxy_steerable(3)
NAME
----
zmq_proxy_steerable - DEPRECATED
zmq_proxy_steerable - built-in 0MQ proxy with control flow
SYNOPSIS
@ -14,9 +14,102 @@ SYNOPSIS
DESCRIPTION
-----------
The _zmq_proxy_steerable()_ function is an empty stub that only returns an
*EOPNOTSUPP* error, as the author did not provide a relicense agreement for
the Mozilla Public License v2 relicense of libzmq.
The _zmq_proxy_steerable()_ function is a variant of the _zmq_proxy()_ function.
It accepts a fourth _control_ socket. When the _control_ socket is _NULL_ the
two functions operate identically.
When a _control_ socket of type _REP_ is provided to the proxy function the
application may send commands to the proxy. The following commands are
supported.
_PAUSE_::
The proxy will cease transferring messages between its endpoints.
_RESUME_::
The proxy will resume transferring messages between its endpoints.
_TERMINATE_::
The proxy function will exit with a return value of 0.
_STATISTICS_::
The proxy behavior will remain unchanged and reply with a set of simple summary values of the messages that have been sent through the proxy as described next.
There are eight statistics values, each of size _uint64_t_ in the multi-part
message reply to the _STATISTICS_ command. These are:
- number of messages received by the frontend socket
- number of bytes received by the frontend socket
- number of messages sent by the frontend socket
- number of bytes sent by the frontend socket
- number of messages received by the backend socket
- number of bytes received by the backend socket
- number of messages sent by the backend socket
- number of bytes sent by the backend socket
RETURN VALUE
------------
The _zmq_proxy_steerable()_ function returns 0 if TERMINATE is received on its
control socket. Otherwise, it returns -1 and errno set to ETERM or EINTR (the
0MQ context associated with either of the specified sockets was terminated) or
EFAULT (the provided frontend or backend was invalid).
EXAMPLE
-------
.Create a function to run the proxy
----
// Create the frontend and backend sockets to be proxied
void *frontend = zmq_socket (context, ZMQ_ROUTER);
void *backend = zmq_socket (context, ZMQ_DEALER);
// Create the proxy control socket
void *control = zmq_socket (context, ZMQ_REP);
// Bind the sockets.
zmq_bind (frontend, "tcp://*:5555");
zmq_bind (backend, "tcp://*:5556");
zmq_bind (control, "tcp://*:5557");
zmq_proxy_steerable(frontend, backend, NULL, control);
----
.Code in another thread/process to steer the proxy.
----
void *control = zmq_socket (context, ZMQ_REQ);
zmq_connect (control, "tcp://*:5557");
zmq_msg_t msg;
zmq_send (control, "PAUSE", 5, 0);
zmq_msg_recv (&msg, control, 0));
zmq_send (control, "RESUME", 6, 0);
zmq_msg_recv (&msg, control, 0));
zmq_send (control, "STATISTICS", 10, 0);
while (1) {
zmq_msg_recv (&msg, control, 0));
printf(" %lu", *(uint64_t *)zmq_msg_data (&msg));
if (!zmq_msg_get (&msg, ZMQ_MORE))
break;
}
printf("\n");
zmq_send (control, "TERMINATE", 9, 0);
zmq_msg_recv (&msg, control, 0));
zmq_close(frontend);
zmq_close(backend);
zmq_close(control);
----
SEE ALSO

View File

@ -18,6 +18,13 @@
#include "socket_base.hpp"
#include "err.hpp"
int zmq::proxy (class socket_base_t *frontend_,
class socket_base_t *backend_,
class socket_base_t *capture_)
{
return zmq::proxy_steerable (frontend_, backend_, capture_, NULL);
}
#ifdef ZMQ_HAVE_POLLER
#include "socket_poller.hpp"
@ -66,10 +73,25 @@ capture (class zmq::socket_base_t *capture_, zmq::msg_t *msg_, int more_ = 0)
return 0;
}
struct stats_socket
{
uint64_t count, bytes;
};
struct stats_endpoint
{
stats_socket send, recv;
};
struct stats_proxy
{
stats_endpoint frontend, backend;
};
static int forward (class zmq::socket_base_t *from_,
class zmq::socket_base_t *to_,
class zmq::socket_base_t *capture_,
zmq::msg_t *msg_)
zmq::msg_t *msg_,
stats_socket &recving,
stats_socket &sending)
{
// Forward a burst of messages
for (unsigned int i = 0; i < zmq::proxy_burst_size; i++) {
@ -86,6 +108,10 @@ static int forward (class zmq::socket_base_t *from_,
return -1;
}
size_t nbytes = msg_->size ();
recving.count += 1;
recving.bytes += nbytes;
moresz = sizeof more;
rc = from_->getsockopt (ZMQ_RCVMORE, &more, &moresz);
if (unlikely (rc < 0))
@ -99,6 +125,8 @@ static int forward (class zmq::socket_base_t *from_,
rc = to_->send (msg_, more ? ZMQ_SNDMORE : 0);
if (unlikely (rc < 0))
return -1;
sending.count += 1;
sending.bytes += nbytes;
if (more == 0)
break;
@ -108,10 +136,81 @@ static int forward (class zmq::socket_base_t *from_,
return 0;
}
enum proxy_state_t
{
active,
paused,
terminated
};
// Handle control request [5]PAUSE, [6]RESUME, [9]TERMINATE,
// [10]STATISTICS. Only STATISTICS results in a send.
