mirror of
https://github.com/zeromq/libzmq.git
synced 2024-12-13 02:42:58 +01:00
signaler transports commands per se rather than one-bit signals
This commit is contained in:
parent
8b9bd05726
commit
235ed3a3dc
@ -82,9 +82,12 @@ zmq::signaler_t *zmq::app_thread_t::get_signaler ()
|
||||
|
||||
bool zmq::app_thread_t::process_commands (bool block_, bool throttle_)
|
||||
{
|
||||
uint32_t signal;
|
||||
if (block_)
|
||||
signal = signaler.poll ();
|
||||
bool received;
|
||||
command_t cmd;
|
||||
if (block_) {
|
||||
received = signaler.recv (&cmd, true);
|
||||
zmq_assert (received);
|
||||
}
|
||||
else {
|
||||
|
||||
#if defined ZMQ_DELAY_COMMANDS
|
||||
@ -117,15 +120,12 @@ bool zmq::app_thread_t::process_commands (bool block_, bool throttle_)
|
||||
#endif
|
||||
|
||||
// Check whether there are any commands pending for this thread.
|
||||
signal = signaler.check ();
|
||||
received = signaler.recv (&cmd, false);
|
||||
}
|
||||
|
||||
// Process all the commands from the signaling source if there is one.
|
||||
if (signal != signaler_t::no_signal) {
|
||||
command_t cmd;
|
||||
while (get_dispatcher ()->read (signal, get_thread_slot (), &cmd))
|
||||
cmd.destination->process_command (cmd);
|
||||
}
|
||||
// Process the command, if any.
|
||||
if (received)
|
||||
cmd.destination->process_command (cmd);
|
||||
|
||||
return !terminated;
|
||||
}
|
||||
|
@ -32,11 +32,6 @@ namespace zmq
|
||||
// memory allocation by approximately 99.6%
|
||||
message_pipe_granularity = 256,
|
||||
|
||||
// Number of new commands in command pipe needed to trigger new memory
|
||||
// allocation. The number should be kept low to decrease the memory
|
||||
// footprint of dispatcher.
|
||||
command_pipe_granularity = 4,
|
||||
|
||||
// Number of signals that can be read by the signaler
|
||||
// using a single system call.
|
||||
signal_buffer_size = 8,
|
||||
|
@ -18,6 +18,7 @@
|
||||
*/
|
||||
|
||||
#include <new>
|
||||
#include <string.h>
|
||||
|
||||
#include "../include/zmq.h"
|
||||
|
||||
@ -48,36 +49,31 @@ zmq::dispatcher_t::dispatcher_t (uint32_t app_threads_, uint32_t io_threads_) :
|
||||
HIBYTE (wsa_data.wVersion) == 2);
|
||||
#endif
|
||||
|
||||
// Initialise the array of signalers.
|
||||
signalers_count = app_threads_ + io_threads_;
|
||||
signalers = (signaler_t**) malloc (sizeof (signaler_t*) * signalers_count);
|
||||
zmq_assert (signalers);
|
||||
memset (signalers, 0, sizeof (signaler_t*) * signalers_count);
|
||||
|
||||
// Create I/O thread objects.
|
||||
for (uint32_t i = 0; i != io_threads_; i++) {
|
||||
io_thread_t *io_thread = new (std::nothrow) io_thread_t (this, i);
|
||||
zmq_assert (io_thread);
|
||||
io_threads.push_back (io_thread);
|
||||
signalers [i] = io_thread->get_signaler ();
|
||||
}
|
||||
|
||||
// Create application thread proxies.
|
||||
for (uint32_t i = 0; i != app_threads_; i++) {
|
||||
app_thread_info_t info;
|
||||
info.associated = false;
|
||||
info.app_thread = new (std::nothrow) app_thread_t (this, i);
|
||||
info.app_thread = new (std::nothrow) app_thread_t (this,
|
||||
i + io_threads_);
|
||||
zmq_assert (info.app_thread);
|
||||
app_threads.push_back (info);
|
||||
signalers.push_back (info.app_thread->get_signaler ());
|
||||
signalers [i + io_threads_] = info.app_thread->get_signaler ();
|
||||
}
|
||||
|
||||
// Create I/O thread objects.
