isa-l/erasure_code/gf_3vect_mad_avx512.asm
Greg Tucker a5b324d2cd Add avx512 versions of ec_encode_data
- Includes gf_nvect_dot_prod, gf_nvect_mad functions
 - Change ec multibinary to use common macros
 - Autoconf checks for nasm or yasm support and picks if available
 - Leave out compile of any avx512 code if assembler not available

Signed-off-by: Greg Tucker <greg.b.tucker@intel.com>
2016-02-25 17:32:34 -07:00

248 lines
6.8 KiB
NASM

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright(c) 2011-2015 Intel Corporation All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in
; the documentation and/or other materials provided with the
; distribution.
; * Neither the name of Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived
; from this software without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; gf_3vect_mad_avx512(len, vec, vec_i, mul_array, src, dest);
;;;
%include "reg_sizes.asm"
%ifdef HAVE_AS_KNOWS_AVX512
%ifidn __OUTPUT_FORMAT__, elf64
%define arg0 rdi
%define arg1 rsi
%define arg2 rdx
%define arg3 rcx
%define arg4 r8
%define arg5 r9
%define tmp r11
%define return rax
%define func(x) x:
%define FUNC_SAVE
%define FUNC_RESTORE
%endif
%ifidn __OUTPUT_FORMAT__, win64
%define arg0 rcx
%define arg1 rdx
%define arg2 r8
%define arg3 r9
%define arg4 r12 ; must be saved, loaded and restored
%define arg5 r15 ; must be saved and restored
%define tmp r11
%define return rax
%define return.w eax
%define stack_size 16*10 + 3*8
%define arg(x) [rsp + stack_size + PS + PS*x]
%define func(x) proc_frame x
%macro FUNC_SAVE 0
sub rsp, stack_size
vmovdqa [rsp+16*0],xmm6
vmovdqa [rsp+16*1],xmm7
vmovdqa [rsp+16*2],xmm8
vmovdqa [rsp+16*3],xmm9
vmovdqa [rsp+16*4],xmm10
vmovdqa [rsp+16*5],xmm11
vmovdqa [rsp+16*6],xmm12
vmovdqa [rsp+16*7],xmm13
vmovdqa [rsp+16*8],xmm14
vmovdqa [rsp+16*9],xmm15
save_reg r12, 10*16 + 0*8
save_reg r15, 10*16 + 1*8
end_prolog
mov arg4, arg(4)
mov arg5, arg(5)
%endmacro
%macro FUNC_RESTORE 0
vmovdqa xmm6, [rsp+16*0]
vmovdqa xmm7, [rsp+16*1]
vmovdqa xmm8, [rsp+16*2]
vmovdqa xmm9, [rsp+16*3]
vmovdqa xmm10, [rsp+16*4]
vmovdqa xmm11, [rsp+16*5]
vmovdqa xmm12, [rsp+16*6]
vmovdqa xmm13, [rsp+16*7]
vmovdqa xmm14, [rsp+16*8]
vmovdqa xmm15, [rsp+16*9]
mov r12, [rsp + 10*16 + 0*8]
mov r15, [rsp + 10*16 + 1*8]
add rsp, stack_size
%endmacro
%endif
%define PS 8
%define len arg0
%define vec arg1
%define vec_i arg2
%define mul_array arg3
%define src arg4
%define dest1 arg5
%define pos return
%define dest2 mul_array
%define dest3 vec_i
%ifndef EC_ALIGNED_ADDR
;;; Use Un-aligned load/store
%define XLDR vmovdqu8
%define XSTR vmovdqu8
%else
;;; Use Non-temporal load/stor
%ifdef NO_NT_LDST
%define XLDR vmovdqa
%define XSTR vmovdqa
%else
%define XLDR vmovntdqa
%define XSTR vmovntdq
%endif
%endif
default rel
[bits 64]
section .text
%define x0 zmm0
%define xtmpa zmm1
%define xtmph1 zmm2
%define xtmpl1 zmm3
%define xtmph2 zmm4
%define xtmpl2 zmm5