static int handle_control (class zmq::socket_base_t *control_,
proxy_state_t &state,
const stats_proxy &stats)
{
zmq::msg_t cmsg;
int rc = cmsg.init ();
if (rc != 0) {
return -1;
}
rc = control_->recv (&cmsg, ZMQ_DONTWAIT);
if (rc < 0) {
return -1;
}
uint8_t *const command = static_cast<uint8_t *> (cmsg.data ());
const size_t msiz = cmsg.size ();
if (msiz == 10 && 0 == memcmp (command, "STATISTICS", 10)) {
// The stats are a cross product:
//
// (Front,Back) X (Recv,Sent) X (Number,Bytes).
//
// that is flattened into sequence of 8 message parts according to the
// zmq_proxy_steerable(3) documentation as:
//
// (frn, frb, fsn, fsb, brn, brb, bsn, bsb)
//
// f=front/b=back, r=recv/s=send, n=number/b=bytes.
const uint64_t stat_vals[8] = {
stats.frontend.recv.count, stats.frontend.recv.bytes,
stats.frontend.send.count, stats.frontend.send.bytes,
stats.backend.recv.count, stats.backend.recv.bytes,
stats.backend.send.count, stats.backend.send.bytes};
for (size_t ind = 0; ind < 8; ++ind) {
cmsg.init_size (sizeof (uint64_t));
memcpy (cmsg.data (), stat_vals + ind, sizeof (uint64_t));
rc = control_->send (&cmsg, ind < 7 ? ZMQ_SNDMORE : 0);
if (unlikely (rc < 0)) {
return -1;
}
}
return 0;
}
if (msiz == 5 && memcmp (command, "\x05PAUSE", 6)) {
state = active;
} else if (msiz == 6 && 0 == memcmp (command, "RESUME", 6)) {
state = paused;
} else if (msiz == 9 && 0 == memcmp (command, "TERMINATE", 9)) {
state = terminated;
}
// satisfy REP duty and reply no matter what.
cmsg.init_size (0);
rc = control_->send (&cmsg, 0);
if (unlikely (rc < 0)) {
return -1;
}
return 0;
}
#ifdef ZMQ_HAVE_POLLER
int zmq::proxy (class socket_base_t *frontend_,
int zmq::proxy_steerable (class socket_base_t *frontend_,
class socket_base_t *backend_,
class socket_base_t *capture_)
class socket_base_t *capture_,
class socket_base_t *control_)
{
msg_t msg;
int rc = msg.init ();
@ -122,19 +221,17 @@ int zmq::proxy (class socket_base_t *frontend_,
// under full load to be 1:1.
// Proxy can be in these three states
enum
{
active,
paused,
terminated
} state = active;
proxy_state_t state = active;
bool frontend_equal_to_backend;
bool frontend_in = false;
bool frontend_out = false;
bool backend_in = false;
bool backend_out = false;
zmq::socket_poller_t::event_t events[3];
zmq::socket_poller_t::event_t events[4];
int nevents = 3; // increase to 4 if we have control_
stats_proxy stats = {{{0, 0}, {0, 0}}, {{0, 0}, {0, 0}}};
// Don't allocate these pollers from stack because they will take more than 900 kB of stack!
