libupnp/threadutil/src/ThreadPool.c
Marcelo Roberto Jimenez 18f80bd778 threadutil: Doxygenation and compiler warnings.
(cherry picked from commit 7c524df1d91684abbfe710c606a69622de0dbd91)
2010-11-16 03:15:56 -02:00

1277 lines
28 KiB
C

/*******************************************************************************
*
* Copyright (c) 2000-2003 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/*!
* \file
*/
#if !defined(WIN32)
#include <sys/param.h>
#endif
#include "ThreadPool.h"
#include "FreeList.h"
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h> /* for memset()*/
/*!
* \brief Returns the difference in milliseconds between two timeval structures.
*
* \internal
*
* \return The difference in milliseconds, time1-time2.
*/
static long DiffMillis(
/*! . */
struct timeval *time1,
/*! . */
struct timeval *time2)
{
double temp = 0;
temp = (double)(time1->tv_sec - time2->tv_sec);
/* convert to milliseconds */
temp *= 1000;
/* convert microseconds to milliseconds and add to temp */
/* implicit flooring of unsigned long data type */
temp += (double)((time1->tv_usec - time2->tv_usec) / 1000);
return (long)temp;
}
#ifdef STATS
/*!
* \brief Initializes the statistics structure.
*
* \internal
*/
static void StatsInit(
/*! Must be valid non null stats structure. */
ThreadPoolStats *stats)
{
stats->totalIdleTime = 0;
stats->totalJobsHQ = 0;
stats->totalJobsLQ = 0;
stats->totalJobsMQ = 0;
stats->totalTimeHQ = 0;
stats->totalTimeMQ = 0;
stats->totalTimeLQ = 0;
stats->totalWorkTime = 0;
stats->totalIdleTime = 0;
stats->avgWaitHQ = 0;
stats->avgWaitMQ = 0;
stats->avgWaitLQ = 0;
stats->workerThreads = 0;
stats->idleThreads = 0;
stats->persistentThreads = 0;
stats->maxThreads = 0; stats->totalThreads = 0;
}
/*!
* \brief
*
* \internal
*/
static void StatsAccountLQ(
/*! . */
ThreadPool *tp,
/*! . */
long diffTime)
{
tp->stats.totalJobsLQ++;
tp->stats.totalTimeLQ += (double)diffTime;
}
/*!
* \brief
*
* \internal
*/
static void StatsAccountMQ(
/*! . */
ThreadPool *tp,
/*! . */
long diffTime)
{
tp->stats.totalJobsMQ++;
tp->stats.totalTimeMQ += (double)diffTime;
}
/*!
* \brief
*
* \internal
*/
static void StatsAccountHQ(
/*! . */
ThreadPool *tp,
/*! . */
long diffTime)
{
tp->stats.totalJobsHQ++;
tp->stats.totalTimeHQ += (double)diffTime;
}
/*!
* \brief Calculates the time the job has been waiting at the specified
* priority.
*
* Adds to the totalTime and totalJobs kept in the thread pool statistics
* structure.
*
* \internal
*/
static void CalcWaitTime(
/*! . */
ThreadPool *tp,
/*! . */
ThreadPriority p,
/*! . */
ThreadPoolJob *job)
{
struct timeval now;
long diff;
assert(tp != NULL);
assert(job != NULL);
gettimeofday(&now, NULL);
diff = DiffMillis(&now, &job->requestTime);
switch (p) {
case LOW_PRIORITY:
StatsAccountLQ(tp, diff);
break;
case MED_PRIORITY:
StatsAccountMQ(tp, diff);
break;
case HIGH_PRIORITY:
StatsAccountHQ(tp, diff);
break;
default:
assert(0);
}
}
/*!
* \brief
*
* \internal
*/
static time_t StatsTime(
/*! . */
time_t *t)
{
struct timeval tv;
gettimeofday(&tv, NULL);
if (t)
*t = tv.tv_sec;
return tv.tv_sec;
}
#else /* STATS */
static UPNP_INLINE void StatsInit(ThreadPoolStats *stats) {}
static UPNP_INLINE void StatsAccountLQ(ThreadPool *tp, long diffTime) {}
static UPNP_INLINE void StatsAccountMQ(ThreadPool *tp, long diffTime) {}
static UPNP_INLINE void StatsAccountHQ(ThreadPool *tp, long diffTime) {}
static UPNP_INLINE void CalcWaitTime(ThreadPool *tp, ThreadPriority p, ThreadPoolJob *job) {}
static UPNP_INLINE time_t StatsTime(time_t *t) { return 0; }
#endif /* STATS */
/*!
