isa-l/crc/crc64_iso_refl_by16_10.asm
H.J. Lu cd888f01a4 x86: Add ENDBR32/ENDBR64 at function entries for Intel CET
To support Intel CET, all indirect branch targets must start with
ENDBR32/ENDBR64.  Here is a patch to define endbranch and add it to
function entries in x86 assembly codes which are indirect branch
targets as discovered by running testsuite on Intel CET machine and
visual inspection.

Verified with

$ CC="gcc -Wl,-z,cet-report=error -fcf-protection" CXX="g++ -Wl,-z,cet-report=error -fcf-protection" .../configure x86_64-linux
$ make -j8
$ make -j8 check

with both nasm and yasm on both CET and non-CET machines.

Change-Id: I9822578e7294fb5043a64ab7de5c41de81a7d337
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
2020-05-26 09:16:49 -07:00

496 lines
13 KiB
NASM

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright(c) 2011-2019 Intel Corporation All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in
; the documentation and/or other materials provided with the
; distribution.
; * Neither the name of Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived
; from this software without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Function API:
; uint64_t crc64_iso_refl_by16_10(
; uint64_t init_crc, //initial CRC value, 64 bits
; const unsigned char *buf, //buffer pointer to calculate CRC on
; uint64_t len //buffer length in bytes (64-bit data)
; );
;
%include "reg_sizes.asm"
%ifndef FUNCTION_NAME
%define FUNCTION_NAME crc64_iso_refl_by16_10
%endif
%if (AS_FEATURE_LEVEL) >= 10
%define fetch_dist 1024
[bits 64]
default rel
section .text
%ifidn __OUTPUT_FORMAT__, win64
%xdefine arg1 rcx
%xdefine arg2 rdx
%xdefine arg3 r8
%else
%xdefine arg1 rdi
%xdefine arg2 rsi
%xdefine arg3 rdx
%endif
%define TMP 16*0
%ifidn __OUTPUT_FORMAT__, win64
%define XMM_SAVE 16*2
%define VARIABLE_OFFSET 16*12+8
%else
%define VARIABLE_OFFSET 16*2+8
%endif
align 16
mk_global FUNCTION_NAME, function
FUNCTION_NAME:
endbranch
not arg1
sub rsp, VARIABLE_OFFSET
%ifidn __OUTPUT_FORMAT__, win64
; push the xmm registers into the stack to maintain
vmovdqa [rsp + XMM_SAVE + 16*0], xmm6
vmovdqa [rsp + XMM_SAVE + 16*1], xmm7
vmovdqa [rsp + XMM_SAVE + 16*2], xmm8
vmovdqa [rsp + XMM_SAVE + 16*3], xmm9
vmovdqa [rsp + XMM_SAVE + 16*4], xmm10
vmovdqa [rsp + XMM_SAVE + 16*5], xmm11
vmovdqa [rsp + XMM_SAVE + 16*6], xmm12
vmovdqa [rsp + XMM_SAVE + 16*7], xmm13
vmovdqa [rsp + XMM_SAVE + 16*8], xmm14
vmovdqa [rsp + XMM_SAVE + 16*9], xmm15
%endif
cmp arg3, 256
jl _less_than_256
; load the initial crc value
vmovq xmm10, arg1 ; initial crc
; receive the initial 128B data, xor the initial crc value
vmovdqu8 zmm0, [arg2+16*0]
vmovdqu8 zmm4, [arg2+16*4]
vpxorq zmm0, zmm10
vbroadcasti32x4 zmm10, [rk3] ;zmm10 has rk3 and rk4
;imm value of pclmulqdq instruction will determine which constant to use
sub arg3, 256
cmp arg3, 256
jl _fold_128_B_loop
vmovdqu8 zmm7, [arg2+16*8]
vmovdqu8 zmm8, [arg2+16*12]
vbroadcasti32x4 zmm16, [rk_1] ;zmm16 has rk-1 and rk-2
sub arg3, 256
_fold_256_B_loop:
add arg2, 256
vmovdqu8 zmm3, [arg2+16*0]
