mirror of
https://github.com/intel/isa-l.git
synced 2025-01-19 04:26:08 +01:00
cd888f01a4
To support Intel CET, all indirect branch targets must start with ENDBR32/ENDBR64. Here is a patch to define endbranch and add it to function entries in x86 assembly codes which are indirect branch targets as discovered by running testsuite on Intel CET machine and visual inspection. Verified with $ CC="gcc -Wl,-z,cet-report=error -fcf-protection" CXX="g++ -Wl,-z,cet-report=error -fcf-protection" .../configure x86_64-linux $ make -j8 $ make -j8 check with both nasm and yasm on both CET and non-CET machines. Change-Id: I9822578e7294fb5043a64ab7de5c41de81a7d337 Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
557 lines
15 KiB
NASM
557 lines
15 KiB
NASM
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
; Copyright(c) 2011-2020 Intel Corporation All rights reserved.
|
|
;
|
|
; Redistribution and use in source and binary forms, with or without
|
|
; modification, are permitted provided that the following conditions
|
|
; are met:
|
|
; * Redistributions of source code must retain the above copyright
|
|
; notice, this list of conditions and the following disclaimer.
|
|
; * Redistributions in binary form must reproduce the above copyright
|
|
; notice, this list of conditions and the following disclaimer in
|
|
; the documentation and/or other materials provided with the
|
|
; distribution.
|
|
; * Neither the name of Intel Corporation nor the names of its
|
|
; contributors may be used to endorse or promote products derived
|
|
; from this software without specific prior written permission.
|
|
;
|
|
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
; Function API:
|
|
; UINT32 crc32_gzip_refl_by8_02(
|
|
; UINT32 init_crc, //initial CRC value, 32 bits
|
|
; const unsigned char *buf, //buffer pointer to calculate CRC on
|
|
; UINT64 len //buffer length in bytes (64-bit data)
|
|
; );
|
|
;
|
|
; Authors:
|
|
; Erdinc Ozturk
|
|
; Vinodh Gopal
|
|
; James Guilford
|
|
;
|
|
; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
|
|
; URL: http://download.intel.com/design/intarch/papers/323102.pdf
|
|
;
|
|
;
|
|
; sample yasm command line:
|
|
; yasm -f x64 -f elf64 -X gnu -g dwarf2 crc32_gzip_refl_by8
|
|
;
|
|
; As explained here:
|
|
; http://docs.oracle.com/javase/7/docs/api/java/util/zip/package-summary.html
|
|
; CRC-32 checksum is described in RFC 1952
|
|
; Implementing RFC 1952 CRC:
|
|
; http://www.ietf.org/rfc/rfc1952.txt
|
|
|
|
%include "reg_sizes.asm"
|
|
|
|
%define fetch_dist 1024
|
|
|
|
[bits 64]
|
|
default rel
|
|
|
|
section .text
|
|
|
|
|
|
%ifidn __OUTPUT_FORMAT__, win64
|
|
%xdefine arg1 rcx
|
|
%xdefine arg2 rdx
|
|
%xdefine arg3 r8
|
|
|
|
%xdefine arg1_low32 ecx
|
|
%else
|
|
%xdefine arg1 rdi
|
|
%xdefine arg2 rsi