|
||||
for (uint32_t i = 0; i != io_threads_; i++) {
|
||||
io_thread_t *io_thread = new (std::nothrow) io_thread_t (this,
|
||||
i + app_threads_);
|
||||
zmq_assert (io_thread);
|
||||
io_threads.push_back (io_thread);
|
||||
signalers.push_back (io_thread->get_signaler ());
|
||||
}
|
||||
|
||||
// Create the administrative thread. Nothing special is needed. NULL
|
||||
// is used instead of signaler given that as for now, administrative
|
||||
// thread doesn't receive any commands. The only thing it is used for
|
||||
// is sending 'stop' command to I/O threads on shutdown.
|
||||
signalers.push_back (NULL);
|
||||
|
||||
// Create command pipe matrix.
|
||||
command_pipes = new (std::nothrow) command_pipe_t [signalers.size () *
|
||||
signalers.size ()];
|
||||
zmq_assert (command_pipes);
|
||||
|
||||
// Launch I/O threads.
|
||||
for (uint32_t i = 0; i != io_threads_; i++)
|
||||
io_threads [i]->start ();
|
||||
@ -123,12 +119,11 @@ zmq::dispatcher_t::~dispatcher_t ()
|
||||
while (!pipes.empty ())
|
||||
delete *pipes.begin ();
|
||||
|
||||
// TODO: Deallocate any commands still in the pipes. Keep in mind that
|
||||
// simple reading from a pipe and deallocating commands won't do as
|
||||
// command pipe has template parameter D set to true, meaning that
|
||||
// read may return false even if there are still commands in the pipe.
|
||||
delete [] command_pipes;
|
||||
|
||||
// Deallocate the array of pointers to signalers. No special work is
|
||||
// needed as signalers themselves were deallocated with their
|
||||
// corresponding (app_/io_) thread objects.
|
||||
free (signalers);
|
||||
|
||||
#ifdef ZMQ_HAVE_WINDOWS
|
||||
// On Windows, uninitialise socket layer.
|
||||
int rc = WSACleanup ();
|
||||
@ -136,11 +131,6 @@ zmq::dispatcher_t::~dispatcher_t ()
|
||||
#endif
|
||||
}
|
||||
|
||||
uint32_t zmq::dispatcher_t::thread_slot_count ()
|
||||
{
|
||||
return (uint32_t) signalers.size ();
|
||||
}
|
||||
|
||||
zmq::socket_base_t *zmq::dispatcher_t::create_socket (int type_)
|
||||
{
|
||||
app_threads_sync.lock ();
|
||||
@ -213,21 +203,16 @@ void zmq::dispatcher_t::no_sockets (app_thread_t *thread_)
|
||||
app_threads_sync.unlock ();
|
||||
}
|
||||
|
||||
void zmq::dispatcher_t::write (uint32_t source_, uint32_t destination_,
|
||||
void zmq::dispatcher_t::send_command (uint32_t destination_,
|
||||
const command_t &command_)
|
||||
{
|
||||
command_pipe_t &pipe =
|
||||
command_pipes [source_ * signalers.size () + destination_];
|
||||
pipe.write (command_);
|
||||
if (!pipe.flush ())
|
||||
signalers [destination_]->signal (source_);
|
||||
signalers [destination_]->send (command_);
|
||||
}
|
||||
|
||||
bool zmq::dispatcher_t::read (uint32_t source_, uint32_t destination_,
|
||||
command_t *command_)
|
||||
bool zmq::dispatcher_t::recv_command (uint32_t thread_slot_,
|
||||
command_t *command_, bool block_)
|
||||
{
|
||||
return command_pipes [source_ * signalers.size () +
|
||||
destination_].read (command_);
|
||||
return signalers [thread_slot_]->recv (command_, block_);
|
||||
}
|
||||
|
||||
zmq::io_thread_t *zmq::dispatcher_t::choose_io_thread (uint64_t affinity_)
|
||||
|
@ -27,7 +27,6 @@
|
||||
|
||||
#include "signaler.hpp"
|
||||
#include "ypipe.hpp"
|
||||
#include "command.hpp"
|
||||
#include "config.hpp"
|
||||
#include "mutex.hpp"
|
||||
#include "stdint.hpp"
|
||||
@ -69,19 +68,12 @@ namespace zmq
|
||||
// should disassociate the object from the current OS thread.
|
||||
void no_sockets (class app_thread_t *thread_);
|
||||
|
||||
// Returns number of thread slots in the dispatcher. To be used by
|
||||
// individual threads to find out how many distinct signals can be
|
||||
// received.
