2012-01-12 19:13:16 +01:00
|
|
|
.\" Copyright (c) 1993
|
|
|
|
.\" The Regents of the University of California. All rights reserved.
|
|
|
|
.\"
|
|
|
|
.\" Redistribution and use in source and binary forms, with or without
|
|
|
|
.\" modification, are permitted provided that the following conditions
|
|
|
|
.\" are met:
|
|
|
|
.\" 1. Redistributions of source code must retain the above copyright
|
|
|
|
.\" notice, this list of conditions and the following disclaimer.
|
|
|
|
.\" 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
.\" notice, this list of conditions and the following disclaimer in the
|
|
|
|
.\" documentation and/or other materials provided with the distribution.
|
2014-11-01 00:22:28 +01:00
|
|
|
.\" 3. Neither the name of the University nor the names of its contributors
|
2012-01-12 19:13:16 +01:00
|
|
|
.\" may be used to endorse or promote products derived from this software
|
|
|
|
.\" without specific prior written permission.
|
|
|
|
.\"
|
|
|
|
.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
.\" SUCH DAMAGE.
|
|
|
|
.\"
|
|
|
|
.\" @(#)queue.3 8.2 (Berkeley) 1/24/94
|
|
|
|
.\" $FreeBSD$
|
|
|
|
.\"
|
2021-02-07 19:47:00 +01:00
|
|
|
.Dd September 8, 2016
|
2022-08-03 02:21:16 +02:00
|
|
|
.Dt queue 3bsd
|
2012-01-12 19:13:16 +01:00
|
|
|
.Os
|
|
|
|
.Sh NAME
|
2021-02-07 19:47:00 +01:00
|
|
|
.Nm SLIST_CLASS_ENTRY ,
|
|
|
|
.Nm SLIST_CLASS_HEAD ,
|
|
|
|
.Nm SLIST_CONCAT ,
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm SLIST_EMPTY ,
|
|
|
|
.Nm SLIST_ENTRY ,
|
|
|
|
.Nm SLIST_FIRST ,
|
|
|
|
.Nm SLIST_FOREACH ,
|
2014-11-01 00:22:28 +01:00
|
|
|
.Nm SLIST_FOREACH_FROM ,
|
|
|
|
.Nm SLIST_FOREACH_FROM_SAFE ,
|
2021-02-07 19:47:00 +01:00
|
|
|
.Nm SLIST_FOREACH_SAFE ,
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm SLIST_HEAD ,
|
|
|
|
.Nm SLIST_HEAD_INITIALIZER ,
|
|
|
|
.Nm SLIST_INIT ,
|
|
|
|
.Nm SLIST_INSERT_AFTER ,
|
|
|
|
.Nm SLIST_INSERT_HEAD ,
|
|
|
|
.Nm SLIST_NEXT ,
|
2021-02-07 19:47:00 +01:00
|
|
|
.Nm SLIST_REMOVE ,
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm SLIST_REMOVE_AFTER ,
|
|
|
|
.Nm SLIST_REMOVE_HEAD ,
|
|
|
|
.Nm SLIST_SWAP ,
|
2021-02-07 19:47:00 +01:00
|
|
|
.Nm STAILQ_CLASS_ENTRY ,
|
|
|
|
.Nm STAILQ_CLASS_HEAD ,
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm STAILQ_CONCAT ,
|
|
|
|
.Nm STAILQ_EMPTY ,
|
|
|
|
.Nm STAILQ_ENTRY ,
|
|
|
|
.Nm STAILQ_FIRST ,
|
|
|
|
.Nm STAILQ_FOREACH ,
|
2014-11-01 00:22:28 +01:00
|
|
|
.Nm STAILQ_FOREACH_FROM ,
|
|
|
|
.Nm STAILQ_FOREACH_FROM_SAFE ,
|
2021-02-07 19:47:00 +01:00
|
|
|
.Nm STAILQ_FOREACH_SAFE ,
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm STAILQ_HEAD ,
|
|
|
|
.Nm STAILQ_HEAD_INITIALIZER ,
|
|
|
|
.Nm STAILQ_INIT ,
|
|
|
|
.Nm STAILQ_INSERT_AFTER ,
|
|
|
|
.Nm STAILQ_INSERT_HEAD ,
|
|
|
|
.Nm STAILQ_INSERT_TAIL ,
|
|
|
|
.Nm STAILQ_LAST ,
|
|
|
|
.Nm STAILQ_NEXT ,
|
2021-02-07 19:47:00 +01:00
|
|
|
.Nm STAILQ_REMOVE ,
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm STAILQ_REMOVE_AFTER ,
|
|
|
|
.Nm STAILQ_REMOVE_HEAD ,
|
|
|
|
.Nm STAILQ_SWAP ,
|
2021-02-07 19:47:00 +01:00
|
|
|
.Nm LIST_CLASS_ENTRY ,
|
|
|
|
.Nm LIST_CLASS_HEAD ,
|
|
|
|
.Nm LIST_CONCAT ,
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm LIST_EMPTY ,
|
|
|
|
.Nm LIST_ENTRY ,
|
|
|
|
.Nm LIST_FIRST ,
|
|
|
|
.Nm LIST_FOREACH ,
|
2014-11-01 00:22:28 +01:00
|
|
|
.Nm LIST_FOREACH_FROM ,
|
|
|
|
.Nm LIST_FOREACH_FROM_SAFE ,
|
2021-02-07 19:47:00 +01:00
|
|
|
.Nm LIST_FOREACH_SAFE ,
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm LIST_HEAD ,
|
|
|
|
.Nm LIST_HEAD_INITIALIZER ,
|
|
|
|
.Nm LIST_INIT ,
|
|
|
|
.Nm LIST_INSERT_AFTER ,
|
|
|
|
.Nm LIST_INSERT_BEFORE ,
|
|
|
|
.Nm LIST_INSERT_HEAD ,
|
|
|
|
.Nm LIST_NEXT ,
|
2014-11-01 00:22:28 +01:00
|
|
|
.Nm LIST_PREV ,
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm LIST_REMOVE ,
|
|
|
|
.Nm LIST_SWAP ,
|
2021-02-07 19:47:00 +01:00
|
|
|
.Nm TAILQ_CLASS_ENTRY ,
|
|
|
|
.Nm TAILQ_CLASS_HEAD ,
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm TAILQ_CONCAT ,
|
|
|
|
.Nm TAILQ_EMPTY ,
|
|
|
|
.Nm TAILQ_ENTRY ,
|
|
|
|
.Nm TAILQ_FIRST ,
|
|
|
|
.Nm TAILQ_FOREACH ,
|
2014-11-01 00:22:28 +01:00
|
|
|
.Nm TAILQ_FOREACH_FROM ,
|
|
|
|
.Nm TAILQ_FOREACH_FROM_SAFE ,
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm TAILQ_FOREACH_REVERSE ,
|
2014-11-01 00:22:28 +01:00
|
|
|
.Nm TAILQ_FOREACH_REVERSE_FROM ,
|
|
|
|
.Nm TAILQ_FOREACH_REVERSE_FROM_SAFE ,
|
2021-02-07 19:47:00 +01:00
|
|
|
.Nm TAILQ_FOREACH_REVERSE_SAFE ,
|
|
|
|
.Nm TAILQ_FOREACH_SAFE ,
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm TAILQ_HEAD ,
|
|
|
|
.Nm TAILQ_HEAD_INITIALIZER ,
|
|
|
|
.Nm TAILQ_INIT ,
|
|
|
|
.Nm TAILQ_INSERT_AFTER ,
|
|
|
|
.Nm TAILQ_INSERT_BEFORE ,
|
|
|
|
.Nm TAILQ_INSERT_HEAD ,
|
|
|
|
.Nm TAILQ_INSERT_TAIL ,
|
|
|
|
.Nm TAILQ_LAST ,
|
|
|
|
.Nm TAILQ_NEXT ,
|
|
|
|
.Nm TAILQ_PREV ,
|
|
|
|
.Nm TAILQ_REMOVE ,
|
|
|
|
.Nm TAILQ_SWAP
|
|
|
|
.Nd implementations of singly-linked lists, singly-linked tail queues,
|
|
|
|
lists and tail queues
|
2020-09-16 23:41:28 +02:00
|
|
|
.Sh LIBRARY
|
|
|
|
.ds str-Lb-libbsd Utility functions from BSD systems (libbsd, \-lbsd)
|
|
|
|
.ds doc-str-Lb-libbsd \*[str-Lb-libbsd]
|
|
|
|
.Lb libbsd
|
2012-01-12 19:13:16 +01:00
|
|
|
.Sh SYNOPSIS
|
2017-06-05 06:33:47 +02:00
|
|
|
.In sys/queue.h
|
|
|
|
(See
|
|
|
|
.Xr libbsd 7
|
|
|
|
for include usage.)