|
|
%xdefine arg3 rdx
|
|
|
|
%xdefine arg1_low32 edi
|
|
%endif
|
|
|
|
%define TMP 16*0
|
|
%ifidn __OUTPUT_FORMAT__, win64
|
|
%define XMM_SAVE 16*2
|
|
%define VARIABLE_OFFSET 16*10+8
|
|
%else
|
|
%define VARIABLE_OFFSET 16*2+8
|
|
%endif
|
|
|
|
align 16
|
|
mk_global crc32_gzip_refl_by8_02, function
|
|
crc32_gzip_refl_by8_02:
|
|
endbranch
|
|
not arg1_low32
|
|
sub rsp, VARIABLE_OFFSET
|
|
|
|
%ifidn __OUTPUT_FORMAT__, win64
|
|
; push the xmm registers into the stack to maintain
|
|
vmovdqa [rsp + XMM_SAVE + 16*0], xmm6
|
|
vmovdqa [rsp + XMM_SAVE + 16*1], xmm7
|
|
vmovdqa [rsp + XMM_SAVE + 16*2], xmm8
|
|
vmovdqa [rsp + XMM_SAVE + 16*3], xmm9
|
|
vmovdqa [rsp + XMM_SAVE + 16*4], xmm10
|
|
vmovdqa [rsp + XMM_SAVE + 16*5], xmm11
|
|
vmovdqa [rsp + XMM_SAVE + 16*6], xmm12
|
|
vmovdqa [rsp + XMM_SAVE + 16*7], xmm13
|
|
%endif
|
|
|
|
; check if smaller than 256B
|
|
cmp arg3, 256
|
|
jl .less_than_256
|
|
|
|
; load the initial crc value
|
|
vmovd xmm10, arg1_low32 ; initial crc
|
|
|
|
; receive the initial 64B data, xor the initial crc value
|
|
vmovdqu xmm0, [arg2+16*0]
|
|
vmovdqu xmm1, [arg2+16*1]
|
|
vmovdqu xmm2, [arg2+16*2]
|
|
vmovdqu xmm3, [arg2+16*3]
|
|
vmovdqu xmm4, [arg2+16*4]
|
|
vmovdqu xmm5, [arg2+16*5]
|
|
vmovdqu xmm6, [arg2+16*6]
|
|
vmovdqu xmm7, [arg2+16*7]
|
|
|
|
; XOR the initial_crc value
|
|
vpxor xmm0, xmm10
|
|
vmovdqa xmm10, [rk3] ;xmm10 has rk3 and rk4
|
|
;imm value of pclmulqdq instruction will determine which constant to use
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
; we subtract 256 instead of 128 to save one instruction from the loop
|
|
sub arg3, 256
|
|
|
|
; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The fold_128_B_loop
|
|
; loop will fold 128B at a time until we have 128+y Bytes of buffer
|
|
|
|
; fold 128B at a time. This section of the code folds 8 xmm registers in parallel
|
|
.fold_128_B_loop:
|
|
add arg2, 128
|
|
prefetchnta [arg2+fetch_dist+0]
|
|
vmovdqu xmm9, [arg2+16*0]
|
|
vmovdqu xmm12, [arg2+16*1]
|
|
vpclmulqdq xmm8, xmm0, xmm10, 0x10
|
|
vpclmulqdq xmm0, xmm0, xmm10 , 0x1
|
|
vpclmulqdq xmm13, xmm1, xmm10, 0x10
|
|
vpclmulqdq xmm1, xmm1, xmm10 , 0x1
|
|
vpxor xmm0, xmm9
|
|
vxorps xmm0, xmm8
|
|
vpxor xmm1, xmm12
|
|
vxorps xmm1, xmm13
|
|
|
|
prefetchnta [arg2+fetch_dist+32]
|
|
vmovdqu xmm9, [arg2+16*2]
|
|
vmovdqu xmm12, [arg2+16*3]
|
|
vpclmulqdq xmm8, xmm2, xmm10, 0x10
|
|
vpclmulqdq xmm2, xmm2, xmm10 , 0x1
|
|
vpclmulqdq xmm13, xmm3, xmm10, 0x10
|
|
vpclmulqdq xmm3, xmm3, xmm10 , 0x1
|
|
vpxor xmm2, xmm9
|
|
vxorps xmm2, xmm8
|
|
vpxor xmm3, xmm12
|
|
vxorps xmm3, xmm13
|
|
|
|
prefetchnta [arg2+fetch_dist+64]
|
|
vmovdqu xmm9, [arg2+16*4]
|
|
vmovdqu xmm12, [arg2+16*5]
|
|
vpclmulqdq xmm8, xmm4, xmm10, 0x10
|
|
vpclmulqdq xmm4, xmm4, xmm10 , 0x1