* \brief Compares thread pool jobs.
*
* \internal
*/
static int CmpThreadPoolJob(
void *jobA,
void *jobB)
{
ThreadPoolJob *a = (ThreadPoolJob *)jobA;
ThreadPoolJob *b = (ThreadPoolJob *)jobB;
return a->jobId == b->jobId;
}
/*!
* \brief Deallocates a dynamically allocated ThreadPoolJob.
*
* \internal
*/
static void FreeThreadPoolJob(
/*! . */
ThreadPool *tp,
/*! Must be allocated with CreateThreadPoolJob. */
ThreadPoolJob *tpj)
{
FreeListFree(&tp->jobFreeList, tpj);
}
/*!
* \brief Sets the scheduling policy of the current process.
*
* \internal
*
* \return
* \li \c 0 on success.
* \li \c result of GetLastError() on failure.
*
*/
static int SetPolicyType(
/*! . */
PolicyType in)
{
int retVal = 0;
#ifdef __CYGWIN__
/* TODO not currently working... */
retVal = 0;
#elif defined(__OSX__) || defined(__APPLE__) || defined(__NetBSD__)
setpriority(PRIO_PROCESS, 0, 0);
retVal = 0;
#elif defined(WIN32)
retVal = sched_setscheduler(0, in);
#elif defined(_POSIX_PRIORITY_SCHEDULING) && _POSIX_PRIORITY_SCHEDULING > 0
struct sched_param current;
int sched_result;
memset(&current, 0, sizeof(current));
sched_getparam(0, &current);
current.sched_priority = sched_get_priority_min(DEFAULT_POLICY);
sched_result = sched_setscheduler(0, in, &current);
retVal = (sched_result != -1 || errno == EPERM) ? 0 : errno;
#else
retVal = 0;
#endif
return retVal;
}
/*!
* \brief Sets the priority of the currently running thread.
*
* \internal
*
* \return
* \li \c 0 on success.
* \li \c EINVAL invalid priority or the result of GerLastError.
*/
static int SetPriority(
/*! . */
ThreadPriority priority)
{
int retVal = 0;
#if defined(_POSIX_PRIORITY_SCHEDULING) && _POSIX_PRIORITY_SCHEDULING > 0
int currentPolicy;
int minPriority = 0;
int maxPriority = 0;
int actPriority = 0;
int midPriority = 0;
struct sched_param newPriority;
int sched_result;
pthread_getschedparam(ithread_self(), &currentPolicy, &newPriority);
minPriority = sched_get_priority_min(currentPolicy);
maxPriority = sched_get_priority_max(currentPolicy);
midPriority = (maxPriority - minPriority) / 2;
switch (priority) {
case LOW_PRIORITY:
actPriority = minPriority;
break;
case MED_PRIORITY:
actPriority = midPriority;
break;
case HIGH_PRIORITY:
actPriority = maxPriority;
break;
default:
retVal = EINVAL;
goto exit_function;
};
newPriority.sched_priority = actPriority;
sched_result = pthread_setschedparam(ithread_self(), currentPolicy, &newPriority);
retVal = (sched_result == 0 || errno == EPERM) ? 0 : sched_result;
#else
retVal = 0;
#endif
exit_function:
return retVal;
}
/*!
* \brief Determines whether any jobs need to be bumped to a higher priority Q
* and bumps them.
*
* tp->mutex must be locked.
*
* \internal
*
* \return
*/
static void BumpPriority(
/*! . */
ThreadPool *tp)
{
int done = 0;
struct timeval now;
long diffTime = 0;
ThreadPoolJob *tempJob = NULL;
gettimeofday(&now, NULL);
while (!done) {
if (tp->medJobQ.size) {
tempJob = (ThreadPoolJob *)tp->medJobQ.head.next->item;
diffTime = DiffMillis(&now, &tempJob->requestTime);
if (diffTime >= tp->attr.starvationTime) {
/* If job has waited longer than the starvation time
* bump priority (add to higher priority Q) */
StatsAccountMQ(tp, diffTime);
ListDelNode(&tp->medJobQ, tp->medJobQ.head.next, 0);
ListAddTail(&tp->highJobQ, tempJob);
continue;
}
}
if (tp->lowJobQ.size) {
tempJob = (ThreadPoolJob *)tp->lowJobQ.head.next->item;
diffTime = DiffMillis(&now, &tempJob->requestTime);
if (diffTime >= tp->attr.maxIdleTime) {
/* If job has waited longer than the starvation time
* bump priority (add to higher priority Q) */
StatsAccountLQ(tp, diffTime);
ListDelNode(&tp->lowJobQ, tp->lowJobQ.head.next, 0);
ListAddTail(&tp->medJobQ, tempJob);
continue;
}
}
done = 1;
}
}
/*!
