mirror of
https://github.com/intel/isa-l.git
synced 2024-12-14 02:05:11 +01:00
e08dfab9b3
Change-Id: I7e116215dc95bbca96c7285b98f5b8ec4e340ef1 Signed-off-by: Greg Tucker <greg.b.tucker@intel.com>
286 lines
7.6 KiB
C
286 lines
7.6 KiB
C
/**********************************************************************
|
|
Copyright(c) 2011-2015 Intel Corporation All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
* Neither the name of Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived
|
|
from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
**********************************************************************/
|
|
|
|
#ifndef _TEST_H
|
|
#define _TEST_H
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
|
|
#ifdef _MSC_VER
|
|
# define inline __inline
|
|
#endif
|
|
|
|
/* Decide wether to use benchmark time as an approximation or a minimum. Fewer
|
|
* calls to the timer are required for the approximation case.*/
|
|
#define BENCHMARK_MIN_TIME 0
|
|
#define BENCHMARK_APPROX_TIME 1
|
|
#ifndef BENCHMARK_TYPE
|
|
#define BENCHMARK_TYPE BENCHMARK_MIN_TIME
|
|
#endif
|
|
|
|
#ifdef USE_RDTSC
|
|
/* The use of rtdsc is nuanced. On many processors it corresponds to a
|
|
* standardized clock source. To obtain a meaningful result it may be
|
|
* necessary to fix the CPU clock to match the rtdsc tick rate.
|
|
*/
|
|
# include <inttypes.h>
|
|
# include <x86intrin.h>
|
|
# define USE_CYCLES
|
|
#else
|
|
# include <time.h>
|
|
#define USE_SECONDS
|
|
#endif
|
|
|
|
#ifdef USE_RDTSC
|
|
#ifndef BENCHMARK_TIME
|
|
# define BENCHMARK_TIME 6
|
|
#endif
|
|
# define GHZ 1000000000
|
|
# define UNIT_SCALE (GHZ)
|
|
# define CALLIBRATE_TIME (UNIT_SCALE / 2)
|
|
static inline long long get_time(void) {
|
|
unsigned int dummy;
|
|
return __rdtscp(&dummy);
|
|
}
|
|
|
|
static inline long long get_res(void) {
|
|
return 1;
|
|
}
|
|
#else
|
|
#ifndef BENCHMARK_TIME
|
|
# define BENCHMARK_TIME 3
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
#define UNIT_SCALE get_res()
|
|
#define CALLIBRATE_TIME (UNIT_SCALE / 4)
|
|
static inline long long get_time(void) {
|
|
long long ret = 0;
|
|
QueryPerformanceCounter(&ret);
|
|
return ret;
|
|
}
|
|
|
|
static inline long long get_res(void) {
|
|
long long ret = 0;
|
|
QueryPerformanceFrequency(&ret);
|
|
return ret;
|
|
}
|
|
#else
|
|
# define NANO_SCALE 1000000000
|
|
# define UNIT_SCALE NANO_SCALE
|
|
# define CALLIBRATE_TIME (UNIT_SCALE / 4)
|
|
#ifdef __FreeBSD__
|
|
# define CLOCK_ID CLOCK_MONOTONIC_PRECISE
|
|
#else
|
|
# define CLOCK_ID CLOCK_MONOTONIC
|
|
#endif
|
|
|
|
static inline long long get_time(void) {
|
|
struct timespec time;
|
|
long long nano_total;
|
|
clock_gettime(CLOCK_ID, &time);
|
|
nano_total = time.tv_sec;
|
|
nano_total *= NANO_SCALE;
|
|
nano_total += time.tv_nsec;
|
|
return nano_total;
|
|
}
|
|
|
|
static inline long long get_res(void) {
|
|
struct timespec time;
|
|
long long nano_total;
|
|
clock_getres(CLOCK_ID, &time);
|
|
nano_total = time.tv_sec;
|
|
nano_total *= NANO_SCALE;
|
|
nano_total += time.tv_nsec;
|
|
return nano_total;
|
|
}
|
|
#endif
|
|
#endif
|
|
struct perf {
|
|
long long start;
|
|
long long stop;
|
|
long long run_total;
|
|
long long iterations;
|
|
};
|
|
|
|
static inline void perf_init(struct perf *p) {
|
|
p->start = 0;
|
|
p->stop = 0;
|
|
p->run_total = 0;
|
|
}
|
|
|
|
static inline void perf_continue(struct perf *p) {
|
|
p->start = get_time();
|
|
}
|
|
|
|
static inline void perf_pause(struct perf *p) {
|
|
p->stop = get_time();
|
|
p->run_total = p->run_total + p->stop - p->start;
|
|
p->start = p->stop;
|
|
}
|
|
|
|
static inline void perf_start(struct perf *p) {
|
|
perf_init(p);
|
|