|
|
vpclmulqdq xmm13, xmm5, xmm10, 0x10
|
|
vpclmulqdq xmm5, xmm5, xmm10 , 0x1
|
|
vpxor xmm4, xmm9
|
|
vxorps xmm4, xmm8
|
|
vpxor xmm5, xmm12
|
|
vxorps xmm5, xmm13
|
|
|
|
prefetchnta [arg2+fetch_dist+96]
|
|
vmovdqu xmm9, [arg2+16*6]
|
|
vmovdqu xmm12, [arg2+16*7]
|
|
vpclmulqdq xmm8, xmm6, xmm10, 0x10
|
|
vpclmulqdq xmm6, xmm6, xmm10 , 0x1
|
|
vpclmulqdq xmm13, xmm7, xmm10, 0x10
|
|
vpclmulqdq xmm7, xmm7, xmm10 , 0x1
|
|
vpxor xmm6, xmm9
|
|
vxorps xmm6, xmm8
|
|
vpxor xmm7, xmm12
|
|
vxorps xmm7, xmm13
|
|
|
|
sub arg3, 128
|
|
jge .fold_128_B_loop
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
add arg2, 128
|
|
; at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
|
|
; the 128B of folded data is in 8 of the xmm registers: xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7
|
|
|
|
; fold the 8 xmm registers to 1 xmm register with different constants
|
|
vmovdqa xmm10, [rk9]
|
|
vpclmulqdq xmm8, xmm0, xmm10, 0x1
|
|
vpclmulqdq xmm0, xmm0, xmm10, 0x10
|
|
vpxor xmm7, xmm8
|
|
vxorps xmm7, xmm0
|
|
|
|
vmovdqa xmm10, [rk11]
|
|
vpclmulqdq xmm8, xmm1, xmm10, 0x1
|
|
vpclmulqdq xmm1, xmm1, xmm10, 0x10
|
|
vpxor xmm7, xmm8
|
|
vxorps xmm7, xmm1
|
|
|
|
vmovdqa xmm10, [rk13]
|
|
vpclmulqdq xmm8, xmm2, xmm10, 0x1
|
|
vpclmulqdq xmm2, xmm2, xmm10, 0x10
|
|
vpxor xmm7, xmm8
|
|
vpxor xmm7, xmm2
|
|
|
|
vmovdqa xmm10, [rk15]
|
|
vpclmulqdq xmm8, xmm3, xmm10, 0x1
|
|
vpclmulqdq xmm3, xmm3, xmm10, 0x10
|
|
vpxor xmm7, xmm8
|
|
vxorps xmm7, xmm3
|
|
|
|
vmovdqa xmm10, [rk17]
|
|
vpclmulqdq xmm8, xmm4, xmm10, 0x1
|
|
vpclmulqdq xmm4, xmm4, xmm10, 0x10
|
|
vpxor xmm7, xmm8
|
|
vpxor xmm7, xmm4
|
|
|
|
vmovdqa xmm10, [rk19]
|
|
vpclmulqdq xmm8, xmm5, xmm10, 0x1
|
|
vpclmulqdq xmm5, xmm5, xmm10, 0x10
|
|
vpxor xmm7, xmm8
|
|
vxorps xmm7, xmm5
|
|
|
|
vmovdqa xmm10, [rk1]
|
|
vpclmulqdq xmm8, xmm6, xmm10, 0x1
|
|
vpclmulqdq xmm6, xmm6, xmm10, 0x10
|
|
vpxor xmm7, xmm8
|
|
vpxor xmm7, xmm6
|
|
|
|
|
|
; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop
|
|
; instead of a cmp instruction, we use the negative flag with the jl instruction
|
|
add arg3, 128-16
|
|
jl .final_reduction_for_128
|
|
|
|
; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
|
|
; we can fold 16 bytes at a time if y>=16
|
|
; continue folding 16B at a time
|
|
|
|
.16B_reduction_loop:
|
|
vpclmulqdq xmm8, xmm7, xmm10, 0x1
|
|
vpclmulqdq xmm7, xmm7, xmm10, 0x10
|
|
vpxor xmm7, xmm8
|
|
vmovdqu xmm0, [arg2]
|
|
vpxor xmm7, xmm0
|
|
add arg2, 16
|
|
sub arg3, 16
|
|
; instead of a cmp instruction, we utilize the flags with the jge instruction
|
|
; equivalent of: cmp arg3, 16-16
|
|
; check if there is any more 16B in the buffer to be able to fold
|
|
jge .16B_reduction_loop
|
|
|
|
;now we have 16+z bytes left to reduce, where 0<= z < 16.