|
||||
uint32_t thread_slot_count ();
|
||||
// Send command to the destination thread.
|
||||
void send_command (uint32_t destination_, const command_t &command_);
|
||||
|
||||
// Send command from the source to the destination.
|
||||
void write (uint32_t source_, uint32_t destination_,
|
||||
const command_t &command_);
|
||||
|
||||
// Receive command from the source. Returns false if there is no
|
||||
// command available.
|
||||
bool read (uint32_t source_, uint32_t destination_,
|
||||
command_t *command_);
|
||||
// Receive command from another thread.
|
||||
bool recv_command (uint32_t thread_slot_, command_t *command_,
|
||||
bool block_);
|
||||
|
||||
// Returns the I/O thread that is the least busy at the moment.
|
||||
// Taskset specifies which I/O threads are eligible (0 = all).
|
||||
@ -126,15 +118,9 @@ namespace zmq
|
||||
typedef std::vector <class io_thread_t*> io_threads_t;
|
||||
io_threads_t io_threads;
|
||||
|
||||
// Signalers for both application and I/O threads.
|
||||
std::vector <signaler_t*> signalers;
|
||||
|
||||
// Pipe to hold the commands.
|
||||
typedef ypipe_t <command_t, true,
|
||||
command_pipe_granularity> command_pipe_t;
|
||||
|
||||
// NxN matrix of command pipes.
|
||||
command_pipe_t *command_pipes;
|
||||
// Array of pointers to signalers for both application and I/O threads.
|
||||
int signalers_count;
|
||||
signaler_t **signalers;
|
||||
|
||||
// As pipes may reside in orphaned state in particular moments
|
||||
// of the pipe shutdown process, i.e. neither pipe reader nor
|
||||
|
@ -22,10 +22,8 @@
|
||||
#include "../include/zmq.h"
|
||||
|
||||
#include "io_thread.hpp"
|
||||
#include "command.hpp"
|
||||
#include "platform.hpp"
|
||||
#include "err.hpp"
|
||||
#include "command.hpp"
|
||||
#include "dispatcher.hpp"
|
||||
|
||||
zmq::io_thread_t::io_thread_t (dispatcher_t *dispatcher_,
|
||||
@ -67,17 +65,18 @@ int zmq::io_thread_t::get_load ()
|
||||
|
||||
void zmq::io_thread_t::in_event ()
|
||||
{
|
||||
// TODO: Do we want to limit number of commands I/O thread can
|
||||
// process in a single go?
|
||||
|
||||
while (true) {
|
||||
|
||||
// Get the next signal.
|
||||
uint32_t signal = signaler.check ();
|
||||
if (signal == signaler_t::no_signal)
|
||||
// Get the next command. If there is none, exit.
|
||||
command_t cmd;
|
||||
if (!signaler.recv (&cmd, false))
|
||||
break;
|
||||
|
||||
// Process all the commands from the thread that sent the signal.
|
||||
command_t cmd;
|
||||
while (get_dispatcher ()->read (signal, get_thread_slot (), &cmd))
|
||||
cmd.destination->process_command (cmd);
|
||||
// Process the command.
|
||||
cmd.destination->process_command (cmd);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -157,11 +157,10 @@ void zmq::object_t::send_stop ()
|
||||
{
|
||||
// 'stop' command goes always from administrative thread to
|
||||
// the current object.
|
||||
uint32_t admin_thread_id = dispatcher->thread_slot_count () - 1;
|
||||
command_t cmd;
|
||||
cmd.destination = this;
|
||||
cmd.type = command_t::stop;
|
||||
dispatcher->write (admin_thread_id, thread_slot, cmd);
|
||||
dispatcher->send_command (thread_slot, cmd);
|
||||
}
|
||||
|
||||
void zmq::object_t::send_plug (owned_t *destination_, bool inc_seqnum_)
|
||||
@ -370,7 +369,6 @@ void zmq::object_t::process_seqnum ()
|
||||
|
||||
void zmq::object_t::send_command (command_t &cmd_)
|
||||
{
|
||||
uint32_t destination_thread_slot = cmd_.destination->get_thread_slot ();
|
||||
dispatcher->write (thread_slot, destination_thread_slot, cmd_);
|
||||
dispatcher->send_command (cmd_.destination->get_thread_slot (), cmd_);
|
||||
}
|
||||
|
||||
|
@ -145,7 +145,7 @@ namespace zmq
|
||||
};
|
||||
|
||||
// Message pipe.