|
2012-01-12 19:13:16 +01:00
|
|
|
.\"
|
2021-02-07 19:47:00 +01:00
|
|
|
.Fn SLIST_CLASS_ENTRY "CLASSTYPE"
|
|
|
|
.Fn SLIST_CLASS_HEAD "HEADNAME" "CLASSTYPE"
|
|
|
|
.Fn SLIST_CONCAT "SLIST_HEAD *head1" "SLIST_HEAD *head2" "TYPE" "SLIST_ENTRY NAME"
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fn SLIST_EMPTY "SLIST_HEAD *head"
|
|
|
|
.Fn SLIST_ENTRY "TYPE"
|
|
|
|
.Fn SLIST_FIRST "SLIST_HEAD *head"
|
|
|
|
.Fn SLIST_FOREACH "TYPE *var" "SLIST_HEAD *head" "SLIST_ENTRY NAME"
|
2014-11-01 00:22:28 +01:00
|
|
|
.Fn SLIST_FOREACH_FROM "TYPE *var" "SLIST_HEAD *head" "SLIST_ENTRY NAME"
|
|
|
|
.Fn SLIST_FOREACH_FROM_SAFE "TYPE *var" "SLIST_HEAD *head" "SLIST_ENTRY NAME" "TYPE *temp_var"
|
2021-02-07 19:47:00 +01:00
|
|
|
.Fn SLIST_FOREACH_SAFE "TYPE *var" "SLIST_HEAD *head" "SLIST_ENTRY NAME" "TYPE *temp_var"
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fn SLIST_HEAD "HEADNAME" "TYPE"
|
|
|
|
.Fn SLIST_HEAD_INITIALIZER "SLIST_HEAD head"
|
|
|
|
.Fn SLIST_INIT "SLIST_HEAD *head"
|
|
|
|
.Fn SLIST_INSERT_AFTER "TYPE *listelm" "TYPE *elm" "SLIST_ENTRY NAME"
|
|
|
|
.Fn SLIST_INSERT_HEAD "SLIST_HEAD *head" "TYPE *elm" "SLIST_ENTRY NAME"
|
|
|
|
.Fn SLIST_NEXT "TYPE *elm" "SLIST_ENTRY NAME"
|
2021-02-07 19:47:00 +01:00
|
|
|
.Fn SLIST_REMOVE "SLIST_HEAD *head" "TYPE *elm" "TYPE" "SLIST_ENTRY NAME"
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fn SLIST_REMOVE_AFTER "TYPE *elm" "SLIST_ENTRY NAME"
|
|
|
|
.Fn SLIST_REMOVE_HEAD "SLIST_HEAD *head" "SLIST_ENTRY NAME"
|
2021-02-07 19:47:00 +01:00
|
|
|
.Fn SLIST_SWAP "SLIST_HEAD *head1" "SLIST_HEAD *head2" "TYPE"
|
2012-01-12 19:13:16 +01:00
|
|
|
.\"
|
2021-02-07 19:47:00 +01:00
|
|
|
.Fn STAILQ_CLASS_ENTRY "CLASSTYPE"
|
|
|
|
.Fn STAILQ_CLASS_HEAD "HEADNAME" "CLASSTYPE"
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fn STAILQ_CONCAT "STAILQ_HEAD *head1" "STAILQ_HEAD *head2"
|
|
|
|
.Fn STAILQ_EMPTY "STAILQ_HEAD *head"
|
|
|
|
.Fn STAILQ_ENTRY "TYPE"
|
|
|
|
.Fn STAILQ_FIRST "STAILQ_HEAD *head"
|
|
|
|
.Fn STAILQ_FOREACH "TYPE *var" "STAILQ_HEAD *head" "STAILQ_ENTRY NAME"
|
2014-11-01 00:22:28 +01:00
|
|
|
.Fn STAILQ_FOREACH_FROM "TYPE *var" "STAILQ_HEAD *head" "STAILQ_ENTRY NAME"
|
|
|
|
.Fn STAILQ_FOREACH_FROM_SAFE "TYPE *var" "STAILQ_HEAD *head" "STAILQ_ENTRY NAME" "TYPE *temp_var"
|
2021-02-07 19:47:00 +01:00
|
|
|
.Fn STAILQ_FOREACH_SAFE "TYPE *var" "STAILQ_HEAD *head" "STAILQ_ENTRY NAME" "TYPE *temp_var"
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fn STAILQ_HEAD "HEADNAME" "TYPE"
|
|
|
|
.Fn STAILQ_HEAD_INITIALIZER "STAILQ_HEAD head"
|
|
|
|
.Fn STAILQ_INIT "STAILQ_HEAD *head"
|
|
|
|
.Fn STAILQ_INSERT_AFTER "STAILQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "STAILQ_ENTRY NAME"
|
|
|
|
.Fn STAILQ_INSERT_HEAD "STAILQ_HEAD *head" "TYPE *elm" "STAILQ_ENTRY NAME"
|
|
|
|
.Fn STAILQ_INSERT_TAIL "STAILQ_HEAD *head" "TYPE *elm" "STAILQ_ENTRY NAME"
|
2021-02-07 19:47:00 +01:00
|
|
|
.Fn STAILQ_LAST "STAILQ_HEAD *head" "TYPE *elm" "STAILQ_ENTRY NAME"
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fn STAILQ_NEXT "TYPE *elm" "STAILQ_ENTRY NAME"
|
2021-02-07 19:47:00 +01:00
|
|
|
.Fn STAILQ_REMOVE "STAILQ_HEAD *head" "TYPE *elm" "TYPE" "STAILQ_ENTRY NAME"
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fn STAILQ_REMOVE_AFTER "STAILQ_HEAD *head" "TYPE *elm" "STAILQ_ENTRY NAME"
|
|
|
|
.Fn STAILQ_REMOVE_HEAD "STAILQ_HEAD *head" "STAILQ_ENTRY NAME"
|
2021-02-07 19:47:00 +01:00
|
|
|
.Fn STAILQ_SWAP "STAILQ_HEAD *head1" "STAILQ_HEAD *head2" "TYPE"
|
2012-01-12 19:13:16 +01:00
|
|
|
.\"
|
2021-02-07 19:47:00 +01:00
|
|
|
.Fn LIST_CLASS_ENTRY "CLASSTYPE"
|
|
|
|
.Fn LIST_CLASS_HEAD "HEADNAME" "CLASSTYPE"
|
|
|
|
.Fn LIST_CONCAT "LIST_HEAD *head1" "LIST_HEAD *head2" "TYPE" "LIST_ENTRY NAME"
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fn LIST_EMPTY "LIST_HEAD *head"
|
|
|
|
.Fn LIST_ENTRY "TYPE"
|
|
|
|
.Fn LIST_FIRST "LIST_HEAD *head"
|
|
|
|
.Fn LIST_FOREACH "TYPE *var" "LIST_HEAD *head" "LIST_ENTRY NAME"
|
2014-11-01 00:22:28 +01:00
|
|
|
.Fn LIST_FOREACH_FROM "TYPE *var" "LIST_HEAD *head" "LIST_ENTRY NAME"
|
|
|
|
.Fn LIST_FOREACH_FROM_SAFE "TYPE *var" "LIST_HEAD *head" "LIST_ENTRY NAME" "TYPE *temp_var"
|
2021-02-07 19:47:00 +01:00
|
|
|
.Fn LIST_FOREACH_SAFE "TYPE *var" "LIST_HEAD *head" "LIST_ENTRY NAME" "TYPE *temp_var"
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fn LIST_HEAD "HEADNAME" "TYPE"
|
|
|
|
.Fn LIST_HEAD_INITIALIZER "LIST_HEAD head"
|
|
|
|
.Fn LIST_INIT "LIST_HEAD *head"
|
|
|
|
.Fn LIST_INSERT_AFTER "TYPE *listelm" "TYPE *elm" "LIST_ENTRY NAME"
|
|
|
|
.Fn LIST_INSERT_BEFORE "TYPE *listelm" "TYPE *elm" "LIST_ENTRY NAME"
|
|
|
|
.Fn LIST_INSERT_HEAD "LIST_HEAD *head" "TYPE *elm" "LIST_ENTRY NAME"
|
|
|
|
.Fn LIST_NEXT "TYPE *elm" "LIST_ENTRY NAME"
|
2014-11-01 00:22:28 +01:00
|
|
|
.Fn LIST_PREV "TYPE *elm" "LIST_HEAD *head" "TYPE" "LIST_ENTRY NAME"
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fn LIST_REMOVE "TYPE *elm" "LIST_ENTRY NAME"
|
|
|
|
.Fn LIST_SWAP "LIST_HEAD *head1" "LIST_HEAD *head2" "TYPE" "LIST_ENTRY NAME"
|
|
|
|
.\"
|
2021-02-07 19:47:00 +01:00