|
|
;first, we reduce the data in the xmm7 register
|
|
|
|
|
|
.final_reduction_for_128:
|
|
add arg3, 16
|
|
je .128_done
|
|
|
|
; here we are getting data that is less than 16 bytes.
|
|
; since we know that there was data before the pointer, we can offset
|
|
; the input pointer before the actual point, to receive exactly 16 bytes.
|
|
; after that the registers need to be adjusted.
|
|
.get_last_two_xmms:
|
|
|
|
vmovdqa xmm2, xmm7
|
|
vmovdqu xmm1, [arg2 - 16 + arg3]
|
|
|
|
; get rid of the extra data that was loaded before
|
|
; load the shift constant
|
|
lea rax, [pshufb_shf_table]
|
|
add rax, arg3
|
|
vmovdqu xmm0, [rax]
|
|
|
|
vpshufb xmm7, xmm0
|
|
vpxor xmm0, [mask3]
|
|
vpshufb xmm2, xmm0
|
|
|
|
vpblendvb xmm2, xmm2, xmm1, xmm0
|
|
;;;;;;;;;;
|
|
vpclmulqdq xmm8, xmm7, xmm10, 0x1
|
|
vpclmulqdq xmm7, xmm7, xmm10, 0x10
|
|
vpxor xmm7, xmm8
|
|
vpxor xmm7, xmm2
|
|
|
|
.128_done:
|
|
; compute crc of a 128-bit value
|
|
vmovdqa xmm10, [rk5]
|
|
vmovdqa xmm0, xmm7
|
|
|
|
;64b fold
|
|
vpclmulqdq xmm7, xmm10, 0
|
|
vpsrldq xmm0, 8
|
|
vpxor xmm7, xmm0
|
|
|
|
;32b fold
|
|
vmovdqa xmm0, xmm7
|
|
vpslldq xmm7, 4
|
|
vpclmulqdq xmm7, xmm10, 0x10
|
|
vpxor xmm7, xmm0
|
|
|
|
|
|
;barrett reduction
|
|
.barrett:
|
|
vpand xmm7, [mask2]
|
|
vmovdqa xmm1, xmm7
|
|
vmovdqa xmm2, xmm7
|
|
vmovdqa xmm10, [rk7]
|
|
|
|
vpclmulqdq xmm7, xmm10, 0
|
|
vpxor xmm7, xmm2
|
|
vpand xmm7, [mask]
|
|
vmovdqa xmm2, xmm7
|
|
vpclmulqdq xmm7, xmm10, 0x10
|
|
vpxor xmm7, xmm2
|
|
vpxor xmm7, xmm1
|
|
vpextrd eax, xmm7, 2
|
|
|
|
.cleanup:
|
|
not eax
|
|
|
|
|
|
%ifidn __OUTPUT_FORMAT__, win64
|
|
vmovdqa xmm6, [rsp + XMM_SAVE + 16*0]
|
|
vmovdqa xmm7, [rsp + XMM_SAVE + 16*1]
|
|
vmovdqa xmm8, [rsp + XMM_SAVE + 16*2]
|
|
vmovdqa xmm9, [rsp + XMM_SAVE + 16*3]
|
|
vmovdqa xmm10, [rsp + XMM_SAVE + 16*4]
|
|
vmovdqa xmm11, [rsp + XMM_SAVE + 16*5]
|
|
vmovdqa xmm12, [rsp + XMM_SAVE + 16*6]
|
|
vmovdqa xmm13, [rsp + XMM_SAVE + 16*7]
|
|
%endif
|
|
add rsp, VARIABLE_OFFSET
|
|
ret
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
align 16
|
|
.less_than_256:
|
|
|
|
; check if there is enough buffer to be able to fold 16B at a time
|
|
cmp arg3, 32
|
|
jl .less_than_32
|
|
|
|
; if there is, load the constants
|
|
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
|
|
|
|
vmovd xmm0, arg1_low32 ; get the initial crc value
|
|
vmovdqu xmm7, [arg2] ; load the plaintext
|
|
vpxor xmm7, xmm0