// On Windows this blows up default stack of 1 MB and aborts the program.
@ -232,25 +329,58 @@ int zmq::proxy (class socket_base_t *frontend_,
CHECK_RC_EXIT_ON_FAILURE ();
}
bool request_processed, reply_processed;
if (control_) {
++nevents;
// wherever you go, there you are.
rc = poller_all->add (control_, NULL, ZMQ_POLLIN);
CHECK_RC_EXIT_ON_FAILURE ();
rc = poller_in->add (control_, NULL, ZMQ_POLLIN);
CHECK_RC_EXIT_ON_FAILURE ();
rc = poller_receive_blocked->add (control_, NULL, ZMQ_POLLIN);
CHECK_RC_EXIT_ON_FAILURE ();
rc = poller_send_blocked->add (control_, NULL, ZMQ_POLLIN);
CHECK_RC_EXIT_ON_FAILURE ();
rc = poller_both_blocked->add (control_, NULL, ZMQ_POLLIN);
CHECK_RC_EXIT_ON_FAILURE ();
rc = poller_frontend_only->add (control_, NULL, ZMQ_POLLIN);
CHECK_RC_EXIT_ON_FAILURE ();
rc = poller_backend_only->add (control_, NULL, ZMQ_POLLIN);
CHECK_RC_EXIT_ON_FAILURE ();
}
bool request_processed = false, reply_processed = false;
while (state != terminated) {
// Blocking wait initially only for 'ZMQ_POLLIN' - 'poller_wait' points to 'poller_in'.
// If one of receiving end's queue is full ('ZMQ_POLLOUT' not available),
// 'poller_wait' is pointed to 'poller_receive_blocked', 'poller_send_blocked' or 'poller_both_blocked'.
rc = poller_wait->wait (events, 3, -1);
rc = poller_wait->wait (events, nevents, -1);
if (rc < 0 && errno == EAGAIN)
rc = 0;
CHECK_RC_EXIT_ON_FAILURE ();
// Some of events waited for by 'poller_wait' have arrived, now poll for everything without blocking.
rc = poller_all->wait (events, 3, 0);
rc = poller_all->wait (events, nevents, 0);
if (rc < 0 && errno == EAGAIN)
rc = 0;
CHECK_RC_EXIT_ON_FAILURE ();
// Process events.
for (int i = 0; i < rc; i++) {
if (control_ && events[i].socket == control_) {
rc = handle_control (control_, state, stats);
CHECK_RC_EXIT_ON_FAILURE ();
continue;
}
if (events[i].socket == frontend_) {
frontend_in = (events[i].events & ZMQ_POLLIN) != 0;
frontend_out = (events[i].events & ZMQ_POLLOUT) != 0;
@ -267,7 +397,8 @@ int zmq::proxy (class socket_base_t *frontend_,
// Process a request, 'ZMQ_POLLIN' on 'frontend_' and 'ZMQ_POLLOUT' on 'backend_'.
// In case of frontend_==backend_ there's no 'ZMQ_POLLOUT' event.
if (frontend_in && (backend_out || frontend_equal_to_backend)) {
rc = forward (frontend_, backend_, capture_, &msg);
rc = forward (frontend_, backend_, capture_, &msg,
stats.frontend.recv, stats.backend.send);
CHECK_RC_EXIT_ON_FAILURE ();
request_processed = true;
frontend_in = backend_out = false;
@ -279,7 +410,8 @@ int zmq::proxy (class socket_base_t *frontend_,
// covers all of the cases. 'backend_in' is always false if frontend_==backend_ due to
// design in 'for' event processing loop.