* \brief Sets the fields of the passed in timespec to be relMillis
* milliseconds in the future.
*
* \internal
*/
static void SetRelTimeout(
/*! . */
struct timespec *time,
/*! milliseconds in the future. */
int relMillis)
{
struct timeval now;
int sec = relMillis / 1000;
int milliSeconds = relMillis % 1000;
gettimeofday(&now, NULL);
time->tv_sec = now.tv_sec + sec;
time->tv_nsec = (now.tv_usec / 1000 + milliSeconds) * 1000000;
}
/*!
* \brief Sets seed for random number generator. Each thread sets the seed
* random number generator.
*
* \internal
*/
static void SetSeed(void)
{
struct timeval t;
gettimeofday(&t, NULL);
#if defined(WIN32)
srand((unsigned int)t.tv_usec + (unsigned int)ithread_get_current_thread_id().p);
#elif defined(BSD) || defined(__OSX__) || defined(__APPLE__) || defined(__FreeBSD_kernel__)
srand((unsigned int)t.tv_usec + (unsigned int)ithread_get_current_thread_id());
#elif defined(__linux__) || defined(__sun) || defined(__CYGWIN__) || defined(__GLIBC__)
srand((unsigned int)t.tv_usec + (unsigned int)ithread_get_current_thread_id());
#else
{
volatile union {
volatile pthread_t tid;
volatile unsigned i;
} idu;
idu.tid = ithread_get_current_thread_id();
srand((unsigned int)t.millitm + idu.i);
}
#endif
}
/*!
* \brief Implements a thread pool worker. Worker waits for a job to become
* available. Worker picks up persistent jobs first, high priority,
* med priority, then low priority.
*
* If worker remains idle for more than specified max, the worker is released.
*
* \internal
*/
static void *WorkerThread(
/*! arg -> is cast to (ThreadPool *). */
void *arg)
{
time_t start = 0;
ThreadPoolJob *job = NULL;
ListNode *head = NULL;
struct timespec timeout;
int retCode = 0;
int persistent = -1;
ThreadPool *tp = (ThreadPool *) arg;
ithread_initialize_thread();
/* Increment total thread count */
ithread_mutex_lock(&tp->mutex);
tp->totalThreads++;
ithread_cond_broadcast(&tp->start_and_shutdown);
ithread_mutex_unlock(&tp->mutex);
SetSeed();
StatsTime(&start);
while (1) {
ithread_mutex_lock(&tp->mutex);
if (job) {
tp->busyThreads--;
FreeThreadPoolJob(tp, job);
job = NULL;
}
retCode = 0;
tp->stats.idleThreads++;
tp->stats.totalWorkTime += (double)(StatsTime(NULL) - start);
StatsTime(&start);
if (persistent == 0) {
tp->stats.workerThreads--;
} else if (persistent == 1) {
/* Persistent thread becomes a regular thread */
tp->persistentThreads--;
}
/* Check for a job or shutdown */
while (tp->lowJobQ.size == 0 &&
tp->medJobQ.size == 0 &&
tp->highJobQ.size == 0 &&
!tp->persistentJob && !tp->shutdown) {
/* If wait timed out and we currently have more than the
* min threads, or if we have more than the max threads
* (only possible if the attributes have been reset)
* let this thread die. */
if ((retCode == ETIMEDOUT &&
tp->totalThreads > tp->attr.minThreads) ||
(tp->attr.maxThreads != -1 &&
tp->totalThreads > tp->attr.maxThreads)) {
tp->stats.idleThreads--;
goto exit_function;
}
SetRelTimeout(&timeout, tp->attr.maxIdleTime);
/* wait for a job up to the specified max time */
retCode = ithread_cond_timedwait(
&tp->condition, &tp->mutex, &timeout);
}