|
|
|
.Fn TAILQ_CLASS_ENTRY "CLASSTYPE"
|
|
|
|
.Fn TAILQ_CLASS_HEAD "HEADNAME" "CLASSTYPE"
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fn TAILQ_CONCAT "TAILQ_HEAD *head1" "TAILQ_HEAD *head2" "TAILQ_ENTRY NAME"
|
|
|
|
.Fn TAILQ_EMPTY "TAILQ_HEAD *head"
|
|
|
|
.Fn TAILQ_ENTRY "TYPE"
|
|
|
|
.Fn TAILQ_FIRST "TAILQ_HEAD *head"
|
|
|
|
.Fn TAILQ_FOREACH "TYPE *var" "TAILQ_HEAD *head" "TAILQ_ENTRY NAME"
|
2014-11-01 00:22:28 +01:00
|
|
|
.Fn TAILQ_FOREACH_FROM "TYPE *var" "TAILQ_HEAD *head" "TAILQ_ENTRY NAME"
|
|
|
|
.Fn TAILQ_FOREACH_FROM_SAFE "TYPE *var" "TAILQ_HEAD *head" "TAILQ_ENTRY NAME" "TYPE *temp_var"
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fn TAILQ_FOREACH_REVERSE "TYPE *var" "TAILQ_HEAD *head" "HEADNAME" "TAILQ_ENTRY NAME"
|
2014-11-01 00:22:28 +01:00
|
|
|
.Fn TAILQ_FOREACH_REVERSE_FROM "TYPE *var" "TAILQ_HEAD *head" "HEADNAME" "TAILQ_ENTRY NAME"
|
|
|
|
.Fn TAILQ_FOREACH_REVERSE_FROM_SAFE "TYPE *var" "TAILQ_HEAD *head" "HEADNAME" "TAILQ_ENTRY NAME" "TYPE *temp_var"
|
2021-02-07 19:47:00 +01:00
|
|
|
.Fn TAILQ_FOREACH_REVERSE_SAFE "TYPE *var" "TAILQ_HEAD *head" "HEADNAME" "TAILQ_ENTRY NAME" "TYPE *temp_var"
|
|
|
|
.Fn TAILQ_FOREACH_SAFE "TYPE *var" "TAILQ_HEAD *head" "TAILQ_ENTRY NAME" "TYPE *temp_var"
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fn TAILQ_HEAD "HEADNAME" "TYPE"
|
|
|
|
.Fn TAILQ_HEAD_INITIALIZER "TAILQ_HEAD head"
|
|
|
|
.Fn TAILQ_INIT "TAILQ_HEAD *head"
|
|
|
|
.Fn TAILQ_INSERT_AFTER "TAILQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "TAILQ_ENTRY NAME"
|
|
|
|
.Fn TAILQ_INSERT_BEFORE "TYPE *listelm" "TYPE *elm" "TAILQ_ENTRY NAME"
|
|
|
|
.Fn TAILQ_INSERT_HEAD "TAILQ_HEAD *head" "TYPE *elm" "TAILQ_ENTRY NAME"
|
|
|
|
.Fn TAILQ_INSERT_TAIL "TAILQ_HEAD *head" "TYPE *elm" "TAILQ_ENTRY NAME"
|
|
|
|
.Fn TAILQ_LAST "TAILQ_HEAD *head" "HEADNAME"
|
|
|
|
.Fn TAILQ_NEXT "TYPE *elm" "TAILQ_ENTRY NAME"
|
|
|
|
.Fn TAILQ_PREV "TYPE *elm" "HEADNAME" "TAILQ_ENTRY NAME"
|
|
|
|
.Fn TAILQ_REMOVE "TAILQ_HEAD *head" "TYPE *elm" "TAILQ_ENTRY NAME"
|
|
|
|
.Fn TAILQ_SWAP "TAILQ_HEAD *head1" "TAILQ_HEAD *head2" "TYPE" "TAILQ_ENTRY NAME"
|
|
|
|
.\"
|
|
|
|
.Sh DESCRIPTION
|
2021-02-07 19:47:00 +01:00
|
|
|
These macros define and operate on four types of data structures which
|
|
|
|
can be used in both C and C++ source code:
|
|
|
|
.Bl -enum -compact -offset indent
|
|
|
|
.It
|
|
|
|
Lists
|
|
|
|
.It
|
|
|
|
Singly-linked lists
|
|
|
|
.It
|
|
|
|
Singly-linked tail queues
|
|
|
|
.It
|
|
|
|
Tail queues
|
|
|
|
.El
|
2012-01-12 19:13:16 +01:00
|
|
|
All four structures support the following functionality:
|
|
|
|
.Bl -enum -compact -offset indent
|
|
|
|
.It
|
|
|
|
Insertion of a new entry at the head of the list.
|
|
|
|
.It
|
|
|
|
Insertion of a new entry after any element in the list.
|
|
|
|
.It
|
|
|
|
O(1) removal of an entry from the head of the list.
|
|
|
|
.It
|
|
|
|
Forward traversal through the list.
|
|
|
|
.It
|
|
|
|
Swapping the contents of two lists.
|
|
|
|
.El
|
|
|
|
.Pp
|
|
|
|
Singly-linked lists are the simplest of the four data structures
|
|
|
|
and support only the above functionality.
|
|
|
|
Singly-linked lists are ideal for applications with large datasets
|
|
|
|
and few or no removals,
|
|
|
|
or for implementing a LIFO queue.
|
|
|
|
Singly-linked lists add the following functionality:
|
|
|
|
.Bl -enum -compact -offset indent
|
|
|
|
.It
|
|
|
|
O(n) removal of any entry in the list.
|
2021-02-07 19:47:00 +01:00
|
|
|
.It
|
|
|
|
O(n) concatenation of two lists.
|
2012-01-12 19:13:16 +01:00
|
|
|
.El
|
|
|
|
.Pp
|
|
|
|
Singly-linked tail queues add the following functionality:
|
|
|
|
.Bl -enum -compact -offset indent
|
|
|
|
.It
|
|
|
|
Entries can be added at the end of a list.
|
|
|
|
.It
|
|
|
|
O(n) removal of any entry in the list.
|
|
|
|
.It
|
|
|
|
They may be concatenated.
|
|
|
|
.El
|
|
|
|
However:
|
|
|
|
.Bl -enum -compact -offset indent
|
|
|
|
.It
|
|
|
|
All list insertions must specify the head of the list.
|
|
|
|
.It
|
|
|
|
Each head entry requires two pointers rather than one.
|
|
|
|
.It
|
|
|
|
Code size is about 15% greater and operations run about 20% slower
|
|
|
|
than singly-linked lists.
|
|
|
|
.El
|
|
|
|
.Pp
|
|
|
|
Singly-linked tail queues are ideal for applications with large datasets and
|
|
|
|
few or no removals,
|
|
|
|
or for implementing a FIFO queue.
|
|
|
|
.Pp
|
|
|
|
All doubly linked types of data structures (lists and tail queues)
|
|
|
|
additionally allow:
|
|
|
|
.Bl -enum -compact -offset indent
|
|
|
|
.It
|
|
|
|
Insertion of a new entry before any element in the list.
|
|
|
|
.It
|
|
|
|
O(1) removal of any entry in the list.
|
|
|
|
.El
|
|
|
|
However:
|
|
|
|
.Bl -enum -compact -offset indent
|
|
|
|
.It
|
|
|
|
Each element requires two pointers rather than one.
|
|
|
|
.It
|
|
|
|
Code size and execution time of operations (except for removal) is about
|
|
|
|
twice that of the singly-linked data-structures.
|
|
|
|
.El
|
|
|
|
.Pp
|
2014-11-01 00:22:28 +01:00
|
|
|
Linked lists are the simplest of the doubly linked data structures.