if (backend_in && frontend_out) {
rc = forward (backend_, frontend_, capture_, &msg);
rc = forward (backend_, frontend_, capture_, &msg,
stats.backend.recv, stats.frontend.send);
CHECK_RC_EXIT_ON_FAILURE ();
reply_processed = true;
backend_in = frontend_out = false;
@ -346,9 +478,10 @@ int zmq::proxy (class socket_base_t *frontend_,
#else // ZMQ_HAVE_POLLER
int zmq::proxy (class socket_base_t *frontend_,
int zmq::proxy_steerable (class socket_base_t *frontend_,
class socket_base_t *backend_,
class socket_base_t *capture_)
class socket_base_t *capture_,
class socket_base_t *control_)
{
msg_t msg;
int rc = msg.init ();
@ -359,18 +492,17 @@ int zmq::proxy (class socket_base_t *frontend_,
// under full load to be 1:1.
zmq_pollitem_t items[] = {{frontend_, 0, ZMQ_POLLIN, 0},
{backend_, 0, ZMQ_POLLIN, 0}};
int qt_poll_items = 2;
{backend_, 0, ZMQ_POLLIN, 0},
{control_, 0, ZMQ_POLLIN, 0}};
const int qt_poll_items = control_ ? 3 : 2;
zmq_pollitem_t itemsout[] = {{frontend_, 0, ZMQ_POLLOUT, 0},
{backend_, 0, ZMQ_POLLOUT, 0}};
stats_proxy stats = {0};
// Proxy can be in these three states
enum
{
active,
paused,
terminated
} state = active;
proxy_state_t state = active;
while (state != terminated) {
// Wait while there are either requests or replies to process.
@ -378,6 +510,12 @@ int zmq::proxy (class socket_base_t *frontend_,
if (unlikely (rc < 0))
return close_and_return (&msg, -1);
if (control_ && items[2].revents & ZMQ_POLLIN) {
rc = handle_control (control_, state, stats);
if (unlikely (rc < 0))
return close_and_return (&msg, -1);
}
// Get the pollout separately because when combining this with pollin it maxes the CPU
// because pollout shall most of the time return directly.
// POLLOUT is only checked when frontend and backend sockets are not the same.
@ -390,7 +528,8 @@ int zmq::proxy (class socket_base_t *frontend_,
if (state == active && items[0].revents & ZMQ_POLLIN
&& (frontend_ == backend_ || itemsout[1].revents & ZMQ_POLLOUT)) {
rc = forward (frontend_, backend_, capture_, &msg);
rc = forward (frontend_, backend_, capture_, &msg,
stats.frontend.recv, stats.backend.send);
if (unlikely (rc < 0))
return close_and_return (&msg, -1);
}
@ -398,7 +537,8 @@ int zmq::proxy (class socket_base_t *frontend_,
if (state == active && frontend_ != backend_
&& items[1].revents & ZMQ_POLLIN
&& itemsout[0].revents & ZMQ_POLLOUT) {
rc = forward (backend_, frontend_, capture_, &msg);
rc = forward (backend_, frontend_, capture_, &msg,
stats.backend.recv, stats.frontend.send);
if (unlikely (rc < 0))
return close_and_return (&msg, -1);
}

View File

@ -8,6 +8,11 @@ namespace zmq
int proxy (class socket_base_t *frontend_,
class socket_base_t *backend_,
class socket_base_t *capture_);
int proxy_steerable (class socket_base_t *frontend_,
class socket_base_t *backend_,
class socket_base_t *capture_,
class socket_base_t *control_);
}
#endif

View File

@ -1729,6 +1729,7 @@ int zmq_proxy (void *frontend_, void *backend_, void *capture_)
errno = EFAULT;
return -1;
}
// Runs zmq::proxy_steerable with a NULL control_.