|
|
|
|
; update the buffer pointer
|
|
add arg2, 16
|
|
|
|
; update the counter. subtract 32 instead of 16 to save one instruction from the loop
|
|
sub arg3, 32
|
|
|
|
jmp .16B_reduction_loop
|
|
|
|
|
|
align 16
|
|
.less_than_32:
|
|
; mov initial crc to the return value. this is necessary for zero-length buffers.
|
|
mov eax, arg1_low32
|
|
test arg3, arg3
|
|
je .cleanup
|
|
|
|
vmovd xmm0, arg1_low32 ; get the initial crc value
|
|
|
|
cmp arg3, 16
|
|
je .exact_16_left
|
|
jl .less_than_16_left
|
|
|
|
vmovdqu xmm7, [arg2] ; load the plaintext
|
|
vpxor xmm7, xmm0 ; xor the initial crc value
|
|
add arg2, 16
|
|
sub arg3, 16
|
|
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
|
|
jmp .get_last_two_xmms
|
|
|
|
align 16
|
|
.less_than_16_left:
|
|
; use stack space to load data less than 16 bytes, zero-out the 16B in memory first.
|
|
|
|
vpxor xmm1, xmm1
|
|
mov r11, rsp
|
|
vmovdqa [r11], xmm1
|
|
|
|
cmp arg3, 4
|
|
jl .only_less_than_4
|
|
|
|
; backup the counter value
|
|
mov r9, arg3
|
|
cmp arg3, 8
|
|
jl .less_than_8_left
|
|
|
|
; load 8 Bytes
|
|
mov rax, [arg2]
|
|
mov [r11], rax
|
|
add r11, 8
|
|
sub arg3, 8
|
|
add arg2, 8
|
|
.less_than_8_left:
|
|
|
|
cmp arg3, 4
|
|
jl .less_than_4_left
|
|
|
|
; load 4 Bytes
|
|
mov eax, [arg2]
|
|
mov [r11], eax
|
|
add r11, 4
|
|
sub arg3, 4
|
|
add arg2, 4
|
|
.less_than_4_left:
|
|
|
|
cmp arg3, 2
|
|
jl .less_than_2_left
|
|
|
|
; load 2 Bytes
|
|
mov ax, [arg2]
|
|
mov [r11], ax
|
|
add r11, 2
|
|
sub arg3, 2
|
|
add arg2, 2
|
|
.less_than_2_left:
|
|
cmp arg3, 1
|
|
jl .zero_left
|
|
|
|
; load 1 Byte
|
|
mov al, [arg2]
|
|
mov [r11], al
|
|
|
|
.zero_left:
|
|
vmovdqa xmm7, [rsp]
|
|
vpxor xmm7, xmm0 ; xor the initial crc value
|
|
|
|
lea rax,[pshufb_shf_table]
|
|
vmovdqu xmm0, [rax + r9]
|
|
vpshufb xmm7,xmm0
|
|
jmp .128_done
|
|
|
|
align 16
|
|
.exact_16_left:
|
|
vmovdqu xmm7, [arg2]
|
|
vpxor xmm7, xmm0 ; xor the initial crc value
|
|
jmp .128_done
|
|
|
|
.only_less_than_4:
|
|
cmp arg3, 3
|
|
jl .only_less_than_3
|
|
|
|
; load 3 Bytes
|
|
mov al, [arg2]
|
|
mov [r11], al
|
|
|
|
mov al, [arg2+1]
|
|
mov [r11+1], al
|
|
|
|
mov al, [arg2+2]
|
|
mov [r11+2], al
|
|
|
|
vmovdqa xmm7, [rsp]
|
|
vpxor xmm7, xmm0 ; xor the initial crc value
|
|
|
|
vpslldq xmm7, 5
|
|
jmp .barrett
|
|
|
|
.only_less_than_3:
|
|
cmp arg3, 2
|
|
jl .only_less_than_2
|
|
|
|
; load 2 Bytes
|
|
mov al, [arg2]
|
|