|
|
|
|
They add the following functionality over the above:
|
|
|
|
.Bl -enum -compact -offset indent
|
|
|
|
.It
|
2021-02-07 19:47:00 +01:00
|
|
|
O(n) concatenation of two lists.
|
|
|
|
.It
|
2014-11-01 00:22:28 +01:00
|
|
|
They may be traversed backwards.
|
|
|
|
.El
|
|
|
|
However:
|
|
|
|
.Bl -enum -compact -offset indent
|
|
|
|
.It
|
|
|
|
To traverse backwards, an entry to begin the traversal and the list in
|
|
|
|
which it is contained must be specified.
|
|
|
|
.El
|
2012-01-12 19:13:16 +01:00
|
|
|
.Pp
|
|
|
|
Tail queues add the following functionality:
|
|
|
|
.Bl -enum -compact -offset indent
|
|
|
|
.It
|
|
|
|
Entries can be added at the end of a list.
|
|
|
|
.It
|
|
|
|
They may be traversed backwards, from tail to head.
|
|
|
|
.It
|
|
|
|
They may be concatenated.
|
|
|
|
.El
|
|
|
|
However:
|
|
|
|
.Bl -enum -compact -offset indent
|
|
|
|
.It
|
|
|
|
All list insertions and removals must specify the head of the list.
|
|
|
|
.It
|
|
|
|
Each head entry requires two pointers rather than one.
|
|
|
|
.It
|
|
|
|
Code size is about 15% greater and operations run about 20% slower
|
|
|
|
than singly-linked lists.
|
|
|
|
.El
|
|
|
|
.Pp
|
|
|
|
In the macro definitions,
|
|
|
|
.Fa TYPE
|
2021-02-07 19:47:00 +01:00
|
|
|
is the name of a user defined structure.
|
|
|
|
The structure must contain a field called
|
|
|
|
.Fa NAME
|
|
|
|
which is of type
|
2012-01-12 19:13:16 +01:00
|
|
|
.Li SLIST_ENTRY ,
|
|
|
|
.Li STAILQ_ENTRY ,
|
|
|
|
.Li LIST_ENTRY ,
|
|
|
|
or
|
2021-02-07 19:47:00 +01:00
|
|
|
.Li TAILQ_ENTRY .
|
|
|
|
In the macro definitions,
|
|
|
|
.Fa CLASSTYPE
|
|
|
|
is the name of a user defined class.
|
|
|
|
The class must contain a field called
|
|
|
|
.Fa NAME
|
|
|
|
which is of type
|
|
|
|
.Li SLIST_CLASS_ENTRY ,
|
|
|
|
.Li STAILQ_CLASS_ENTRY ,
|
|
|
|
.Li LIST_CLASS_ENTRY ,
|
|
|
|
or
|
|
|
|
.Li TAILQ_CLASS_ENTRY .
|
2012-01-12 19:13:16 +01:00
|
|
|
The argument
|
|
|
|
.Fa HEADNAME
|
|
|
|
is the name of a user defined structure that must be declared
|
|
|
|
using the macros
|
|
|
|
.Li SLIST_HEAD ,
|
2021-02-07 19:47:00 +01:00
|
|
|
.Li SLIST_CLASS_HEAD ,
|
2012-01-12 19:13:16 +01:00
|
|
|
.Li STAILQ_HEAD ,
|
2021-02-07 19:47:00 +01:00
|
|
|
.Li STAILQ_CLASS_HEAD ,
|
2012-01-12 19:13:16 +01:00
|
|
|
.Li LIST_HEAD ,
|
2021-02-07 19:47:00 +01:00
|
|
|
.Li LIST_CLASS_HEAD ,
|
|
|
|
.Li TAILQ_HEAD ,
|
2012-01-12 19:13:16 +01:00
|
|
|
or
|
2021-02-07 19:47:00 +01:00
|
|
|
.Li TAILQ_CLASS_HEAD .
|
2012-01-12 19:13:16 +01:00
|
|
|
See the examples below for further explanation of how these
|
|
|
|
macros are used.
|
|
|
|
.Sh SINGLY-LINKED LISTS
|
|
|
|
A singly-linked list is headed by a structure defined by the
|
|
|
|
.Nm SLIST_HEAD
|
|
|
|
macro.
|
|
|
|
This structure contains a single pointer to the first element
|
|
|
|
on the list.
|
|
|
|
The elements are singly linked for minimum space and pointer manipulation
|
|
|
|
overhead at the expense of O(n) removal for arbitrary elements.
|
|
|
|
New elements can be added to the list after an existing element or
|
|
|
|
at the head of the list.
|
|
|
|
An
|
|
|
|
.Fa SLIST_HEAD
|
|
|
|
structure is declared as follows:
|
|
|
|
.Bd -literal -offset indent
|
|
|
|
SLIST_HEAD(HEADNAME, TYPE) head;
|
|
|
|
.Ed
|
|
|
|
.Pp
|
|
|
|
where
|
|
|
|
.Fa HEADNAME
|
|
|
|
is the name of the structure to be defined, and
|
|
|
|
.Fa TYPE
|
|
|
|
is the type of the elements to be linked into the list.
|
|
|
|
A pointer to the head of the list can later be declared as:
|
|
|
|
.Bd -literal -offset indent
|
|
|
|
struct HEADNAME *headp;
|
|
|
|
.Ed
|
|
|
|
.Pp
|
|
|
|
(The names
|
|
|
|
.Li head
|
|
|
|
and
|
|
|
|
.Li headp
|
|
|
|
are user selectable.)
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm SLIST_HEAD_INITIALIZER
|
|
|
|
evaluates to an initializer for the list
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
2021-02-07 19:47:00 +01:00
|
|
|
.Nm SLIST_CONCAT
|
|
|
|
concatenates the list headed by
|
|
|
|
.Fa head2
|
|
|
|
onto the end of the one headed by
|
|
|
|
.Fa head1
|
|
|
|
removing all entries from the former.
|
|
|
|
Use of this macro should be avoided as it traverses the entirety of the
|
|
|
|
.Fa head1
|
|
|
|
list.
|
|
|
|
A singly-linked tail queue should be used if this macro is needed in
|
|
|
|
high-usage code paths or to operate on long lists.
|
|
|
|
.Pp
|
|
|
|
The macro
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm SLIST_EMPTY
|
|
|
|
evaluates to true if there are no elements in the list.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm SLIST_ENTRY
|
|
|
|
declares a structure that connects the elements in
|
|
|
|
the list.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm SLIST_FIRST
|
|
|
|
returns the first element in the list or NULL if the list is empty.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm SLIST_FOREACH
|
|
|
|
traverses the list referenced by
|
|
|
|
.Fa head
|
|
|
|
in the forward direction, assigning each element in
|
|
|
|
turn to
|
|
|
|
.Fa var .
|
|
|
|
.Pp
|
|
|
|
The macro
|
2014-11-01 00:22:28 +01:00
|
|
|
.Nm SLIST_FOREACH_FROM
|
|
|
|
behaves identically to
|
|
|
|
.Nm SLIST_FOREACH
|
|
|
|
when
|
|
|
|
.Fa var
|
|
|
|
is NULL, else it treats
|
|
|
|
.Fa var
|
|
|
|
as a previously found SLIST element and begins the loop at
|
|
|
|
.Fa var
|
|
|
|
instead of the first element in the SLIST referenced by
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm SLIST_FOREACH_SAFE
|
|
|
|
traverses the list referenced by
|
|
|
|
.Fa head
|
|
|
|
in the forward direction, assigning each element in
|
|
|
|
turn to
|
|
|
|
.Fa var .
|
|
|
|
However, unlike
|
|
|
|
.Fn SLIST_FOREACH
|
|
|
|
here it is permitted to both remove
|
|
|
|
.Fa var
|
|
|
|
as well as free it from within the loop safely without interfering with the
|
|
|
|
traversal.
|
|
|
|
.Pp
|
|
|
|
The macro
|
2014-11-01 00:22:28 +01:00
|
|
|
.Nm SLIST_FOREACH_FROM_SAFE
|
|
|
|
behaves identically to
|
|
|
|
.Nm SLIST_FOREACH_SAFE
|
|
|
|
when
|
|
|
|
.Fa var
|
|
|
|
is NULL, else it treats
|
|
|
|
.Fa var
|
|
|
|
as a previously found SLIST element and begins the loop at
|
|
|
|
.Fa var
|
|
|
|
instead of the first element in the SLIST referenced by
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm SLIST_INIT
|
|
|
|
initializes the list referenced by
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm SLIST_INSERT_HEAD
|
|
|
|
inserts the new element
|
|
|
|
.Fa elm
|
|
|
|
at the head of the list.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm SLIST_INSERT_AFTER
|
|
|
|
inserts the new element
|
|
|
|
.Fa elm
|
|
|
|
after the element
|
|
|
|
.Fa listelm .