return zmq::proxy (static_cast<zmq::socket_base_t *> (frontend_),
static_cast<zmq::socket_base_t *> (backend_),
static_cast<zmq::socket_base_t *> (capture_));
@ -1739,18 +1740,14 @@ int zmq_proxy_steerable (void *frontend_,
void *capture_,
void *control_)
{
LIBZMQ_UNUSED (capture_);
LIBZMQ_UNUSED (control_);
if (!frontend_ || !backend_) {
errno = EFAULT;
return -1;
}
#ifdef ZMQ_HAVE_WINDOWS
errno = WSAEOPNOTSUPP;
#else
errno = EOPNOTSUPP;
#endif
return -1;
return zmq::proxy_steerable (static_cast<zmq::socket_base_t *> (frontend_),
static_cast<zmq::socket_base_t *> (backend_),
static_cast<zmq::socket_base_t *> (capture_),
static_cast<zmq::socket_base_t *> (control_));
}
// The deprecated device functionality

View File

@ -115,6 +115,7 @@ if(NOT WIN32)
test_proxy
test_proxy_hwm
test_proxy_single_socket
test_proxy_steerable
test_proxy_terminate
test_getsockopt_memset
test_filter_ipc

View File

@ -0,0 +1,441 @@
/* SPDX-License-Identifier: MPL-2.0 */
#include "testutil.hpp"
#include "testutil_unity.hpp"
#include <stdlib.h>
#include <string.h>
#define CONTENT_SIZE 13
#define CONTENT_SIZE_MAX 32
#define ROUTING_ID_SIZE 10
#define ROUTING_ID_SIZE_MAX 32
#define QT_WORKERS 5
#define QT_CLIENTS 3
#define is_verbose 0
const char *proxy_control_address = "inproc://proxy_control";
struct thread_data
{
int id;
};
void *g_clients_pkts_out = NULL;
void *g_workers_pkts_out = NULL;
void *control_context = NULL; // worker control, not proxy control
void setUp ()
{
setup_test_context ();
}
// Asynchronous client-to-server (DEALER to ROUTER) - pure libzmq
//
// While this example runs in a single process, that is to make
// it easier to start and stop the example. Each task may have its own
// context and conceptually acts as a separate process. To have this
// behaviour, it is necessary to replace the inproc transport of the
// control socket by a tcp transport.
// This is our client task
// It connects to the server, and then sends a request once per second
// It collects responses as they arrive, and it prints them out. We will
// run several client tasks in parallel, each with a different random ID.
static void client_task (void *db_)
{
const thread_data *const databag = static_cast<const thread_data *> (db_);
// Endpoint socket gets random port to avoid test failing when port in use
void *endpoint = zmq_socket (get_test_context (), ZMQ_PAIR);
TEST_ASSERT_NOT_NULL (endpoint);
int linger = 0;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (endpoint, ZMQ_LINGER, &linger, sizeof (linger)));
char endpoint_source[256];
snprintf (endpoint_source, 256 * sizeof (char), "inproc://endpoint%d",
databag->id);
TEST_ASSERT_SUCCESS_ERRNO (zmq_connect (endpoint, endpoint_source));
char *my_endpoint = s_recv (endpoint);
TEST_ASSERT_NOT_NULL (my_endpoint);
void *client = zmq_socket (get_test_context (), ZMQ_DEALER);
TEST_ASSERT_NOT_NULL (client);
// Control socket receives terminate command from main over inproc
void *control = zmq_socket (control_context, ZMQ_SUB);
TEST_ASSERT_NOT_NULL (control);
TEST_ASSERT_SUCCESS_ERRNO (zmq_setsockopt (control, ZMQ_SUBSCRIBE, "", 0));
linger = 0;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (control, ZMQ_LINGER, &linger, sizeof (linger)));
TEST_ASSERT_SUCCESS_ERRNO (zmq_connect (control, "inproc://control"));
char content[CONTENT_SIZE_MAX] = {};
// Set random routing id to make tracing easier
char routing_id[ROUTING_ID_SIZE] = {};
snprintf (routing_id, ROUTING_ID_SIZE * sizeof (char), "%04X-%04X",
rand () % 0xFFFF, rand () % 0xFFFF);
TEST_ASSERT_SUCCESS_ERRNO (zmq_setsockopt (
client, ZMQ_ROUTING_ID, routing_id,
ROUTING_ID_SIZE)); // includes '\0' as an helper for printf
linger = 0;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (client, ZMQ_LINGER, &linger, sizeof (linger)));
TEST_ASSERT_SUCCESS_ERRNO (zmq_connect (client, my_endpoint));
zmq_pollitem_t items[] = {{client, 0, ZMQ_POLLIN, 0},
{control, 0, ZMQ_POLLIN, 0}};
int request_nbr = 0;