%define xtmph3 zmm6
%define xtmpl3 zmm7
%define xgft1_hi zmm8
%define xgft1_lo zmm9
%define xgft1_loy ymm9
%define xgft2_hi zmm10
%define xgft2_lo zmm11
%define xgft2_loy ymm11
%define xgft3_hi zmm12
%define xgft3_lo zmm13
%define xgft3_loy ymm13
%define xd1 zmm14
%define xd2 zmm15
%define xd3 zmm16
%define xmask0f zmm17
align 16
global gf_3vect_mad_avx512:function
func(gf_3vect_mad_avx512)
FUNC_SAVE
sub len, 64
jl .return_fail
xor pos, pos
mov tmp, 0x0f
vpbroadcastb xmask0f, tmp ;Construct mask 0x0f0f0f...
sal vec_i, 5 ;Multiply by 32
sal vec, 5
lea tmp, [mul_array + vec_i]
vmovdqu xgft1_loy, [tmp] ;Load array Ax{00}..{0f}, Ax{00}..{f0}
vmovdqu xgft2_loy, [tmp+vec] ;Load array Bx{00}..{0f}, Bx{00}..{f0}
vmovdqu xgft3_loy, [tmp+2*vec] ;Load array Cx{00}..{0f}, Cx{00}..{f0}
vshufi64x2 xgft1_hi, xgft1_lo, xgft1_lo, 0x55
vshufi64x2 xgft1_lo, xgft1_lo, xgft1_lo, 0x00
vshufi64x2 xgft2_hi, xgft2_lo, xgft2_lo, 0x55
vshufi64x2 xgft2_lo, xgft2_lo, xgft2_lo, 0x00
vshufi64x2 xgft3_hi, xgft3_lo, xgft3_lo, 0x55
vshufi64x2 xgft3_lo, xgft3_lo, xgft3_lo, 0x00
mov dest2, [dest1+PS] ; reuse mul_array
mov dest3, [dest1+2*PS] ; reuse vec_i
mov dest1, [dest1]
mov tmp, -1
kmovq k1, tmp
.loop64:
XLDR x0, [src+pos] ;Get next source vector
XLDR xd1, [dest1+pos] ;Get next dest vector
XLDR xd2, [dest2+pos] ;Get next dest vector
XLDR xd3, [dest3+pos] ;Get next dest vector
vpandq xtmpa, x0, xmask0f ;Mask low src nibble in bits 4-0
vpsraw x0, x0, 4 ;Shift to put high nibble into bits 4-0
vpandq x0, x0, xmask0f ;Mask high src nibble in bits 4-0
; dest1
vpshufb xtmph1 {k1}{z}, xgft1_hi, x0 ;Lookup mul table of high nibble
vpshufb xtmpl1 {k1}{z}, xgft1_lo, xtmpa ;Lookup mul table of low nibble
vpxorq xtmph1, xtmph1, xtmpl1 ;GF add high and low partials
vpxorq xd1, xd1, xtmph1 ;xd1 += partial
; dest2
vpshufb xtmph2 {k1}{z}, xgft2_hi, x0 ;Lookup mul table of high nibble
vpshufb xtmpl2 {k1}{z}, xgft2_lo, xtmpa ;Lookup mul table of low nibble
vpxorq xtmph2, xtmph2, xtmpl2 ;GF add high and low partials
vpxorq xd2, xd2, xtmph2 ;xd2 += partial
; dest3
vpshufb xtmph3 {k1}{z}, xgft3_hi, x0 ;Lookup mul table of high nibble
vpshufb xtmpl3 {k1}{z}, xgft3_lo, xtmpa ;Lookup mul table of low nibble
vpxorq xtmph3, xtmph3, xtmpl3 ;GF add high and low partials
vpxorq xd3, xd3, xtmph3 ;xd2 += partial
XSTR [dest1+pos], xd1
XSTR [dest2+pos], xd2
XSTR [dest3+pos], xd3
add pos, 64 ;Loop on 64 bytes at a time
cmp pos, len
jle .loop64
lea tmp, [len + 64]
cmp pos, tmp
je .return_pass
;; Tail len
mov pos, (1 << 63)
lea tmp, [len + 64 - 1]
and tmp, 63
sarx pos, pos, tmp
kmovq k1, pos
mov pos, len ;Overlapped offset length-64
jmp .loop64 ;Do one more overlap pass
.return_pass:
mov return, 0
FUNC_RESTORE
ret
.return_fail:
mov return, 1
FUNC_RESTORE
ret
endproc_frame
%else
%ifidn __OUTPUT_FORMAT__, win64
global no_gf_3vect_mad_avx512
no_gf_3vect_mad_avx512:
%endif
%endif ; ifdef HAVE_AS_KNOWS_AVX512