vpclmulqdq zmm1, zmm0, zmm16, 0x10
vpclmulqdq zmm2, zmm0, zmm16, 0x01
vpxorq zmm0, zmm1, zmm2
vpxorq zmm0, zmm0, zmm3
vmovdqu8 zmm9, [arg2+16*4]
vpclmulqdq zmm5, zmm4, zmm16, 0x10
vpclmulqdq zmm6, zmm4, zmm16, 0x01
vpxorq zmm4, zmm5, zmm6
vpxorq zmm4, zmm4, zmm9
vmovdqu8 zmm11, [arg2+16*8]
vpclmulqdq zmm12, zmm7, zmm16, 0x10
vpclmulqdq zmm13, zmm7, zmm16, 0x01
vpxorq zmm7, zmm12, zmm13
vpxorq zmm7, zmm7, zmm11
vmovdqu8 zmm17, [arg2+16*12]
vpclmulqdq zmm14, zmm8, zmm16, 0x10
vpclmulqdq zmm15, zmm8, zmm16, 0x01
vpxorq zmm8, zmm14, zmm15
vpxorq zmm8, zmm8, zmm17
sub arg3, 256
jge _fold_256_B_loop
;; Fold 256 into 128
add arg2, 256
vpclmulqdq zmm1, zmm0, zmm10, 0x01
vpclmulqdq zmm2, zmm0, zmm10, 0x10
vpternlogq zmm7, zmm1, zmm2, 0x96 ; xor ABC
vpclmulqdq zmm5, zmm4, zmm10, 0x01
vpclmulqdq zmm6, zmm4, zmm10, 0x10
vpternlogq zmm8, zmm5, zmm6, 0x96 ; xor ABC
vmovdqa32 zmm0, zmm7
vmovdqa32 zmm4, zmm8
add arg3, 128
jmp _fold_128_B_register
; fold 128B at a time. This section of the code folds 2 zmm registers in parallel
_fold_128_B_loop:
add arg2, 128 ; update the buffer pointer
vmovdqu8 zmm8, [arg2+16*0]
vpclmulqdq zmm1, zmm0, zmm10, 0x10
vpclmulqdq zmm2, zmm0, zmm10, 0x01
vpxorq zmm0, zmm1, zmm2
vpxorq zmm0, zmm0, zmm8
vmovdqu8 zmm9, [arg2+16*4]
vpclmulqdq zmm5, zmm4, zmm10, 0x10
vpclmulqdq zmm6, zmm4, zmm10, 0x01
vpxorq zmm4, zmm5, zmm6
vpxorq zmm4, zmm4, zmm9
sub arg3, 128
jge _fold_128_B_loop
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
add arg2, 128
; at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
; the 128B of folded data is in 2 zmm registers: zmm0, zmm4
_fold_128_B_register:
; fold the 8 128b parts into 1 xmm register with different constants
vmovdqu8 zmm16, [rk9] ; multiply by rk9-rk16
vmovdqu8 zmm11, [rk17] ; multiply by rk17-rk20, rk1,rk2, 0,0
vpclmulqdq zmm1, zmm0, zmm16, 0x01
vpclmulqdq zmm2, zmm0, zmm16, 0x10
vextracti64x2 xmm7, zmm4, 3 ; save last that has no multiplicand
vpclmulqdq zmm5, zmm4, zmm11, 0x01
vpclmulqdq zmm6, zmm4, zmm11, 0x10
vmovdqa xmm10, [rk1] ; Needed later in reduction loop
vpternlogq zmm1, zmm2, zmm5, 0x96 ; xor ABC
vpternlogq zmm1, zmm6, zmm7, 0x96 ; xor ABC
vshufi64x2 zmm8, zmm1, zmm1, 0x4e ; Swap 1,0,3,2 - 01 00 11 10
vpxorq ymm8, ymm8, ymm1
vextracti64x2 xmm5, ymm8, 1
vpxorq xmm7, xmm5, xmm8
; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop
; instead of a cmp instruction, we use the negative flag with the jl instruction
add arg3, 128-16
jl _final_reduction_for_128
; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
; we can fold 16 bytes at a time if y>=16
; continue folding 16B at a time
_16B_reduction_loop:
vmovdqa xmm8, xmm7
vpclmulqdq xmm7, xmm10, 0x1
vpclmulqdq xmm8, xmm10, 0x10
vpxor xmm7, xmm8
vmovdqu xmm0, [arg2]
vpxor xmm7, xmm0
add arg2, 16
sub arg3, 16
; instead of a cmp instruction, we utilize the flags with the jge instruction
; equivalent of: cmp arg3, 16-16
; check if there is any more 16B in the buffer to be able to fold
jge _16B_reduction_loop
;now we have 16+z bytes left to reduce, where 0<= z < 16.