|
||||
class pipe_t : public ypipe_t <zmq_msg_t, false, message_pipe_granularity>
|
||||
class pipe_t : public ypipe_t <zmq_msg_t, message_pipe_granularity>
|
||||
{
|
||||
public:
|
||||
|
||||
|
234
src/signaler.cpp
234
src/signaler.cpp
@ -30,52 +30,9 @@
|
||||
#else
|
||||
#include <unistd.h>
|
||||
#include <fcntl.h>
|
||||
#include <limits.h>
|
||||
#endif
|
||||
|
||||
const uint32_t zmq::signaler_t::no_signal = 0xffffffff;
|
||||
|
||||
uint32_t zmq::signaler_t::poll ()
|
||||
{
|
||||
// Return next signal.
|
||||
if (current != count) {
|
||||
uint32_t result = buffer [current];
|
||||
current++;
|
||||
return result;
|
||||
}
|
||||
|
||||
// If there is no signal buffered, poll for new signals.
|
||||
xpoll ();
|
||||
|
||||
// Return first signal.
|
||||
zmq_assert (current != count);
|
||||
uint32_t result = buffer [current];
|
||||
current++;
|
||||
return result;
|
||||
}
|
||||
|
||||
uint32_t zmq::signaler_t::check ()
|
||||
{
|
||||
// Return next signal.
|
||||
if (current != count) {
|
||||
uint32_t result = buffer [current];
|
||||
current++;
|
||||
return result;
|
||||
}
|
||||
|
||||
// If there is no signal buffered, check whether more signals
|
||||
// can be obtained.
|
||||
xcheck ();
|
||||
|
||||
// Return first signal if any.
|
||||
if (current != count) {
|
||||
uint32_t result = buffer [current];
|
||||
current++;
|
||||
return result;
|
||||
}
|
||||
|
||||
return no_signal;
|
||||
}
|
||||
|
||||
zmq::fd_t zmq::signaler_t::get_fd ()
|
||||
{
|
||||
return r;
|
||||
@ -84,8 +41,6 @@ zmq::fd_t zmq::signaler_t::get_fd ()
|
||||
#if defined ZMQ_HAVE_WINDOWS
|
||||
|
||||
zmq::signaler_t::signaler_t () :
|
||||
current (0),
|
||||
count (0)
|
||||
{
|
||||
// Windows have no 'socketpair' function. CreatePipe is no good as pipe
|
||||
// handles cannot be polled on. Here we create the socketpair by hand.
|
||||
@ -146,51 +101,49 @@ zmq::signaler_t::~signaler_t ()
|
||||
wsa_assert (rc != SOCKET_ERROR);
|
||||
}
|
||||
|
||||
void zmq::signaler_t::signal (uint32_t signal_)
|
||||
void zmq::signaler_t::send (const command_t &cmd_)
|
||||
{
|
||||
// TODO: Note that send is a blocking operation.
|
||||
// How should we behave if the signal cannot be written to the signaler?
|
||||
int rc = send (w, (char*) &signal_, sizeof (signal_), 0);
|
||||
// Even worse: What if half of a command is written?
|
||||
int rc = send (w, (char*) &cmd_, sizeof (command_t), 0);
|
||||
win_assert (rc != SOCKET_ERROR);
|
||||
zmq_assert (rc == sizeof (signal_));
|
||||
zmq_assert (rc == sizeof (command_t));
|
||||
}
|
||||
|
||||
void zmq::signaler_t::xpoll ()
|
||||
bool zmq::signaler_t::recv (command_t *cmd_, bool block_)
|
||||
{
|
||||
// Switch to blocking mode.
|
||||
unsigned long argp = 0;
|
||||
int rc = ioctlsocket (r, FIONBIO, &argp);
|
||||
wsa_assert (rc != SOCKET_ERROR);
|
||||
if (block_) {
|
||||
|
||||
// Get the signals. Given that we are in the blocking mode now,
|
||||
// there should be at least a single signal returned.
|
||||
xcheck ();
|
||||
zmq_assert (current != count);
|
||||
|
||||
// Switch back to non-blocking mode.