bool run = true;
bool keep_sending = true;
while (run) {
// Tick once per 200 ms, pulling in arriving messages
int centitick;
for (centitick = 0; centitick < 20; centitick++) {
zmq_poll (items, 2, 10);
if (items[0].revents & ZMQ_POLLIN) {
int rcvmore;
size_t sz = sizeof (rcvmore);
int rc = TEST_ASSERT_SUCCESS_ERRNO (
zmq_recv (client, content, CONTENT_SIZE_MAX, 0));
TEST_ASSERT_EQUAL_INT (CONTENT_SIZE, rc);
if (is_verbose)
printf (
"client receive - routing_id = %s content = %s\n",
routing_id, content);
// Check that message is still the same
TEST_ASSERT_EQUAL_STRING_LEN ("request #", content, 9);
TEST_ASSERT_SUCCESS_ERRNO (
zmq_getsockopt (client, ZMQ_RCVMORE, &rcvmore, &sz));
TEST_ASSERT_FALSE (rcvmore);
}
if (items[1].revents & ZMQ_POLLIN) {
int rc = zmq_recv (control, content, CONTENT_SIZE_MAX, 0);
if (rc > 0) {
content[rc] = 0; // NULL-terminate the command string
if (is_verbose)
printf (
"client receive - routing_id = %s command = %s\n",
routing_id, content);
if (memcmp (content, "TERMINATE", 9) == 0) {
run = false;
break;
}
if (memcmp (content, "STOP", 4) == 0) {
keep_sending = false;
break;
}
}
}
}
if (keep_sending) {
snprintf (content, CONTENT_SIZE_MAX * sizeof (char),
"request #%03d", ++request_nbr); // CONTENT_SIZE
if (is_verbose)
printf ("client send - routing_id = %s request #%03d\n",
routing_id, request_nbr);
zmq_atomic_counter_inc (g_clients_pkts_out);
TEST_ASSERT_EQUAL_INT (CONTENT_SIZE,
zmq_send (client, content, CONTENT_SIZE, 0));
}
}
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (client));
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (control));
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (endpoint));
free (my_endpoint);
}
// This is our server task.
// It uses the multithreaded server model to deal requests out to a pool
// of workers and route replies back to clients. One worker can handle
// one request at a time but one client can talk to multiple workers at
// once.
static void server_worker (void * /*unused_*/);
void server_task (void * /*unused_*/)
{
// Frontend socket talks to clients over TCP
char my_endpoint[MAX_SOCKET_STRING];
void *frontend = zmq_socket (get_test_context (), ZMQ_ROUTER);
TEST_ASSERT_NOT_NULL (frontend);
int linger = 0;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (frontend, ZMQ_LINGER, &linger, sizeof (linger)));
bind_loopback_ipv4 (frontend, my_endpoint, sizeof my_endpoint);
// Backend socket talks to workers over inproc
void *backend = zmq_socket (get_test_context (), ZMQ_DEALER);
TEST_ASSERT_NOT_NULL (backend);
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (backend, ZMQ_LINGER, &linger, sizeof (linger)));
TEST_ASSERT_SUCCESS_ERRNO (zmq_bind (backend, "inproc://backend"));
// Launch pool of worker threads, precise number is not critical
int thread_nbr;
void *threads[5];
for (thread_nbr = 0; thread_nbr < QT_WORKERS; thread_nbr++)
threads[thread_nbr] = zmq_threadstart (&server_worker, NULL);
// Endpoint socket sends random port to avoid test failing when port in use
void *endpoint_receivers[QT_CLIENTS];
char endpoint_source[256];
for (int i = 0; i < QT_CLIENTS; ++i) {
endpoint_receivers[i] = zmq_socket (get_test_context (), ZMQ_PAIR);
TEST_ASSERT_NOT_NULL (endpoint_receivers[i]);
TEST_ASSERT_SUCCESS_ERRNO (zmq_setsockopt (
endpoint_receivers[i], ZMQ_LINGER, &linger, sizeof (linger)));
snprintf (endpoint_source, 256 * sizeof (char), "inproc://endpoint%d",
i);
TEST_ASSERT_SUCCESS_ERRNO (
zmq_bind (endpoint_receivers[i], endpoint_source));
}
for (int i = 0; i < QT_CLIENTS; ++i) {
send_string_expect_success (endpoint_receivers[i], my_endpoint, 0);
}
// Proxy control socket
void *proxy_control = zmq_socket (get_test_context (), ZMQ_REP);
TEST_ASSERT_NOT_NULL (proxy_control);
TEST_ASSERT_SUCCESS_ERRNO (zmq_bind (proxy_control, proxy_control_address));
// Connect backend to frontend via a steerable proxy
int rc = zmq_proxy_steerable (frontend, backend, NULL, proxy_control);