mov [r11], al
|
|
|
|
mov al, [arg2+1]
|
|
mov [r11+1], al
|
|
|
|
vmovdqa xmm7, [rsp]
|
|
vpxor xmm7, xmm0 ; xor the initial crc value
|
|
|
|
vpslldq xmm7, 6
|
|
jmp .barrett
|
|
|
|
.only_less_than_2:
|
|
; load 1 Byte
|
|
mov al, [arg2]
|
|
mov [r11], al
|
|
|
|
vmovdqa xmm7, [rsp]
|
|
vpxor xmm7, xmm0 ; xor the initial crc value
|
|
|
|
vpslldq xmm7, 7
|
|
jmp .barrett
|
|
|
|
section .data
|
|
|
|
; precomputed constants
|
|
align 16
|
|
rk1: dq 0x00000000ccaa009e
|
|
rk2: dq 0x00000001751997d0
|
|
rk3: dq 0x000000014a7fe880
|
|
rk4: dq 0x00000001e88ef372
|
|
rk5: dq 0x00000000ccaa009e
|
|
rk6: dq 0x0000000163cd6124
|
|
rk7: dq 0x00000001f7011640
|
|
rk8: dq 0x00000001db710640
|
|
rk9: dq 0x00000001d7cfc6ac
|
|
rk10: dq 0x00000001ea89367e
|
|
rk11: dq 0x000000018cb44e58
|
|
rk12: dq 0x00000000df068dc2
|
|
rk13: dq 0x00000000ae0b5394
|
|
rk14: dq 0x00000001c7569e54
|
|
rk15: dq 0x00000001c6e41596
|
|
rk16: dq 0x0000000154442bd4
|
|
rk17: dq 0x0000000174359406
|
|
rk18: dq 0x000000003db1ecdc
|
|
rk19: dq 0x000000015a546366
|
|
rk20: dq 0x00000000f1da05aa
|
|
|
|
mask: dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000
|
|
mask2: dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF
|
|
mask3: dq 0x8080808080808080, 0x8080808080808080
|
|
|
|
pshufb_shf_table:
|
|
; use these values for shift constants for the pshufb instruction
|
|
; different alignments result in values as shown:
|
|
; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
|
|
; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
|
|
; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
|
|
; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
|
|
; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
|
|
; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
|
|
; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7
|
|
; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8
|
|
; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9
|
|
; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10
|
|
; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11
|
|
; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12
|
|
; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13
|
|
; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14
|
|
; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15
|
|
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
|
|
dq 0x0706050403020100, 0x000e0d0c0b0a0908
|