|
||||
argp = 1;
|
||||
rc = ioctlsocket (r, FIONBIO, &argp);
|
||||
wsa_assert (rc != SOCKET_ERROR);
|
||||
}
|
||||
|
||||
void zmq::signaler_t::xcheck ()
|
||||
{
|
||||
int nbytes = recv (r, (char*) buffer, sizeof (buffer), 0);
|
||||
|
||||
// No signals are available.
|
||||
if (nbytes == -1 && WSAGetLastError () == WSAEWOULDBLOCK) {
|
||||
current = 0;
|
||||
count = 0;
|
||||
return;
|
||||
// Switch to blocking mode.
|
||||
unsigned long argp = 0;
|
||||
int rc = ioctlsocket (r, FIONBIO, &argp);
|
||||
wsa_assert (rc != SOCKET_ERROR);
|
||||
}
|
||||
|
||||
wsa_assert (nbytes != -1);
|
||||
bool result;
|
||||
int nbytes = recv (r, (char*) cmd_, sizeof (command_t), 0);
|
||||
if (nbytes == -1 && WSAGetLastError () == WSAEWOULDBLOCK) {
|
||||
result = false;
|
||||
}
|
||||
else {
|
||||
wsa_assert (nbytes != -1);
|
||||
|
||||
// Check whether we haven't got half of a signal.
|
||||
zmq_assert (nbytes % sizeof (uint32_t) == 0);
|
||||
// Check whether we haven't got half of a signal.
|
||||
zmq_assert (nbytes % sizeof (uint32_t) == 0);
|
||||
|
||||
current = 0;
|
||||
count = nbytes / sizeof (uint32_t);
|
||||
result = true;
|
||||
}
|
||||
|
||||
if (block_) {
|
||||
|
||||
// Switch back to non-blocking mode.
|
||||
unsigned long argp = 1;
|
||||
int rc = ioctlsocket (r, FIONBIO, &argp);
|
||||
wsa_assert (rc != SOCKET_ERROR);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
#elif defined ZMQ_HAVE_HPUX || defined ZMQ_HAVE_AIX
|
||||
@ -198,9 +151,7 @@ void zmq::signaler_t::xcheck ()
|
||||
#include <sys/types.h>
|
||||
#include <sys/socket.h>
|
||||
|
||||
zmq::signaler_t::signaler_t () :
|
||||
current (0),
|
||||
count (0)
|
||||
zmq::signaler_t::signaler_t ()
|
||||
{
|
||||
int sv [2];
|
||||
int rc = socketpair (AF_UNIX, SOCK_STREAM, 0, sv);
|
||||
@ -222,49 +173,50 @@ zmq::signaler_t::~signaler_t ()
|
||||
close (r);
|
||||
}
|
||||
|
||||
void zmq::signaler_t::signal (uint32_t signal_)
|
||||
void zmq::signaler_t::send (const command_t &cmd_)
|
||||
{
|
||||
ssize_t nbytes = send (w, &signal_, sizeof (signal_), 0);
|
||||
ssize_t nbytes = send (w, &cmd_, sizeof (command_t), 0);
|
||||
errno_assert (nbytes != -1);
|
||||
zmq_assert (nbytes == sizeof (signal_);
|
||||
zmq_assert (nbytes == sizeof (command_t));
|
||||
}
|
||||
|
||||
void zmq::signaler_t::xpoll ()
|
||||
bool zmq::signaler_t::recv (command_t &cmd_, bool block_)
|
||||
{
|
||||
// Set the reader to blocking mode.
|
||||
int flags = fcntl (r, F_GETFL, 0);
|
||||
if (flags == -1)
|
||||
flags = 0;
|
||||
int rc = fcntl (r, F_SETFL, flags & ~O_NONBLOCK);
|
||||
errno_assert (rc != -1);
|
||||
if (block_) {
|
||||
|
||||
// Poll for events.
|
||||
xcheck ();
|
||||
zmq_assert (current != count);
|
||||
|
||||
// Set the reader to non-blocking mode.
|
||||
flags = fcntl (r, F_GETFL, 0);
|
||||
if (flags == -1)
|
||||
flags = 0;
|
||||
rc = fcntl (r, F_SETFL, flags | O_NONBLOCK);
|
||||
errno_assert (rc != -1);
|
||||
}
|
||||
|
||||
void zmq::signaler_t::xcheck ()
|
||||
{
|
||||
ssize_t nbytes = recv (r, buffer, sizeof (buffer), 0);
|
||||
if (nbytes == -1 && errno == EAGAIN) {
|
||||
current = 0;
|
||||
count = 0;
|
||||
return;
|
||||
// Set the reader to blocking mode.