TEST_ASSERT_EQUAL_INT (0, rc);
for (thread_nbr = 0; thread_nbr < QT_WORKERS; thread_nbr++) {
zmq_threadclose (threads[thread_nbr]);
}
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (frontend));
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (backend));
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (proxy_control));
for (int i = 0; i < QT_CLIENTS; ++i) {
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (endpoint_receivers[i]));
}
}
// Each worker task works on one request at a time and sends a random number
// of replies back, with random delays between replies:
// The comments in the first column, if suppressed, makes it a poller version
static void server_worker (void * /*unused_*/)
{
void *worker = zmq_socket (get_test_context (), ZMQ_DEALER);
TEST_ASSERT_NOT_NULL (worker);
int linger = 0;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (worker, ZMQ_LINGER, &linger, sizeof (linger)));
TEST_ASSERT_SUCCESS_ERRNO (zmq_connect (worker, "inproc://backend"));
// Control socket receives terminate command from main over inproc
void *control = zmq_socket (control_context, ZMQ_SUB);
TEST_ASSERT_NOT_NULL (control);
TEST_ASSERT_SUCCESS_ERRNO (zmq_setsockopt (control, ZMQ_SUBSCRIBE, "", 0));
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (control, ZMQ_LINGER, &linger, sizeof (linger)));
TEST_ASSERT_SUCCESS_ERRNO (zmq_connect (control, "inproc://control"));
char content[CONTENT_SIZE_MAX] =
{}; // bigger than what we need to check that
char routing_id[ROUTING_ID_SIZE_MAX] =
{}; // the size received is the size sent
bool run = true;
bool keep_sending = true;
while (run) {
int rc = zmq_recv (control, content, CONTENT_SIZE_MAX,
ZMQ_DONTWAIT); // usually, rc == -1 (no message)
if (rc > 0) {
content[rc] = 0; // NULL-terminate the command string
if (is_verbose)
printf ("server_worker receives command = %s\n", content);
if (memcmp (content, "TERMINATE", 9) == 0)
run = false;
if (memcmp (content, "STOP", 4) == 0)
keep_sending = false;
}
// The DEALER socket gives us the reply envelope and message
// if we don't poll, we have to use ZMQ_DONTWAIT, if we poll, we can block-receive with 0
rc = zmq_recv (worker, routing_id, ROUTING_ID_SIZE_MAX, ZMQ_DONTWAIT);
if (rc == ROUTING_ID_SIZE) {
rc = zmq_recv (worker, content, CONTENT_SIZE_MAX, 0);
TEST_ASSERT_EQUAL_INT (CONTENT_SIZE, rc);
if (is_verbose)
printf ("server receive - routing_id = %s content = %s\n",
routing_id, content);
// Send 0..4 replies back
if (keep_sending) {
int reply, replies = rand () % 5;
for (reply = 0; reply < replies; reply++) {
// Sleep for some fraction of a second
msleep (rand () % 10 + 1);
// Send message from server to client
if (is_verbose)
printf ("server send - routing_id = %s reply\n",
routing_id);
zmq_atomic_counter_inc (g_workers_pkts_out);
rc = zmq_send (worker, routing_id, ROUTING_ID_SIZE,
ZMQ_SNDMORE);
TEST_ASSERT_EQUAL_INT (ROUTING_ID_SIZE, rc);
rc = zmq_send (worker, content, CONTENT_SIZE, 0);
TEST_ASSERT_EQUAL_INT (CONTENT_SIZE, rc);
}
}
}
}
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (worker));
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (control));
}
// If STATISTICS is received, the proxy will reply on the control socket
// sending a multipart message with 8 frames, each with an unsigned integer
// 64-bit wide that provide in the following order:
//
// - 0/frn: number of messages received by the frontend socket
//
// - 1/frb: number of bytes received by the frontend socket
//
// - 2/fsn: number of messages sent out the frontend socket
//
// - 3/fsb: number of bytes sent out the frontend socket
//
// - 4/brn: number of messages received by the backend socket
//
// - 5/brb: number of bytes received by the backend socket
//
// - 6/bsn: number of messages sent out the backend socket
//
// - 7/bsb: number of bytes sent out the backend socket
// The main thread simply starts several clients and a server, and then
// waits for the server to finish.