perf_continue(p);
|
|
}
|
|
|
|
static inline void perf_stop(struct perf *p) {
|
|
perf_pause(p);
|
|
}
|
|
|
|
static inline double get_time_elapsed(struct perf *p) {
|
|
return 1.0 * p->run_total / UNIT_SCALE;
|
|
}
|
|
|
|
static inline long long get_base_elapsed(struct perf *p) {
|
|
return p->run_total;
|
|
}
|
|
|
|
static inline unsigned long long estimate_perf_iterations(struct perf *p,
|
|
unsigned long long runs,
|
|
unsigned long long total) {
|
|
total = total * runs;
|
|
if (get_base_elapsed(p) > 0)
|
|
return (total + get_base_elapsed(p) - 1) / get_base_elapsed(p);
|
|
else
|
|
return (total + get_res() - 1) / get_res();
|
|
}
|
|
|
|
#define CALLIBRATE(PERF, FUNC_CALL) { \
|
|
unsigned long long _i, _iter = 1; \
|
|
perf_start(PERF); \
|
|
FUNC_CALL; \
|
|
perf_pause(PERF); \
|
|
\
|
|
while (get_base_elapsed(PERF) < CALLIBRATE_TIME) { \
|
|
_iter = estimate_perf_iterations(PERF, _iter, \
|
|
2 * CALLIBRATE_TIME); \
|
|
perf_start(PERF); \
|
|
for (_i = 0; _i < _iter; _i++) { \
|
|
FUNC_CALL; \
|
|
} \
|
|
perf_stop(PERF); \
|
|
} \
|
|
(PERF)->iterations=_iter; \
|
|
}
|
|
|
|
#define PERFORMANCE_TEST(PERF, RUN_TIME, FUNC_CALL) { \
|
|
unsigned long long _i, _iter = (PERF)->iterations; \
|
|
unsigned long long _run_total = RUN_TIME; \
|
|
_run_total *= UNIT_SCALE; \
|
|
_iter = estimate_perf_iterations(PERF, _iter, _run_total);\
|
|
(PERF)->iterations = 0; \
|
|
perf_start(PERF); \
|
|
for (_i = 0; _i < _iter; _i++) { \
|
|
FUNC_CALL; \
|
|
} \
|
|
perf_pause(PERF); \
|
|
(PERF)->iterations += _iter; \
|
|
\
|
|
if(get_base_elapsed(PERF) < _run_total && \
|
|
BENCHMARK_TYPE == BENCHMARK_MIN_TIME) { \
|
|
_iter = estimate_perf_iterations(PERF, _iter, \
|
|
_run_total - get_base_elapsed(PERF) + \
|
|
(UNIT_SCALE / 16)); \
|
|
perf_continue(PERF); \
|
|
for (_i = 0; _i < _iter; _i++) { \
|
|
FUNC_CALL; \
|
|
} \
|
|
perf_pause(PERF); \
|
|
(PERF)->iterations += _iter; \
|
|
} \
|
|
}
|
|
|
|
#define BENCHMARK(PERF, RUN_TIME, FUNC_CALL) { \
|
|
if((RUN_TIME) > 0) { \
|
|
CALLIBRATE(PERF, FUNC_CALL); \
|
|
PERFORMANCE_TEST(PERF, RUN_TIME, FUNC_CALL); \
|
|
\
|
|
} else { \
|
|
(PERF)->iterations = 1; \
|
|
perf_start(PERF); \
|
|
FUNC_CALL; \
|
|
perf_stop(PERF); \
|
|
} \
|
|
}
|
|
|
|
#ifdef USE_CYCLES
|
|
static inline void perf_print(struct perf p, long long unit_count) {
|
|
long long total_units = p.iterations * unit_count;
|
|
|
|
printf("runtime = %10lld ticks", get_base_elapsed(&p));
|
|
if (total_units != 0) {
|
|
printf(", bandwidth %lld MB in %.4f GC = %.2f ticks/byte",
|
|
total_units / (1000000), get_time_elapsed(&p),
|
|
get_base_elapsed(&p) / (double)total_units);
|
|
}
|
|
printf("\n");
|
|
}
|
|
#else
|
|
static inline void perf_print(struct perf p, double unit_count) {
|
|
long long total_units = p.iterations * unit_count;
|
|
long long usecs = (long long)(get_time_elapsed(&p) * 1000000);
|
|
|
|
printf("runtime = %10lld usecs", usecs);
|
|
if (total_units != 0) {
|
|
printf(", bandwidth %lld MB in %.4f sec = %.2f MB/s",
|
|
total_units / (1000000), get_time_elapsed(&p),
|
|
((double)total_units) / (1000000 * get_time_elapsed(&p)));
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
static inline uint64_t get_filesize(FILE * fp) {
|
|
uint64_t file_size;
|
|
fpos_t pos, pos_curr;
|
|
|
|
fgetpos(fp, &pos_curr); /* Save current position */
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
_fseeki64(fp, 0, SEEK_END);
|
|
#else
|
|
fseeko(fp, 0, SEEK_END);
|
|
#endif
|
|
fgetpos(fp, &pos);
|
|
file_size = *(uint64_t *) & pos;
|
|
fsetpos(fp, &pos_curr); /* Restore position */
|
|
|
|
return file_size;
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif // _TEST_H
|