;first, we reduce the data in the xmm7 register
_final_reduction_for_128:
add arg3, 16
je _128_done
; here we are getting data that is less than 16 bytes.
; since we know that there was data before the pointer, we can offset
; the input pointer before the actual point, to receive exactly 16 bytes.
; after that the registers need to be adjusted.
_get_last_two_xmms:
vmovdqa xmm2, xmm7
vmovdqu xmm1, [arg2 - 16 + arg3]
; get rid of the extra data that was loaded before
; load the shift constant
lea rax, [pshufb_shf_table]
add rax, arg3
vmovdqu xmm0, [rax]
vpshufb xmm7, xmm0
vpxor xmm0, [mask3]
vpshufb xmm2, xmm0
vpblendvb xmm2, xmm2, xmm1, xmm0
;;;;;;;;;;
vmovdqa xmm8, xmm7
vpclmulqdq xmm7, xmm10, 0x1
vpclmulqdq xmm8, xmm10, 0x10
vpxor xmm7, xmm8
vpxor xmm7, xmm2
_128_done:
; compute crc of a 128-bit value
vmovdqa xmm10, [rk5]
vmovdqa xmm0, xmm7
;64b fold
vpclmulqdq xmm7, xmm10, 0
vpsrldq xmm0, 8
vpxor xmm7, xmm0
;barrett reduction
_barrett:
vmovdqa xmm1, xmm7
vmovdqa xmm10, [rk7]
vpclmulqdq xmm7, xmm10, 0
vmovdqa xmm2, xmm7
vpclmulqdq xmm7, xmm10, 0x10
vpslldq xmm2, 8
vpxor xmm7, xmm2
vpxor xmm7, xmm1
vpextrq rax, xmm7, 1
_cleanup:
not rax
%ifidn __OUTPUT_FORMAT__, win64
vmovdqa xmm6, [rsp + XMM_SAVE + 16*0]
vmovdqa xmm7, [rsp + XMM_SAVE + 16*1]
vmovdqa xmm8, [rsp + XMM_SAVE + 16*2]
vmovdqa xmm9, [rsp + XMM_SAVE + 16*3]
vmovdqa xmm10, [rsp + XMM_SAVE + 16*4]
vmovdqa xmm11, [rsp + XMM_SAVE + 16*5]
vmovdqa xmm12, [rsp + XMM_SAVE + 16*6]
vmovdqa xmm13, [rsp + XMM_SAVE + 16*7]
vmovdqa xmm14, [rsp + XMM_SAVE + 16*8]
vmovdqa xmm15, [rsp + XMM_SAVE + 16*9]
%endif
add rsp, VARIABLE_OFFSET
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 16
_less_than_256:
; check if there is enough buffer to be able to fold 16B at a time
cmp arg3, 32
jl _less_than_32
; if there is, load the constants
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
vmovq xmm0, arg1 ; get the initial crc value
vmovdqu xmm7, [arg2] ; load the plaintext
vpxor xmm7, xmm0
; update the buffer pointer
add arg2, 16
; update the counter. subtract 32 instead of 16 to save one instruction from the loop
sub arg3, 32
jmp _16B_reduction_loop
align 16
_less_than_32:
; mov initial crc to the return value. this is necessary for zero-length buffers.