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm SLIST_NEXT
|
|
|
|
returns the next element in the list.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm SLIST_REMOVE_AFTER
|
|
|
|
removes the element after
|
|
|
|
.Fa elm
|
2014-11-01 00:22:28 +01:00
|
|
|
from the list.
|
|
|
|
Unlike
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fa SLIST_REMOVE ,
|
|
|
|
this macro does not traverse the entire list.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm SLIST_REMOVE_HEAD
|
|
|
|
removes the element
|
|
|
|
.Fa elm
|
|
|
|
from the head of the list.
|
|
|
|
For optimum efficiency,
|
|
|
|
elements being removed from the head of the list should explicitly use
|
|
|
|
this macro instead of the generic
|
|
|
|
.Fa SLIST_REMOVE
|
|
|
|
macro.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm SLIST_REMOVE
|
|
|
|
removes the element
|
|
|
|
.Fa elm
|
|
|
|
from the list.
|
2021-02-07 19:47:00 +01:00
|
|
|
Use of this macro should be avoided as it traverses the entire list.
|
|
|
|
A doubly-linked list should be used if this macro is needed in
|
|
|
|
high-usage code paths or to operate on long lists.
|
2012-01-12 19:13:16 +01:00
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm SLIST_SWAP
|
|
|
|
swaps the contents of
|
|
|
|
.Fa head1
|
|
|
|
and
|
|
|
|
.Fa head2 .
|
|
|
|
.Sh SINGLY-LINKED LIST EXAMPLE
|
|
|
|
.Bd -literal
|
|
|
|
SLIST_HEAD(slisthead, entry) head =
|
|
|
|
SLIST_HEAD_INITIALIZER(head);
|
|
|
|
struct slisthead *headp; /* Singly-linked List head. */
|
|
|
|
struct entry {
|
|
|
|
...
|
|
|
|
SLIST_ENTRY(entry) entries; /* Singly-linked List. */
|
|
|
|
...
|
|
|
|
} *n1, *n2, *n3, *np;
|
|
|
|
|
|
|
|
SLIST_INIT(&head); /* Initialize the list. */
|
|
|
|
|
|
|
|
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
|
|
|
|
SLIST_INSERT_HEAD(&head, n1, entries);
|
|
|
|
|
|
|
|
n2 = malloc(sizeof(struct entry)); /* Insert after. */
|
|
|
|
SLIST_INSERT_AFTER(n1, n2, entries);
|
|
|
|
|
|
|
|
SLIST_REMOVE(&head, n2, entry, entries);/* Deletion. */
|
|
|
|
free(n2);
|
|
|
|
|
|
|
|
n3 = SLIST_FIRST(&head);
|
|
|
|
SLIST_REMOVE_HEAD(&head, entries); /* Deletion from the head. */
|
|
|
|
free(n3);
|
|
|
|
/* Forward traversal. */
|
|
|
|
SLIST_FOREACH(np, &head, entries)
|
|
|
|
np-> ...
|
|
|
|
/* Safe forward traversal. */
|
|
|
|
SLIST_FOREACH_SAFE(np, &head, entries, np_temp) {
|
|
|
|
np->do_stuff();
|
|
|
|
...
|
|
|
|
SLIST_REMOVE(&head, np, entry, entries);
|
|
|
|
free(np);
|
|
|
|
}
|
|
|
|
|
|
|
|
while (!SLIST_EMPTY(&head)) { /* List Deletion. */
|
|
|
|
n1 = SLIST_FIRST(&head);
|
|
|
|
SLIST_REMOVE_HEAD(&head, entries);
|
|
|
|
free(n1);
|
|
|
|
}
|
|
|
|
.Ed
|
|
|
|
.Sh SINGLY-LINKED TAIL QUEUES
|
|
|
|
A singly-linked tail queue is headed by a structure defined by the
|
|
|
|
.Nm STAILQ_HEAD
|
|
|
|
macro.
|
|
|
|
This structure contains a pair of pointers,
|
|
|
|
one to the first element in the tail queue and the other to
|
|
|
|
the last element in the tail queue.
|
|
|
|
The elements are singly linked for minimum space and pointer
|
|
|
|
manipulation overhead at the expense of O(n) removal for arbitrary
|
|
|
|
elements.
|
|
|
|
New elements can be added to the tail queue after an existing element,
|
|
|
|
at the head of the tail queue, or at the end of the tail queue.
|
|
|
|
A
|
|
|
|
.Fa STAILQ_HEAD
|
|
|
|
structure is declared as follows:
|
|
|
|
.Bd -literal -offset indent
|
|
|
|
STAILQ_HEAD(HEADNAME, TYPE) head;
|
|
|
|
.Ed
|
|
|
|
.Pp
|
|
|
|
where
|
|
|
|
.Li HEADNAME
|
|
|
|
is the name of the structure to be defined, and
|
|
|
|
.Li TYPE
|
|
|
|
is the type of the elements to be linked into the tail queue.
|
|
|
|
A pointer to the head of the tail queue can later be declared as:
|
|
|
|
.Bd -literal -offset indent
|
|
|
|
struct HEADNAME *headp;
|
|
|
|
.Ed
|
|
|
|
.Pp
|
|
|
|
(The names
|
|
|
|
.Li head
|
|
|
|
and
|
|
|
|
.Li headp
|
|
|
|
are user selectable.)
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm STAILQ_HEAD_INITIALIZER
|
|
|
|
evaluates to an initializer for the tail queue
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm STAILQ_CONCAT
|
|
|
|
concatenates the tail queue headed by
|
|
|
|
.Fa head2
|
|
|
|
onto the end of the one headed by
|
|
|
|
.Fa head1
|
|
|
|
removing all entries from the former.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm STAILQ_EMPTY
|
|
|
|
evaluates to true if there are no items on the tail queue.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm STAILQ_ENTRY
|
|
|
|
declares a structure that connects the elements in
|
|
|
|
the tail queue.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm STAILQ_FIRST
|
|
|
|
returns the first item on the tail queue or NULL if the tail queue
|
|
|
|
is empty.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm STAILQ_FOREACH
|
|
|
|
traverses the tail queue referenced by
|
|
|
|
.Fa head
|
|
|
|
in the forward direction, assigning each element
|
|
|
|
in turn to
|
|
|
|
.Fa var .
|
|
|
|
.Pp
|
|
|
|
The macro
|
2014-11-01 00:22:28 +01:00
|
|
|
.Nm STAILQ_FOREACH_FROM
|
|
|
|
behaves identically to
|
|
|
|
.Nm STAILQ_FOREACH
|
|
|
|
when
|
|
|
|
.Fa var
|
|
|
|
is NULL, else it treats
|
|
|
|
.Fa var
|
|
|
|
as a previously found STAILQ element and begins the loop at
|
|
|
|
.Fa var
|
|
|
|
instead of the first element in the STAILQ referenced by
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm STAILQ_FOREACH_SAFE
|
|
|
|
traverses the tail queue referenced by
|
|
|
|
.Fa head
|
|
|
|
in the forward direction, assigning each element
|
|
|
|
in turn to
|
|
|
|
.Fa var .
|
|
|
|
However, unlike
|
|
|
|
.Fn STAILQ_FOREACH
|
|
|
|
here it is permitted to both remove
|
|
|
|
.Fa var
|
|
|
|
as well as free it from within the loop safely without interfering with the
|
|
|
|
traversal.
|
|
|
|
.Pp
|
|
|
|
The macro
|
2014-11-01 00:22:28 +01:00
|
|
|
.Nm STAILQ_FOREACH_FROM_SAFE
|
|
|
|
behaves identically to
|
|
|
|
.Nm STAILQ_FOREACH_SAFE
|
|
|
|
when
|
|
|
|
.Fa var
|
|
|
|
is NULL, else it treats
|
|
|
|
.Fa var
|
|
|
|
as a previously found STAILQ element and begins the loop at
|
|
|
|
.Fa var
|
|
|
|
instead of the first element in the STAILQ referenced by
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm STAILQ_INIT
|
|
|
|
initializes the tail queue referenced by
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm STAILQ_INSERT_HEAD
|
|
|
|
inserts the new element
|
|
|
|
.Fa elm
|
|
|
|
at the head of the tail queue.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm STAILQ_INSERT_TAIL
|
|
|
|
inserts the new element
|
|
|
|
.Fa elm
|
|
|
|
at the end of the tail queue.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm STAILQ_INSERT_AFTER
|
|
|
|
inserts the new element
|
|
|
|
.Fa elm
|
|
|
|
after the element
|
|
|
|
.Fa listelm .