tp->stats.idleThreads--;
/* idle time */
tp->stats.totalIdleTime += (double)(StatsTime(NULL) - start);
/* work time */
StatsTime(&start);
/* bump priority of starved jobs */
BumpPriority(tp);
/* if shutdown then stop */
if (tp->shutdown) {
goto exit_function;
} else {
/* Pick up persistent job if available */
if (tp->persistentJob) {
job = tp->persistentJob;
tp->persistentJob = NULL;
tp->persistentThreads++;
persistent = 1;
ithread_cond_broadcast(&tp->start_and_shutdown);
} else {
tp->stats.workerThreads++;
persistent = 0;
/* Pick the highest priority job */
if (tp->highJobQ.size > 0) {
head = ListHead(&tp->highJobQ);
job = (ThreadPoolJob *) head->item;
CalcWaitTime(tp, HIGH_PRIORITY, job);
ListDelNode(&tp->highJobQ, head, 0);
} else if (tp->medJobQ.size > 0) {
head = ListHead(&tp->medJobQ);
job = (ThreadPoolJob *) head->item;
CalcWaitTime(tp, MED_PRIORITY, job);
ListDelNode(&tp->medJobQ, head, 0);
} else if (tp->lowJobQ.size > 0) {
head = ListHead(&tp->lowJobQ);
job = (ThreadPoolJob *) head->item;
CalcWaitTime(tp, LOW_PRIORITY, job);
ListDelNode(&tp->lowJobQ, head, 0);
} else {
/* Should never get here */
tp->stats.workerThreads--;
goto exit_function;
}
}
}
tp->busyThreads++;
ithread_mutex_unlock(&tp->mutex);
/* In the future can log info */
if (SetPriority(job->priority) != 0) {
} else {
}
/* run the job */
job->func(job->arg);
/* return to Normal */
SetPriority(DEFAULT_PRIORITY);
}
exit_function:
tp->totalThreads--;
ithread_cond_broadcast(&tp->start_and_shutdown);
ithread_mutex_unlock(&tp->mutex);
ithread_cleanup_thread();
return NULL;
}
/*!
* \brief Creates a Thread Pool Job. (Dynamically allocated)
*
* \internal
*
* \return ThreadPoolJob *on success, NULL on failure.
*/
static ThreadPoolJob *CreateThreadPoolJob(
/*! job is copied. */
ThreadPoolJob *job,
/*! id of job. */
int id,
/*! . */
ThreadPool *tp)
{
ThreadPoolJob *newJob = NULL;
newJob = (ThreadPoolJob *)FreeListAlloc(&tp->jobFreeList);
if (newJob) {
*newJob = *job;
newJob->jobId = id;
gettimeofday(&newJob->requestTime, NULL);
}
return newJob;
}
/*!
* \brief Creates a worker thread, if the thread pool does not already have
* max threads.
*
* \internal
*
* \return
* \li \c 0 on success, < 0 on failure.
* \li \c EMAXTHREADS if already max threads reached.
* \li \c EAGAIN if system can not create thread.
*/
static int CreateWorker(
/*! . */
ThreadPool *tp)
{
ithread_t temp;
int rc = 0;
int currentThreads = tp->totalThreads + 1;
ithread_attr_t attr;
if (tp->attr.maxThreads != INFINITE_THREADS &&
currentThreads > tp->attr.maxThreads) {
return EMAXTHREADS;
}
ithread_attr_init(&attr);
ithread_attr_setstacksize(&attr, tp->attr.stackSize);
rc = ithread_create(&temp, &attr, WorkerThread, tp);
ithread_attr_destroy(&attr);
if (rc == 0) {
rc = ithread_detach(temp);
while (tp->totalThreads < currentThreads) {
ithread_cond_wait(&tp->start_and_shutdown, &tp->mutex);
}
}
if (tp->stats.maxThreads < tp->totalThreads) {
tp->stats.maxThreads = tp->totalThreads;
}
return rc;
}
/*!
* \brief Determines whether or not a thread should be added based on the
* jobsPerThread ratio. Adds a thread if appropriate.