mov rax, arg1
test arg3, arg3
je _cleanup
vmovq xmm0, arg1 ; get the initial crc value
cmp arg3, 16
je _exact_16_left
jl _less_than_16_left
vmovdqu xmm7, [arg2] ; load the plaintext
vpxor xmm7, xmm0 ; xor the initial crc value
add arg2, 16
sub arg3, 16
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
jmp _get_last_two_xmms
align 16
_less_than_16_left:
; use stack space to load data less than 16 bytes, zero-out the 16B in memory first.
vpxor xmm1, xmm1
mov r11, rsp
vmovdqa [r11], xmm1
; backup the counter value
mov r9, arg3
cmp arg3, 8
jl _less_than_8_left
; load 8 Bytes
mov rax, [arg2]
mov [r11], rax
add r11, 8
sub arg3, 8
add arg2, 8
_less_than_8_left:
cmp arg3, 4
jl _less_than_4_left
; load 4 Bytes
mov eax, [arg2]
mov [r11], eax
add r11, 4
sub arg3, 4
add arg2, 4
_less_than_4_left:
cmp arg3, 2
jl _less_than_2_left
; load 2 Bytes
mov ax, [arg2]
mov [r11], ax
add r11, 2
sub arg3, 2
add arg2, 2
_less_than_2_left:
cmp arg3, 1
jl _zero_left
; load 1 Byte
mov al, [arg2]
mov [r11], al
_zero_left:
vmovdqa xmm7, [rsp]
vpxor xmm7, xmm0 ; xor the initial crc value
lea rax,[pshufb_shf_table]
cmp r9, 8
jl _end_1to7
_end_8to15:
vmovdqu xmm0, [rax + r9]
vpshufb xmm7,xmm0
jmp _128_done
_end_1to7:
; Left shift (8-length) bytes in XMM
vmovdqu xmm0, [rax + r9 + 8]
vpshufb xmm7,xmm0
jmp _barrett
align 16
_exact_16_left:
vmovdqu xmm7, [arg2]
vpxor xmm7, xmm0 ; xor the initial crc value
jmp _128_done
section .data
align 32
%ifndef USE_CONSTS
; precomputed constants
rk_1: dq 0x45000000b0000000
rk_2: dq 0x6b700000f5000000
rk1: dq 0xf500000000000001
rk2: dq 0x6b70000000000001
rk3: dq 0xb001000000010000
rk4: dq 0xf501b0000001b000
rk5: dq 0xf500000000000001
rk6: dq 0x0000000000000000
rk7: dq 0xb000000000000001
rk8: dq 0xb000000000000000
rk9: dq 0xe014514514501501
rk10: dq 0x771db6db6db71c71
rk11: dq 0xa101101101110001
rk12: dq 0x1ab1ab1ab1aab001
rk13: dq 0xf445014445000001
rk14: dq 0x6aab71daab700001
rk15: dq 0xb100010100000001
rk16: dq 0x01b001b1b0000001
rk17: dq 0xe145150000000001
rk18: dq 0x76db6c7000000001
rk19: dq 0xa011000000000001
rk20: dq 0x1b1ab00000000001
rk_1b: dq 0xf500000000000001
rk_2b: dq 0x6b70000000000001
dq 0x0000000000000000
dq 0x0000000000000000
%else
INCLUDE_CONSTS
%endif
pshufb_shf_table:
; use these values for shift constants for the pshufb instruction
; different alignments result in values as shown:
; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7
; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8
; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9
; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10
; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11
; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12
; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13
; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14
; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
dq 0x0706050403020100, 0x000e0d0c0b0a0908
mask: dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000
mask2: dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF
mask3: dq 0x8080808080808080, 0x8080808080808080
%else ; Assembler doesn't understand these opcodes. Add empty symbol for windows.
%ifidn __OUTPUT_FORMAT__, win64
global no_ %+ FUNCTION_NAME
no_ %+ FUNCTION_NAME %+ :
%endif
%endif ; (AS_FEATURE_LEVEL) >= 10