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm STAILQ_LAST
|
|
|
|
returns the last item on the tail queue.
|
|
|
|
If the tail queue is empty the return value is
|
|
|
|
.Dv NULL .
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm STAILQ_NEXT
|
|
|
|
returns the next item on the tail queue, or NULL this item is the last.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm STAILQ_REMOVE_AFTER
|
|
|
|
removes the element after
|
|
|
|
.Fa elm
|
2014-11-01 00:22:28 +01:00
|
|
|
from the tail queue.
|
|
|
|
Unlike
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fa STAILQ_REMOVE ,
|
|
|
|
this macro does not traverse the entire tail queue.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm STAILQ_REMOVE_HEAD
|
|
|
|
removes the element at the head of the tail queue.
|
|
|
|
For optimum efficiency,
|
|
|
|
elements being removed from the head of the tail queue should
|
|
|
|
use this macro explicitly rather than the generic
|
|
|
|
.Fa STAILQ_REMOVE
|
|
|
|
macro.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm STAILQ_REMOVE
|
|
|
|
removes the element
|
|
|
|
.Fa elm
|
|
|
|
from the tail queue.
|
2021-02-07 19:47:00 +01:00
|
|
|
Use of this macro should be avoided as it traverses the entire list.
|
|
|
|
A doubly-linked tail queue should be used if this macro is needed in
|
|
|
|
high-usage code paths or to operate on long tail queues.
|
2012-01-12 19:13:16 +01:00
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm STAILQ_SWAP
|
|
|
|
swaps the contents of
|
|
|
|
.Fa head1
|
|
|
|
and
|
|
|
|
.Fa head2 .
|
|
|
|
.Sh SINGLY-LINKED TAIL QUEUE EXAMPLE
|
|
|
|
.Bd -literal
|
|
|
|
STAILQ_HEAD(stailhead, entry) head =
|
|
|
|
STAILQ_HEAD_INITIALIZER(head);
|
|
|
|
struct stailhead *headp; /* Singly-linked tail queue head. */
|
|
|
|
struct entry {
|
|
|
|
...
|
|
|
|
STAILQ_ENTRY(entry) entries; /* Tail queue. */
|
|
|
|
...
|
|
|
|
} *n1, *n2, *n3, *np;
|
|
|
|
|
|
|
|
STAILQ_INIT(&head); /* Initialize the queue. */
|
|
|
|
|
|
|
|
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
|
|
|
|
STAILQ_INSERT_HEAD(&head, n1, entries);
|
|
|
|
|
|
|
|
n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */
|
|
|
|
STAILQ_INSERT_TAIL(&head, n1, entries);
|
|
|
|
|
|
|
|
n2 = malloc(sizeof(struct entry)); /* Insert after. */
|
|
|
|
STAILQ_INSERT_AFTER(&head, n1, n2, entries);
|
|
|
|
/* Deletion. */
|
|
|
|
STAILQ_REMOVE(&head, n2, entry, entries);
|
|
|
|
free(n2);
|
|
|
|
/* Deletion from the head. */
|
|
|
|
n3 = STAILQ_FIRST(&head);
|
|
|
|
STAILQ_REMOVE_HEAD(&head, entries);
|
|
|
|
free(n3);
|
|
|
|
/* Forward traversal. */
|
|
|
|
STAILQ_FOREACH(np, &head, entries)
|
|
|
|
np-> ...
|
|
|
|
/* Safe forward traversal. */
|
|
|
|
STAILQ_FOREACH_SAFE(np, &head, entries, np_temp) {
|
|
|
|
np->do_stuff();
|
|
|
|
...
|
|
|
|
STAILQ_REMOVE(&head, np, entry, entries);
|
|
|
|
free(np);
|
|
|
|
}
|
|
|
|
/* TailQ Deletion. */
|
|
|
|
while (!STAILQ_EMPTY(&head)) {
|
|
|
|
n1 = STAILQ_FIRST(&head);
|
|
|
|
STAILQ_REMOVE_HEAD(&head, entries);
|
|
|
|
free(n1);
|
|
|
|
}
|
|
|
|
/* Faster TailQ Deletion. */
|
|
|
|
n1 = STAILQ_FIRST(&head);
|
|
|
|
while (n1 != NULL) {
|
|
|
|
n2 = STAILQ_NEXT(n1, entries);
|
|
|
|
free(n1);
|
|
|
|
n1 = n2;
|
|
|
|
}
|
|
|
|
STAILQ_INIT(&head);
|
|
|
|
.Ed
|
|
|
|
.Sh LISTS
|
|
|
|
A list is headed by a structure defined by the
|
|
|
|
.Nm LIST_HEAD
|
|
|
|
macro.
|
|
|
|
This structure contains a single pointer to the first element
|
|
|
|
on the list.
|
|
|
|
The elements are doubly linked so that an arbitrary element can be
|
|
|
|
removed without traversing the list.
|
|
|
|
New elements can be added to the list after an existing element,
|
|
|
|
before an existing element, or at the head of the list.
|
|
|
|
A
|
|
|
|
.Fa LIST_HEAD
|
|
|
|
structure is declared as follows:
|
|
|
|
.Bd -literal -offset indent
|
|
|
|
LIST_HEAD(HEADNAME, TYPE) head;
|
|
|
|
.Ed
|
|
|
|
.Pp
|
|
|
|
where
|
|
|
|
.Fa HEADNAME
|
|
|
|
is the name of the structure to be defined, and
|
|
|
|
.Fa TYPE
|
|
|
|
is the type of the elements to be linked into the list.
|
|
|
|
A pointer to the head of the list can later be declared as:
|
|
|
|
.Bd -literal -offset indent
|
|
|
|
struct HEADNAME *headp;
|
|
|
|
.Ed
|
|
|
|
.Pp
|
|
|
|
(The names
|
|
|
|
.Li head
|
|
|
|
and
|
|
|
|
.Li headp
|
|
|
|
are user selectable.)
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm LIST_HEAD_INITIALIZER
|
|
|
|
evaluates to an initializer for the list
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
2021-02-07 19:47:00 +01:00
|
|
|
.Nm LIST_CONCAT
|
|
|
|
concatenates the list headed by
|
|
|
|
.Fa head2
|
|
|
|
onto the end of the one headed by
|
|
|
|
.Fa head1
|
|
|
|
removing all entries from the former.
|
|
|
|
Use of this macro should be avoided as it traverses the entirety of the
|
|
|
|
.Fa head1
|
|
|
|
list.
|
|
|
|
A tail queue should be used if this macro is needed in
|
|
|
|
high-usage code paths or to operate on long lists.
|
|
|
|
.Pp
|
|
|
|
The macro
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm LIST_EMPTY
|
|
|
|
evaluates to true if there are no elements in the list.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm LIST_ENTRY
|
|
|
|
declares a structure that connects the elements in
|
|
|
|
the list.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm LIST_FIRST
|
|
|
|
returns the first element in the list or NULL if the list
|
|
|
|
is empty.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm LIST_FOREACH
|
|
|
|
traverses the list referenced by
|
|
|
|
.Fa head
|
|
|
|
in the forward direction, assigning each element in turn to
|
|
|
|
.Fa var .
|
|
|
|
.Pp
|
|
|
|
The macro
|
2014-11-01 00:22:28 +01:00
|
|
|
.Nm LIST_FOREACH_FROM
|
|
|
|
behaves identically to
|
|
|
|
.Nm LIST_FOREACH
|
|
|
|
when
|
|
|
|
.Fa var
|
|
|
|
is NULL, else it treats
|
|
|
|
.Fa var
|
|
|
|
as a previously found LIST element and begins the loop at
|
|
|
|
.Fa var
|
|
|
|
instead of the first element in the LIST referenced by
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm LIST_FOREACH_SAFE
|
|
|
|
traverses the list referenced by
|
|
|
|
.Fa head
|
|
|
|
in the forward direction, assigning each element in turn to
|
|
|
|
.Fa var .