*
* \internal
*/
static void AddWorker(
/*! . */
ThreadPool *tp)
{
long jobs = 0;
int threads = 0;
jobs = tp->highJobQ.size + tp->lowJobQ.size + tp->medJobQ.size;
threads = tp->totalThreads - tp->persistentThreads;
while (threads == 0 ||
(jobs / threads) >= tp->attr.jobsPerThread ||
(tp->totalThreads == tp->busyThreads) ) {
if (CreateWorker(tp) != 0) {
return;
}
threads++;
}
}
int ThreadPoolInit(ThreadPool *tp, ThreadPoolAttr *attr)
{
int retCode = 0;
int i = 0;
if (!tp) {
return EINVAL;
}
retCode += ithread_mutex_init(&tp->mutex, NULL);
retCode += ithread_mutex_lock(&tp->mutex);
retCode += ithread_cond_init(&tp->condition, NULL);
retCode += ithread_cond_init(&tp->start_and_shutdown, NULL);
if (retCode) {
return EAGAIN;
}
if (attr) {
tp->attr = *attr;
} else {
TPAttrInit(&tp->attr);
}
if (SetPolicyType(tp->attr.schedPolicy) != 0) {
ithread_mutex_unlock(&tp->mutex);
ithread_mutex_destroy(&tp->mutex);
ithread_cond_destroy(&tp->condition);
ithread_cond_destroy(&tp->start_and_shutdown);
return INVALID_POLICY;
}
retCode += FreeListInit(
&tp->jobFreeList, sizeof(ThreadPoolJob), JOBFREELISTSIZE);
StatsInit(&tp->stats);
retCode += ListInit(&tp->highJobQ, CmpThreadPoolJob, NULL);
retCode += ListInit(&tp->medJobQ, CmpThreadPoolJob, NULL);
retCode += ListInit(&tp->lowJobQ, CmpThreadPoolJob, NULL);
if (retCode) {
retCode = EAGAIN;
} else {
tp->persistentJob = NULL;
tp->lastJobId = 0;
tp->shutdown = 0;
tp->totalThreads = 0;
tp->busyThreads = 0;
tp->persistentThreads = 0;
for (i = 0; i < tp->attr.minThreads; ++i) {
retCode = CreateWorker(tp);
if (retCode) {
break;
}
}
}
ithread_mutex_unlock(&tp->mutex);
if (retCode) {
/* clean up if the min threads could not be created */
ThreadPoolShutdown(tp);
}
return retCode;
}
int ThreadPoolAddPersistent(ThreadPool *tp, ThreadPoolJob *job, int *jobId)
{
int ret = 0;
int tempId = -1;
ThreadPoolJob *temp = NULL;
if (!tp || !job) {
return EINVAL;
}
if (!jobId) {
jobId = &tempId;
}
*jobId = INVALID_JOB_ID;
ithread_mutex_lock(&tp->mutex);
/* Create A worker if less than max threads running */
if (tp->totalThreads < tp->attr.maxThreads) {
CreateWorker(tp);
} else {
/* if there is more than one worker thread
* available then schedule job, otherwise fail */
if (tp->totalThreads - tp->persistentThreads - 1 == 0) {
ret = EMAXTHREADS;
goto exit_function;
}
}
temp = CreateThreadPoolJob(job, tp->lastJobId, tp);
if (!temp) {
ret = EOUTOFMEM;
goto exit_function;
}
tp->persistentJob = temp;
/* Notify a waiting thread */
ithread_cond_signal(&tp->condition);
/* wait until long job has been picked up */
while (tp->persistentJob) {
ithread_cond_wait(&tp->start_and_shutdown, &tp->mutex);
}
*jobId = tp->lastJobId++;
exit_function:
ithread_mutex_unlock(&tp->mutex);
return ret;
}
int ThreadPoolAdd(ThreadPool *tp, ThreadPoolJob *job, int *jobId)
{
int rc = EOUTOFMEM;
int tempId = -1;
long totalJobs;
ThreadPoolJob *temp = NULL;
if (!tp || !job) {
return EINVAL;
}
ithread_mutex_lock(&tp->mutex);
totalJobs = tp->highJobQ.size + tp->lowJobQ.size + tp->medJobQ.size;
if (totalJobs >= tp->attr.maxJobsTotal) {
fprintf(stderr, "total jobs = %ld, too many jobs", totalJobs);
goto exit_function;
}
if (!jobId) {