void steer (void *proxy_control, const char *command, const char *runctx)
{
if (is_verbose) {
printf ("steer: sending %s - %s\n", command, runctx);
}
// Start with proxy paused
TEST_ASSERT_SUCCESS_ERRNO (
zmq_send (proxy_control, command, strlen (command), 0));
zmq_msg_t stats_msg;
int count = -1;
while (1) {
count = count + 1;
TEST_ASSERT_SUCCESS_ERRNO (zmq_msg_init (&stats_msg));
TEST_ASSERT_SUCCESS_ERRNO (zmq_msg_recv (&stats_msg, proxy_control, 0));
if (is_verbose && zmq_msg_size (&stats_msg)) {
if (count == 0) {
printf ("steer:");
}
printf (" %lu", *(unsigned long int *) zmq_msg_data (&stats_msg));
if (count == 7) {
printf ("\n");
}
}
if (!zmq_msg_get (&stats_msg, ZMQ_MORE))
break;
TEST_ASSERT_SUCCESS_ERRNO (zmq_msg_close (&stats_msg));
}
TEST_ASSERT_SUCCESS_ERRNO (zmq_msg_close (&stats_msg));
}
void test_proxy_steerable ()
{
int linger = 0;
void *threads[QT_CLIENTS + 1];
g_clients_pkts_out = zmq_atomic_counter_new ();
g_workers_pkts_out = zmq_atomic_counter_new ();
control_context = zmq_ctx_new ();
TEST_ASSERT_NOT_NULL (control_context);
// Worker control socket receives terminate command from main over inproc
void *control = zmq_socket (control_context, ZMQ_PUB);
linger = 0;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (control, ZMQ_LINGER, &linger, sizeof (linger)));
TEST_ASSERT_SUCCESS_ERRNO (zmq_bind (control, "inproc://control"));
struct thread_data databags[QT_CLIENTS + 1];
for (int i = 0; i < QT_CLIENTS; i++) {
databags[i].id = i;
threads[i] = zmq_threadstart (&client_task, &databags[i]);
}
threads[QT_CLIENTS] = zmq_threadstart (&server_task, NULL);
msleep (500); // Run for 500 ms then quit
// Proxy control socket
void *proxy_control = zmq_socket (get_test_context (), ZMQ_REQ);
TEST_ASSERT_NOT_NULL (proxy_control);
linger = 0;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (proxy_control, ZMQ_LINGER, &linger, sizeof (linger)));
TEST_ASSERT_SUCCESS_ERRNO (
zmq_connect (proxy_control, proxy_control_address));
msleep (500); // Run for 500 ms then quit
steer (proxy_control, "STATISTICS", "started clients");
steer (proxy_control, "PAUSE", "started server");
msleep (500); // Run for 500 ms then quit
steer (proxy_control, "RESUME", "started clients");
msleep (500); // Run for 500 ms then quit
steer (proxy_control, "STATISTICS", "ran for a while");
if (is_verbose)
printf ("stopping all clients and server workers\n");
send_string_expect_success (control, "STOP", 0);
steer (proxy_control, "STATISTICS", "stopped clients and workers");
msleep (500); // Wait for all clients and workers to STOP
if (is_verbose)
printf ("shutting down all clients and server workers\n");
send_string_expect_success (control, "TERMINATE", 0);
msleep (500);
steer (proxy_control, "STATISTICS", "terminate clients and server workers");
msleep (500); // Wait for all clients and workers to terminate
steer (proxy_control, "TERMINATE", "terminate proxy");
for (int i = 0; i < QT_CLIENTS + 1; i++)
zmq_threadclose (threads[i]);
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (control));
TEST_ASSERT_SUCCESS_ERRNO (zmq_ctx_destroy (control_context));
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (proxy_control));
teardown_test_context ();
}
int main (void)
{
setup_test_environment (360);
UNITY_BEGIN ();
RUN_TEST (test_proxy_steerable);
return UNITY_END ();
}