|
||||
int flags = fcntl (r, F_GETFL, 0);
|
||||
if (flags == -1)
|
||||
flags = 0;
|
||||
int rc = fcntl (r, F_SETFL, flags & ~O_NONBLOCK);
|
||||
errno_assert (rc != -1);
|
||||
}
|
||||
zmq_assert (nbytes != -1);
|
||||
|
||||
// Check whether we haven't got half of a signal.
|
||||
zmq_assert (nbytes % sizeof (uint32_t) == 0);
|
||||
bool result;
|
||||
ssize_t nbytes = recv (r, buffer, sizeof (command_t), 0);
|
||||
if (nbytes == -1 && errno == EAGAIN) {
|
||||
result = false;
|
||||
}
|
||||
else {
|
||||
zmq_assert (nbytes != -1);
|
||||
|
||||
current = 0;
|
||||
count = nbytes / sizeof (uint32_t);
|
||||
// Check whether we haven't got half of command.
|
||||
zmq_assert (nbytes == sizeof (command_t));
|
||||
|
||||
result = true;
|
||||
}
|
||||
|
||||
if (block_)
|
||||
|
||||
// Set the reader to non-blocking mode.
|
||||
int flags = fcntl (r, F_GETFL, 0);
|
||||
if (flags == -1)
|
||||
flags = 0;
|
||||
int rc = fcntl (r, F_SETFL, flags | O_NONBLOCK);
|
||||
errno_assert (rc != -1);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
#else
|
||||
@ -272,10 +224,13 @@ void zmq::signaler_t::xcheck ()
|
||||
#include <sys/types.h>
|
||||
#include <sys/socket.h>
|
||||
|
||||
zmq::signaler_t::signaler_t () :
|
||||
current (0),
|
||||
count (0)
|
||||
zmq::signaler_t::signaler_t ()
|
||||
{
|
||||
// Make sure that command can be written to the socket in atomic fashion.
|
||||
// If this wasn't guaranteed, commands from different threads would be
|
||||
// interleaved.
|
||||
zmq_assert (sizeof (command_t) <= PIPE_BUF);
|
||||
|
||||
int sv [2];
|
||||
int rc = socketpair (AF_UNIX, SOCK_STREAM, 0, sv);
|
||||
errno_assert (rc == 0);
|
||||
@ -289,42 +244,33 @@ zmq::signaler_t::~signaler_t ()
|
||||
close (r);
|
||||
}
|
||||
|
||||
void zmq::signaler_t::signal (uint32_t signal_)
|
||||
void zmq::signaler_t::send (const command_t &cmd_)
|
||||
{
|
||||
// TODO: Note that send is a blocking operation.
|
||||
// How should we behave if the signal cannot be written to the signaler?
|
||||
ssize_t nbytes = send (w, &signal_, sizeof (signal_), 0);
|
||||
// How should we behave if the command cannot be written to the signaler?
|
||||
ssize_t nbytes = ::send (w, &cmd_, sizeof (command_t), 0);
|
||||
errno_assert (nbytes != -1);
|
||||
zmq_assert (nbytes == sizeof (signal_));
|
||||
|
||||
// This should never happen as we've already checked that command size is
|
||||
// less than PIPE_BUF.
|
||||
zmq_assert (nbytes == sizeof (command_t));
|
||||
}
|
||||
|
||||
void zmq::signaler_t::xpoll ()
|
||||
bool zmq::signaler_t::recv (command_t *cmd_, bool block_)
|
||||
{
|
||||
ssize_t nbytes = recv (r, buffer, sizeof (buffer), 0);
|
||||
errno_assert (nbytes != -1);
|
||||
|
||||
// Check whether we haven't got half of a signal.
|
||||
zmq_assert (nbytes % sizeof (uint32_t) == 0);
|
||||
ssize_t nbytes = ::recv (r, cmd_, sizeof (command_t),
|
||||
block_ ? 0 : MSG_DONTWAIT);
|
||||
|
||||
current = 0;
|
||||
count = nbytes / sizeof (uint32_t);
|
||||
}
|
||||
// If there's no signal available return false.