jobId = &tempId;
}
*jobId = INVALID_JOB_ID;
temp = CreateThreadPoolJob(job, tp->lastJobId, tp);
if (!temp) {
goto exit_function;
}
if (job->priority == HIGH_PRIORITY) {
if (ListAddTail(&tp->highJobQ, temp)) {
rc = 0;
}
} else if (job->priority == MED_PRIORITY) {
if (ListAddTail(&tp->medJobQ, temp)) {
rc = 0;
}
} else {
if (ListAddTail(&tp->lowJobQ, temp)) {
rc = 0;
}
}
/* AddWorker if appropriate */
AddWorker(tp);
/* Notify a waiting thread */
if (rc == 0) {
ithread_cond_signal(&tp->condition);
} else {
FreeThreadPoolJob(tp, temp);
}
*jobId = tp->lastJobId++;
exit_function:
ithread_mutex_unlock(&tp->mutex);
return rc;
}
int ThreadPoolRemove(ThreadPool *tp, int jobId, ThreadPoolJob *out)
{
int ret = INVALID_JOB_ID;
ThreadPoolJob *temp = NULL;
ListNode *tempNode = NULL;
ThreadPoolJob dummy;
if (!tp) {
return EINVAL;
}
if (!out) {
out = &dummy;
}
dummy.jobId = jobId;
ithread_mutex_lock(&tp->mutex);
tempNode = ListFind(&tp->highJobQ, NULL, &dummy);
if (tempNode) {
temp = (ThreadPoolJob *)tempNode->item;
*out = *temp;
ListDelNode(&tp->highJobQ, tempNode, 0);
FreeThreadPoolJob(tp, temp);
ret = 0;
goto exit_function;
}
tempNode = ListFind(&tp->medJobQ, NULL, &dummy);
if (tempNode) {
temp = (ThreadPoolJob *)tempNode->item;
*out = *temp;
ListDelNode(&tp->medJobQ, tempNode, 0);
FreeThreadPoolJob(tp, temp);
ret = 0;
goto exit_function;
}
tempNode = ListFind(&tp->lowJobQ, NULL, &dummy);
if (tempNode) {
temp = (ThreadPoolJob *)tempNode->item;
*out = *temp;
ListDelNode(&tp->lowJobQ, tempNode, 0);
FreeThreadPoolJob(tp, temp);
ret = 0;
goto exit_function;
}
if (tp->persistentJob && tp->persistentJob->jobId == jobId) {
*out = *tp->persistentJob;
FreeThreadPoolJob(tp, tp->persistentJob);
tp->persistentJob = NULL;
ret = 0;
goto exit_function;
}
exit_function:
ithread_mutex_unlock(&tp->mutex);
return ret;
}
int ThreadPoolGetAttr(ThreadPool *tp, ThreadPoolAttr *out)
{
if (!tp || !out) {
return EINVAL;
}
if (!tp->shutdown) {
ithread_mutex_lock(&tp->mutex);
}
*out = tp->attr;
if (!tp->shutdown) {
ithread_mutex_unlock(&tp->mutex);
}
return 0;
}
int ThreadPoolSetAttr(ThreadPool *tp, ThreadPoolAttr *attr)
{
int retCode = 0;
ThreadPoolAttr temp;
int i = 0;
if (!tp) {
return EINVAL;
}
ithread_mutex_lock(&tp->mutex);
if (attr) {
temp = *attr;
} else {
TPAttrInit(&temp);
}
if (SetPolicyType(temp.schedPolicy) != 0) {
ithread_mutex_unlock(&tp->mutex);
return INVALID_POLICY;
}
tp->attr = temp;
/* add threads */
if (tp->totalThreads < tp->attr.minThreads) {
for (i = tp->totalThreads; i < tp->attr.minThreads; i++) {
retCode = CreateWorker(tp);
if (retCode != 0) {
break;
}
}
}
/* signal changes */
ithread_cond_signal(&tp->condition);
ithread_mutex_unlock(&tp->mutex);
if (retCode != 0) {
/* clean up if the min threads could not be created */
ThreadPoolShutdown(tp);
}
return retCode;
}
int ThreadPoolShutdown(ThreadPool *tp)
{
ListNode *head = NULL;
ThreadPoolJob *temp = NULL;
if (!tp) {
return EINVAL;
}
ithread_mutex_lock(&tp->mutex);
/* clean up high priority jobs */
while (tp->highJobQ.size) {
head = ListHead(&tp->highJobQ);
temp = (ThreadPoolJob *)head->item;
if (temp->free_func) {
temp->free_func(temp->arg);
}
FreeThreadPoolJob(tp, temp);