|
|
|
|
However, unlike
|
|
|
|
.Fn LIST_FOREACH
|
|
|
|
here it is permitted to both remove
|
|
|
|
.Fa var
|
|
|
|
as well as free it from within the loop safely without interfering with the
|
|
|
|
traversal.
|
|
|
|
.Pp
|
|
|
|
The macro
|
2014-11-01 00:22:28 +01:00
|
|
|
.Nm LIST_FOREACH_FROM_SAFE
|
|
|
|
behaves identically to
|
|
|
|
.Nm LIST_FOREACH_SAFE
|
|
|
|
when
|
|
|
|
.Fa var
|
|
|
|
is NULL, else it treats
|
|
|
|
.Fa var
|
|
|
|
as a previously found LIST element and begins the loop at
|
|
|
|
.Fa var
|
|
|
|
instead of the first element in the LIST referenced by
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm LIST_INIT
|
|
|
|
initializes the list referenced by
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm LIST_INSERT_HEAD
|
|
|
|
inserts the new element
|
|
|
|
.Fa elm
|
|
|
|
at the head of the list.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm LIST_INSERT_AFTER
|
|
|
|
inserts the new element
|
|
|
|
.Fa elm
|
|
|
|
after the element
|
|
|
|
.Fa listelm .
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm LIST_INSERT_BEFORE
|
|
|
|
inserts the new element
|
|
|
|
.Fa elm
|
|
|
|
before the element
|
|
|
|
.Fa listelm .
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm LIST_NEXT
|
|
|
|
returns the next element in the list, or NULL if this is the last.
|
|
|
|
.Pp
|
|
|
|
The macro
|
2014-11-01 00:22:28 +01:00
|
|
|
.Nm LIST_PREV
|
|
|
|
returns the previous element in the list, or NULL if this is the first.
|
|
|
|
List
|
|
|
|
.Fa head
|
|
|
|
must contain element
|
|
|
|
.Fa elm .
|
|
|
|
.Pp
|
|
|
|
The macro
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm LIST_REMOVE
|
|
|
|
removes the element
|
|
|
|
.Fa elm
|
|
|
|
from the list.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm LIST_SWAP
|
|
|
|
swaps the contents of
|
|
|
|
.Fa head1
|
|
|
|
and
|
|
|
|
.Fa head2 .
|
|
|
|
.Sh LIST EXAMPLE
|
|
|
|
.Bd -literal
|
|
|
|
LIST_HEAD(listhead, entry) head =
|
|
|
|
LIST_HEAD_INITIALIZER(head);
|
|
|
|
struct listhead *headp; /* List head. */
|
|
|
|
struct entry {
|
|
|
|
...
|
|
|
|
LIST_ENTRY(entry) entries; /* List. */
|
|
|
|
...
|
|
|
|
} *n1, *n2, *n3, *np, *np_temp;
|
|
|
|
|
|
|
|
LIST_INIT(&head); /* Initialize the list. */
|
|
|
|
|
|
|
|
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
|
|
|
|
LIST_INSERT_HEAD(&head, n1, entries);
|
|
|
|
|
|
|
|
n2 = malloc(sizeof(struct entry)); /* Insert after. */
|
|
|
|
LIST_INSERT_AFTER(n1, n2, entries);
|
|
|
|
|
|
|
|
n3 = malloc(sizeof(struct entry)); /* Insert before. */
|
|
|
|
LIST_INSERT_BEFORE(n2, n3, entries);
|
|
|
|
|
|
|
|
LIST_REMOVE(n2, entries); /* Deletion. */
|
|
|
|
free(n2);
|
|
|
|
/* Forward traversal. */
|
|
|
|
LIST_FOREACH(np, &head, entries)
|
|
|
|
np-> ...
|
|
|
|
|
|
|
|
/* Safe forward traversal. */
|
|
|
|
LIST_FOREACH_SAFE(np, &head, entries, np_temp) {
|
|
|
|
np->do_stuff();
|
|
|
|
...
|
|
|
|
LIST_REMOVE(np, entries);
|
|
|
|
free(np);
|
|
|
|
}
|
|
|
|
|
|
|
|
while (!LIST_EMPTY(&head)) { /* List Deletion. */
|
|
|
|
n1 = LIST_FIRST(&head);
|
|
|
|
LIST_REMOVE(n1, entries);
|
|
|
|
free(n1);
|
|
|
|
}
|
|
|
|
|
|
|
|
n1 = LIST_FIRST(&head); /* Faster List Deletion. */
|
|
|
|
while (n1 != NULL) {
|
|
|
|
n2 = LIST_NEXT(n1, entries);
|
|
|
|
free(n1);
|
|
|
|
n1 = n2;
|
|
|
|
}
|
|
|
|
LIST_INIT(&head);
|
|
|
|
.Ed
|
|
|
|
.Sh TAIL QUEUES
|
|
|
|
A tail queue is headed by a structure defined by the
|
|
|
|
.Nm TAILQ_HEAD
|
|
|
|
macro.
|
|
|
|
This structure contains a pair of pointers,
|
|
|
|
one to the first element in the tail queue and the other to
|
|
|
|
the last element in the tail queue.
|
|
|
|
The elements are doubly linked so that an arbitrary element can be
|
|
|
|
removed without traversing the tail queue.
|
|
|
|
New elements can be added to the tail queue after an existing element,
|
|
|
|
before an existing element, at the head of the tail queue,
|
|
|
|
or at the end of the tail queue.
|
|
|
|
A
|
|
|
|
.Fa TAILQ_HEAD
|
|
|
|
structure is declared as follows:
|
|
|
|
.Bd -literal -offset indent
|
|
|
|
TAILQ_HEAD(HEADNAME, TYPE) head;
|
|
|
|
.Ed
|
|
|
|
.Pp
|
|
|
|
where
|
|
|
|
.Li HEADNAME
|
|
|
|
is the name of the structure to be defined, and
|
|
|
|
.Li TYPE
|
|
|
|
is the type of the elements to be linked into the tail queue.
|
|
|
|
A pointer to the head of the tail queue can later be declared as:
|
|
|
|
.Bd -literal -offset indent
|
|
|
|
struct HEADNAME *headp;
|
|
|
|
.Ed
|
|
|
|
.Pp
|
|
|
|
(The names
|
|
|
|
.Li head
|
|
|
|
and
|
|
|
|
.Li headp
|
|
|
|
are user selectable.)
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_HEAD_INITIALIZER
|
|
|
|
evaluates to an initializer for the tail queue
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_CONCAT
|
|
|
|
concatenates the tail queue headed by
|
|
|
|
.Fa head2
|
|
|
|
onto the end of the one headed by
|
|
|
|
.Fa head1
|
|
|
|
removing all entries from the former.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_EMPTY
|
|
|
|
evaluates to true if there are no items on the tail queue.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_ENTRY
|
|
|
|
declares a structure that connects the elements in
|
|
|
|
the tail queue.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_FIRST
|
|
|
|
returns the first item on the tail queue or NULL if the tail queue
|
|
|
|
is empty.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_FOREACH
|
|
|
|
traverses the tail queue referenced by
|
|
|
|
.Fa head
|
|
|
|
in the forward direction, assigning each element in turn to
|
|
|
|
.Fa var .
|
|
|
|
.Fa var
|
|
|
|
is set to
|
|
|
|
.Dv NULL
|
|
|
|
if the loop completes normally, or if there were no elements.
|
|
|
|
.Pp
|
|
|
|
The macro
|
2014-11-01 00:22:28 +01:00
|
|
|
.Nm TAILQ_FOREACH_FROM
|
|
|
|
behaves identically to
|
|
|
|
.Nm TAILQ_FOREACH
|
|
|
|
when
|
|
|
|
.Fa var
|
|
|
|
is NULL, else it treats
|
|
|
|
.Fa var
|
|
|
|
as a previously found TAILQ element and begins the loop at
|
|
|
|
.Fa var
|
|
|
|
instead of the first element in the TAILQ referenced by
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm TAILQ_FOREACH_REVERSE
|
|
|
|
traverses the tail queue referenced by
|
|
|
|
.Fa head
|
|
|
|
in the reverse direction, assigning each element in turn to
|
|
|
|
.Fa var .