|
||||
if (nbytes == -1 && errno == EAGAIN)
|
||||
return false;
|
||||
|
||||
void zmq::signaler_t::xcheck ()
|
||||
{
|
||||
ssize_t nbytes = recv (r, buffer, 64, MSG_DONTWAIT);
|
||||
if (nbytes == -1 && errno == EAGAIN) {
|
||||
current = 0;
|
||||
count = 0;
|
||||
return;
|
||||
}
|
||||
errno_assert (nbytes != -1);
|
||||
|
||||
// Check whether we haven't got half of a signal.
|
||||
zmq_assert (nbytes % sizeof (uint32_t) == 0);
|
||||
// Check whether we haven't got half of command.
|
||||
zmq_assert (nbytes == sizeof (command_t));
|
||||
|
||||
current = 0;
|
||||
count = nbytes / sizeof (uint32_t);
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -26,15 +26,11 @@
|
||||
#include "fd.hpp"
|
||||
#include "stdint.hpp"
|
||||
#include "config.hpp"
|
||||
#include "command.hpp"
|
||||
|
||||
namespace zmq
|
||||
{
|
||||
|
||||
// This object can be used to send individual signals from one thread to
|
||||
// another. The specific of this pipe is that it has associated file
|
||||
// descriptor and so it can be polled on. Same signal cannot be sent twice
|
||||
// unless signals are retrieved by the reader side in the meantime.
|
||||
|
||||
class signaler_t
|
||||
{
|
||||
public:
|
||||
@ -42,44 +38,29 @@ namespace zmq
|
||||
signaler_t ();
|
||||
~signaler_t ();
|
||||
|
||||
static const uint32_t no_signal;
|
||||
|
||||
void signal (uint32_t signal_);
|
||||
uint32_t poll ();
|
||||
uint32_t check ();
|
||||
fd_t get_fd ();
|
||||
|
||||
void send (const command_t &cmd_);
|
||||
bool recv (command_t *cmd_, bool block_);
|
||||
|
||||
private:
|
||||
|
||||
void xpoll ();
|
||||
void xcheck ();
|
||||
|
||||
#if defined ZMQ_HAVE_OPENVMS
|
||||
|
||||
// Whilst OpenVMS supports socketpair - it maps to AF_INET only.
|
||||
// Further, it does not set the socket options TCP_NODELAY and
|
||||
// TCP_NODELACK which can lead to performance problems. We'll
|
||||
// overload the socketpair function for this class.
|
||||
//
|
||||
// The bug will be fixed in V5.6 ECO4 and beyond. In the
|
||||
// meantime, we'll create the socket pair manually.
|
||||
static int socketpair (int domain_, int type_, int protocol_,
|
||||
int sv_ [2]);
|
||||
// Whilst OpenVMS supports socketpair - it maps to AF_INET only.
|
||||
// Further, it does not set the socket options TCP_NODELAY and
|
||||
// TCP_NODELACK which can lead to performance problems. We'll
|
||||
// overload the socketpair function for this class.
|
||||
//
|
||||
// The bug will be fixed in V5.6 ECO4 and beyond. In the
|
||||
// meantime, we'll create the socket pair manually.
|
||||
static int socketpair (int domain_, int type_, int protocol_,
|
||||
int sv_ [2]);
|
||||
#endif
|
||||
|
||||
// Write & read end of the socketpair.
|
||||
fd_t w;
|
||||
fd_t r;
|
||||
|
||||
// Signal buffer.
|
||||
uint32_t buffer [signal_buffer_size];
|
||||
|
||||
// Position of the next signal in the buffer to return to the user.
|
||||
size_t current;
|
||||
|
||||
// Number of signals in the signal buffer.
|
||||
size_t count;
|
||||
|
||||
// Disable copying of fd_signeler object.
|
||||
signaler_t (const signaler_t&);
|
||||
void operator = (const signaler_t&);
|
||||
|
@ -30,31 +30,24 @@ namespace zmq
|
||||
// Lock-free queue implementation.
|
||||
// Only a single thread can read from the pipe at any specific moment.
|
||||
// Only a single thread can write to the pipe at any specific moment.
|
||||
//
|
||||
// T is the type of the object in the queue.
|
||||
// If the template parameter D is set to true, it is quaranteed that
|
||||
// the pipe will die in a finite time (so that you can swich to some
|
||||
// other task). If D is set to false, reading from the pipe may result
|
||||
// in an infinite cycle (if the pipe is continuosly fed by new elements).