ListDelNode(&tp->highJobQ, head, 0);
}
ListDestroy(&tp->highJobQ, 0);
/* clean up med priority jobs */
while (tp->medJobQ.size) {
head = ListHead(&tp->medJobQ);
temp = (ThreadPoolJob *)head->item;
if (temp->free_func) {
temp->free_func(temp->arg);
}
FreeThreadPoolJob(tp, temp);
ListDelNode(&tp->medJobQ, head, 0);
}
ListDestroy(&tp->medJobQ, 0);
/* clean up low priority jobs */
while (tp->lowJobQ.size) {
head = ListHead(&tp->lowJobQ);
temp = (ThreadPoolJob *)head->item;
if (temp->free_func) {
temp->free_func(temp->arg);
}
FreeThreadPoolJob(tp, temp);
ListDelNode(&tp->lowJobQ, head, 0);
}
ListDestroy(&tp->lowJobQ, 0);
/* clean up long term job */
if (tp->persistentJob) {
temp = tp->persistentJob;
if (temp->free_func) {
temp->free_func(temp->arg);
}
FreeThreadPoolJob(tp, temp);
tp->persistentJob = NULL;
}
/* signal shutdown */
tp->shutdown = 1;
ithread_cond_broadcast(&tp->condition);
/* wait for all threads to finish */
while (tp->totalThreads > 0) {
ithread_cond_wait(&tp->start_and_shutdown, &tp->mutex);
}
/* destroy condition */
while (ithread_cond_destroy(&tp->condition) != 0) {
/**/
}
while (ithread_cond_destroy(&tp->start_and_shutdown) != 0) {
/**/
}
FreeListDestroy(&tp->jobFreeList);
ithread_mutex_unlock(&tp->mutex);
/* destroy mutex */
while (ithread_mutex_destroy(&tp->mutex) != 0) {
/**/
}
return 0;
}
int TPAttrInit(ThreadPoolAttr *attr)
{
if (!attr) {
return EINVAL;
}
attr->jobsPerThread = DEFAULT_JOBS_PER_THREAD;
attr->maxIdleTime = DEFAULT_IDLE_TIME;
attr->maxThreads = DEFAULT_MAX_THREADS;
attr->minThreads = DEFAULT_MIN_THREADS;
attr->stackSize = DEFAULT_STACK_SIZE;
attr->schedPolicy = DEFAULT_POLICY;
attr->starvationTime = DEFAULT_STARVATION_TIME;
attr->maxJobsTotal = DEFAULT_MAX_JOBS_TOTAL;
return 0;
}
int TPJobInit(ThreadPoolJob *job, start_routine func, void *arg)
{
if (!job || !func) {
return EINVAL;
}
job->func = func;
job->arg = arg;
job->priority = DEFAULT_PRIORITY;
job->free_func = DEFAULT_FREE_ROUTINE;
return 0;
}
int TPJobSetPriority(ThreadPoolJob *job, ThreadPriority priority)
{
if (!job) {
return EINVAL;
}
if (priority == LOW_PRIORITY ||
priority == MED_PRIORITY ||
priority == HIGH_PRIORITY) {
job->priority = priority;
return 0;
} else {
return EINVAL;
}
}
int TPJobSetFreeFunction(ThreadPoolJob *job, free_routine func)
{
if(!job) {
return EINVAL;
}
job->free_func = func;
return 0;
}
int TPAttrSetMaxThreads(ThreadPoolAttr *attr, int maxThreads)
{
if (!attr) {
return EINVAL;
}
attr->maxThreads = maxThreads;
return 0;
}
int TPAttrSetMinThreads(ThreadPoolAttr *attr, int minThreads)
{
if (!attr) {
return EINVAL;
}
attr->minThreads = minThreads;
return 0;
}
int TPAttrSetStackSize(ThreadPoolAttr *attr, size_t stackSize)
{
if (!attr) {
return EINVAL;
}
attr->stackSize = stackSize;
return 0;
}
int TPAttrSetIdleTime(ThreadPoolAttr *attr, int idleTime)
{
if (!attr) {
return EINVAL;
}
attr->maxIdleTime = idleTime;
return 0;
}
int TPAttrSetJobsPerThread(ThreadPoolAttr *attr, int jobsPerThread)
{
if (!attr) {
return EINVAL;
}
attr->jobsPerThread = jobsPerThread;
return 0;
}
int TPAttrSetStarvationTime(ThreadPoolAttr *attr, int starvationTime)
{
if (!attr) {
return EINVAL;
}
attr->starvationTime = starvationTime;