|
|
|
|
.Pp
|
2014-11-01 00:22:28 +01:00
|
|
|
The macro
|
|
|
|
.Nm TAILQ_FOREACH_REVERSE_FROM
|
|
|
|
behaves identically to
|
|
|
|
.Nm TAILQ_FOREACH_REVERSE
|
|
|
|
when
|
|
|
|
.Fa var
|
|
|
|
is NULL, else it treats
|
|
|
|
.Fa var
|
|
|
|
as a previously found TAILQ element and begins the reverse loop at
|
|
|
|
.Fa var
|
|
|
|
instead of the last element in the TAILQ referenced by
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
2012-01-12 19:13:16 +01:00
|
|
|
The macros
|
|
|
|
.Nm TAILQ_FOREACH_SAFE
|
|
|
|
and
|
|
|
|
.Nm TAILQ_FOREACH_REVERSE_SAFE
|
|
|
|
traverse the list referenced by
|
|
|
|
.Fa head
|
|
|
|
in the forward or reverse direction respectively,
|
|
|
|
assigning each element in turn to
|
|
|
|
.Fa var .
|
|
|
|
However, unlike their unsafe counterparts,
|
|
|
|
.Nm TAILQ_FOREACH
|
|
|
|
and
|
|
|
|
.Nm TAILQ_FOREACH_REVERSE
|
2016-02-14 09:00:57 +01:00
|
|
|
make it possible to both remove
|
2012-01-12 19:13:16 +01:00
|
|
|
.Fa var
|
|
|
|
as well as free it from within the loop safely without interfering with the
|
|
|
|
traversal.
|
|
|
|
.Pp
|
|
|
|
The macro
|
2014-11-01 00:22:28 +01:00
|
|
|
.Nm TAILQ_FOREACH_FROM_SAFE
|
|
|
|
behaves identically to
|
|
|
|
.Nm TAILQ_FOREACH_SAFE
|
|
|
|
when
|
|
|
|
.Fa var
|
|
|
|
is NULL, else it treats
|
|
|
|
.Fa var
|
|
|
|
as a previously found TAILQ element and begins the loop at
|
|
|
|
.Fa var
|
|
|
|
instead of the first element in the TAILQ referenced by
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_FOREACH_REVERSE_FROM_SAFE
|
|
|
|
behaves identically to
|
|
|
|
.Nm TAILQ_FOREACH_REVERSE_SAFE
|
|
|
|
when
|
|
|
|
.Fa var
|
|
|
|
is NULL, else it treats
|
|
|
|
.Fa var
|
|
|
|
as a previously found TAILQ element and begins the reverse loop at
|
|
|
|
.Fa var
|
|
|
|
instead of the last element in the TAILQ referenced by
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
2012-01-12 19:13:16 +01:00
|
|
|
.Nm TAILQ_INIT
|
|
|
|
initializes the tail queue referenced by
|
|
|
|
.Fa head .
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_INSERT_HEAD
|
|
|
|
inserts the new element
|
|
|
|
.Fa elm
|
|
|
|
at the head of the tail queue.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_INSERT_TAIL
|
|
|
|
inserts the new element
|
|
|
|
.Fa elm
|
|
|
|
at the end of the tail queue.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_INSERT_AFTER
|
|
|
|
inserts the new element
|
|
|
|
.Fa elm
|
|
|
|
after the element
|
|
|
|
.Fa listelm .
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_INSERT_BEFORE
|
|
|
|
inserts the new element
|
|
|
|
.Fa elm
|
|
|
|
before the element
|
|
|
|
.Fa listelm .
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_LAST
|
|
|
|
returns the last item on the tail queue.
|
|
|
|
If the tail queue is empty the return value is
|
|
|
|
.Dv NULL .
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_NEXT
|
|
|
|
returns the next item on the tail queue, or NULL if this item is the last.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_PREV
|
|
|
|
returns the previous item on the tail queue, or NULL if this item
|
|
|
|
is the first.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_REMOVE
|
|
|
|
removes the element
|
|
|
|
.Fa elm
|
|
|
|
from the tail queue.
|
|
|
|
.Pp
|
|
|
|
The macro
|
|
|
|
.Nm TAILQ_SWAP
|
|
|
|
swaps the contents of
|
|
|
|
.Fa head1
|
|
|
|
and
|
|
|
|
.Fa head2 .
|
|
|
|
.Sh TAIL QUEUE EXAMPLE
|
|
|
|
.Bd -literal
|
|
|
|
TAILQ_HEAD(tailhead, entry) head =
|
|
|
|
TAILQ_HEAD_INITIALIZER(head);
|
|
|
|
struct tailhead *headp; /* Tail queue head. */
|
|
|
|
struct entry {
|
|
|
|
...
|
|
|
|
TAILQ_ENTRY(entry) entries; /* Tail queue. */
|
|
|
|
...
|
|
|
|
} *n1, *n2, *n3, *np;
|
|
|
|
|
|
|
|
TAILQ_INIT(&head); /* Initialize the queue. */
|
|
|
|
|
|
|
|
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
|
|
|
|
TAILQ_INSERT_HEAD(&head, n1, entries);
|
|
|
|
|
|
|
|
n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */
|
|
|
|
TAILQ_INSERT_TAIL(&head, n1, entries);
|
|
|
|
|
|
|
|
n2 = malloc(sizeof(struct entry)); /* Insert after. */
|
|
|
|
TAILQ_INSERT_AFTER(&head, n1, n2, entries);
|
|
|
|
|
|
|
|
n3 = malloc(sizeof(struct entry)); /* Insert before. */
|
|
|
|
TAILQ_INSERT_BEFORE(n2, n3, entries);
|
|
|
|
|
|
|
|
TAILQ_REMOVE(&head, n2, entries); /* Deletion. */
|
|
|
|
free(n2);
|
|
|
|
/* Forward traversal. */
|
|
|
|
TAILQ_FOREACH(np, &head, entries)
|
|
|
|
np-> ...
|
|
|
|
/* Safe forward traversal. */
|
|
|
|
TAILQ_FOREACH_SAFE(np, &head, entries, np_temp) {
|
|
|
|
np->do_stuff();
|
|
|
|
...
|
|
|
|
TAILQ_REMOVE(&head, np, entries);
|
|
|
|
free(np);
|
|
|
|
}
|
|
|
|
/* Reverse traversal. */
|
|
|
|
TAILQ_FOREACH_REVERSE(np, &head, tailhead, entries)
|
|
|
|
np-> ...
|
|
|
|
/* TailQ Deletion. */
|
|
|
|
while (!TAILQ_EMPTY(&head)) {
|
|
|
|
n1 = TAILQ_FIRST(&head);
|
|
|
|
TAILQ_REMOVE(&head, n1, entries);
|
|
|
|
free(n1);
|
|
|
|
}
|
|
|
|
/* Faster TailQ Deletion. */
|
|
|
|
n1 = TAILQ_FIRST(&head);
|
|
|
|
while (n1 != NULL) {
|
|
|
|
n2 = TAILQ_NEXT(n1, entries);
|
|
|
|
free(n1);
|
|
|
|
n1 = n2;
|
|
|
|
}
|
|
|
|
TAILQ_INIT(&head);
|
|
|
|
.Ed
|
2021-02-07 19:47:00 +01:00
|
|
|
.Sh DIAGNOSTICS
|
|
|
|
When debugging
|
|
|
|
.Nm queue(3) ,
|
|
|
|
it can be useful to trace queue changes.
|
|
|
|
To enable tracing, define the macro
|
|
|
|
.Va QUEUE_MACRO_DEBUG_TRACE
|
|
|
|
at compile time.
|
|
|
|
.Pp
|
|
|
|
It can also be useful to trash pointers that have been unlinked from a queue,
|
|
|
|
to detect use after removal.
|
|
|
|
To enable pointer trashing, define the macro
|
|
|
|
.Va QUEUE_MACRO_DEBUG_TRASH
|
|
|
|
at compile time.
|
|
|
|
The macro
|
|
|
|
.Fn QMD_IS_TRASHED "void *ptr"
|
|
|
|
returns true if
|
|
|
|
.Fa ptr
|
|
|
|
has been trashed by the
|
|
|
|
.Va QUEUE_MACRO_DEBUG_TRASH
|
|
|
|
option.
|
2012-01-12 19:13:16 +01:00
|
|
|
.Sh SEE ALSO
|
2017-06-05 06:43:22 +02:00
|
|
|
.Xr tree 3bsd
|
2012-01-12 19:13:16 +01:00
|
|
|
.Sh HISTORY
|
|
|
|
The
|
|
|
|
.Nm queue
|
|
|
|
functions first appeared in
|
|
|
|
.Bx 4.4 .
|