|
||||
// N is granularity of the pipe (how many elements have to be inserted
|
||||
// till actual memory allocation is required).
|
||||
// N is granularity of the pipe, i.e. how many messages are needed to
|
||||
// perform next memory allocation.
|
||||
|
||||
template <typename T, bool D, int N> class ypipe_t
|
||||
template <typename T, int N> class ypipe_t
|
||||
{
|
||||
public:
|
||||
|
||||
// Initialises the pipe. In D scenario it is created in dead state.
|
||||
// Otherwise it's alive.
|
||||
inline ypipe_t () :
|
||||
stop (false)
|
||||
// Initialises the pipe.
|
||||
inline ypipe_t ()
|
||||
{
|
||||
// Insert terminator element into the queue.
|
||||
queue.push ();
|
||||
|
||||
// Let all the pointers to point to the terminator
|
||||
// Let all the pointers to point to the terminator.
|
||||
// (unless pipe is dead, in which case c is set to NULL).
|
||||
r = w = &queue.back ();
|
||||
c.set (D ? NULL : &queue.back ());
|
||||
c.set (&queue.back ());
|
||||
}
|
||||
|
||||
// Following function (write) deliberately copies uninitialised data
|
||||
@ -125,50 +118,17 @@ namespace zmq
|
||||
return true;
|
||||
|
||||
// There's no prefetched value, so let us prefetch more values.
|
||||
// (Note that D is a template parameter. Becaue of that one of
|
||||
// the following branches will be completely optimised away
|
||||
// by the compiler.)
|
||||
if (D) {
|
||||
// Prefetching is to simply retrieve the
|
||||
// pointer from c in atomic fashion. If there are no
|
||||
// items to prefetch, set c to NULL (using compare-and-swap).
|
||||
r = c.cas (&queue.front (), NULL);
|
||||
|
||||
// If one prefetch was already done since last sleeping,
|
||||
// don't do a new one, rather ask caller to go asleep.
|
||||
if (stop) {
|
||||
stop = false;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Get new items. Perform the operation in atomic fashion.
|
||||
r = c.xchg (NULL);
|
||||
|
||||
// If there are no elements prefetched, exit and go asleep.
|
||||
// During pipe's lifetime r should never be NULL, however,
|
||||
// during pipe shutdown when retrieving messages from it
|
||||
// to deallocate them, this can happen.
|
||||
if (&queue.front () == r || !r) {
|
||||
stop = false;
|
||||
return false;
|
||||
}
|
||||
|
||||
// We want to do only a single prefetch in D scenario
|
||||
// before going asleep. Thus, we set stop variable to true
|
||||
// so that we can return false next time the prefetch is
|
||||
// attempted.
|
||||
stop = true;
|
||||
}
|
||||
else {
|
||||
|
||||
// Prefetching in non-D scenario is to simply retrieve the
|
||||
// pointer from c in atomic fashion. If there are no
|
||||
// items to prefetch, set c to NULL (using compare-and-swap).
|
||||
r = c.cas (&queue.front (), NULL);
|
||||
|
||||
// If there are no elements prefetched, exit.
|
||||
// During pipe's lifetime r should never be NULL, however,
|
||||
// it can happen during pipe shutdown when messages
|
||||
// are being deallocated.
|
||||
if (&queue.front () == r || !r)
|
||||
return false;
|
||||
}
|
||||
// If there are no elements prefetched, exit.
|
||||
// During pipe's lifetime r should never be NULL, however,
|
||||
// it can happen during pipe shutdown when messages
|
||||
// are being deallocated.
|
||||
if (&queue.front () == r || !r)
|
||||
return false;
|
||||
|
||||
// There was at least one value prefetched.
|
||||
return true;
|
||||
@ -211,11 +171,6 @@ namespace zmq
|
||||
// atomic operations.
|
||||
atomic_ptr_t <T> c;
|
||||
|
||||
// Used only if 'D' template parameter is set to true. If true,
|
||||
// prefetch was already done since last sleeping and the reader
|
||||
// should go asleep instead of prefetching once more.
|
||||
bool stop;
|
||||
|
||||
// Disable copying of ypipe object.
|
||||
ypipe_t (const ypipe_t&);
|
||||
void operator = (const ypipe_t&);
|
||||
|
Loading…
Reference in New Issue
Block a user