return 0;
}
int TPAttrSetSchedPolicy(ThreadPoolAttr *attr, PolicyType schedPolicy)
{
if (!attr) {
return EINVAL;
}
attr->schedPolicy = schedPolicy;
return 0;
}
int TPAttrSetMaxJobsTotal(ThreadPoolAttr *attr, int maxJobsTotal)
{
if (!attr) {
return EINVAL;
}
attr->maxJobsTotal = maxJobsTotal;
return 0;
}
#ifdef STATS
void ThreadPoolPrintStats(ThreadPoolStats *stats)
{
if (!stats) {
return;
}
/* some OSses time_t length may depending on platform, promote it to long for safety */
printf("ThreadPoolStats at Time: %ld\n", (long)StatsTime(NULL));
printf("High Jobs pending: %d\n", stats->currentJobsHQ);
printf("Med Jobs Pending: %d\n", stats->currentJobsMQ);
printf("Low Jobs Pending: %d\n", stats->currentJobsLQ);
printf("Average Wait in High Priority Q in milliseconds: %f\n", stats->avgWaitHQ);
printf("Average Wait in Med Priority Q in milliseconds: %f\n", stats->avgWaitMQ);
printf("Averate Wait in Low Priority Q in milliseconds: %f\n", stats->avgWaitLQ);
printf("Max Threads Active: %d\n", stats->maxThreads);
printf("Current Worker Threads: %d\n", stats->workerThreads);
printf("Current Persistent Threads: %d\n", stats->persistentThreads);
printf("Current Idle Threads: %d\n", stats->idleThreads);
printf("Total Threads : %d\n", stats->totalThreads);
printf("Total Time spent Working in seconds: %f\n", stats->totalWorkTime);
printf("Total Time spent Idle in seconds : %f\n", stats->totalIdleTime);
}
int ThreadPoolGetStats(ThreadPool *tp, ThreadPoolStats *stats)
{
if (tp == NULL || stats == NULL) {
return EINVAL;
}
/* if not shutdown then acquire mutex */
if (!tp->shutdown) {
ithread_mutex_lock(&tp->mutex);
}
*stats = tp->stats;
if (stats->totalJobsHQ > 0) {
stats->avgWaitHQ = stats->totalTimeHQ / stats->totalJobsHQ;
} else {
stats->avgWaitHQ = 0;
}
if (stats->totalJobsMQ > 0) {
stats->avgWaitMQ = stats->totalTimeMQ / stats->totalJobsMQ;
} else {
stats->avgWaitMQ = 0;
}
if (stats->totalJobsLQ > 0) {
stats->avgWaitLQ = stats->totalTimeLQ / stats->totalJobsLQ;
} else {
stats->avgWaitLQ = 0;
}
stats->totalThreads = tp->totalThreads;
stats->persistentThreads = tp->persistentThreads;
stats->currentJobsHQ = (int)ListSize(&tp->highJobQ);
stats->currentJobsLQ = (int)ListSize(&tp->lowJobQ);
stats->currentJobsMQ = (int)ListSize(&tp->medJobQ);
/* if not shutdown then release mutex */
if (!tp->shutdown) {
ithread_mutex_unlock(&tp->mutex);
}
return 0;
}
#endif /* STATS */
#ifdef WIN32
#if defined(_MSC_VER) || defined(_MSC_EXTENSIONS)
#define DELTA_EPOCH_IN_MICROSECS 11644473600000000Ui64
#else
#define DELTA_EPOCH_IN_MICROSECS 11644473600000000ULL
#endif
int gettimeofday(struct timeval *tv, struct timezone *tz)
{
FILETIME ft;
unsigned __int64 tmpres = 0;
static int tzflag;
if (tv) {
GetSystemTimeAsFileTime(&ft);
tmpres |= ft.dwHighDateTime;
tmpres <<= 32;
tmpres |= ft.dwLowDateTime;
/*converting file time to unix epoch*/
tmpres /= 10; /*convert into microseconds*/
tmpres -= DELTA_EPOCH_IN_MICROSECS;
tv->tv_sec = (long)(tmpres / 1000000UL);
tv->tv_usec = (long)(tmpres % 1000000UL);
}
if (tz) {
if (!tzflag) {
_tzset();
tzflag++;
}
tz->tz_minuteswest = _timezone / 60;
tz->tz_dsttime = _daylight;
}
return 0;
}
#endif /* WIN32 */