mirror of
https://github.com/intel/isa-l.git
synced 2025-01-22 05:20:02 +01:00
402bd4f773
Signed-off-by: Tomasz Kantecki <tomasz.kantecki@intel.com>
769 lines
22 KiB
C
769 lines
22 KiB
C
/**********************************************************************
|
|
Copyright(c) 2011-2015 Intel Corporation All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
* Neither the name of Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived
|
|
from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
**********************************************************************/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h> // for memset, memcmp
|
|
#include <assert.h>
|
|
#include "erasure_code.h"
|
|
#include "test.h"
|
|
|
|
#define TEST_LEN 8192
|
|
#define TEST_SIZE (TEST_LEN/2)
|
|
|
|
#ifndef TEST_SOURCES
|
|
# define TEST_SOURCES 127
|
|
#endif
|
|
#ifndef RANDOMS
|
|
# define RANDOMS 50
|
|
#endif
|
|
|
|
#define MMAX TEST_SOURCES
|
|
#define KMAX TEST_SOURCES
|
|
|
|
#define EFENCE_TEST_MIN_SIZE 16
|
|
|
|
#ifdef EC_ALIGNED_ADDR
|
|
// Define power of 2 range to check ptr, len alignment
|
|
# define PTR_ALIGN_CHK_B 0
|
|
# define LEN_ALIGN_CHK_B 0 // 0 for aligned only
|
|
#else
|
|
// Define power of 2 range to check ptr, len alignment
|
|
# define PTR_ALIGN_CHK_B 32
|
|
# define LEN_ALIGN_CHK_B 32 // 0 for aligned only
|
|
#endif
|
|
|
|
#ifndef TEST_SEED
|
|
#define TEST_SEED 11
|
|
#endif
|
|
|
|
typedef unsigned char u8;
|
|
|
|
void dump(unsigned char *buf, int len)
|
|
{
|
|
int i;
|
|
for (i = 0; i < len;) {
|
|
printf(" %2x", 0xff & buf[i++]);
|
|
if (i % 32 == 0)
|
|
printf("\n");
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
void dump_matrix(unsigned char **s, int k, int m)
|
|
{
|
|
int i, j;
|
|
for (i = 0; i < k; i++) {
|
|
for (j = 0; j < m; j++) {
|
|
printf(" %2x", s[i][j]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
void dump_u8xu8(unsigned char *s, int k, int m)
|
|
{
|
|
int i, j;
|
|
for (i = 0; i < k; i++) {
|
|
for (j = 0; j < m; j++) {
|
|
printf(" %2x", 0xff & s[j + (i * m)]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
// Generate Random errors
|
|
static void gen_err_list(unsigned char *src_err_list,
|
|
unsigned char *src_in_err, int *pnerrs, int *pnsrcerrs, int k, int m)
|
|
{
|
|
int i, err;
|
|
int nerrs = 0, nsrcerrs = 0;
|
|
|
|
for (i = 0, nerrs = 0, nsrcerrs = 0; i < m && nerrs < m - k; i++) {
|
|
err = 1 & rand();
|
|
src_in_err[i] = err;
|
|
if (err) {
|
|
src_err_list[nerrs++] = i;
|
|
if (i < k) {
|
|
nsrcerrs++;
|
|
}
|
|
}
|
|
}
|
|
if (nerrs == 0) { // should have at least one error
|
|
while ((err = (rand() % KMAX)) >= m) ;
|
|
src_err_list[nerrs++] = err;
|
|
src_in_err[err] = 1;
|
|
if (err < k)
|
|
nsrcerrs = 1;
|
|
}
|
|
*pnerrs = nerrs;
|
|
*pnsrcerrs = nsrcerrs;
|
|
return;
|
|
}
|
|
|
|
#define NO_INVERT_MATRIX -2
|
|
// Generate decode matrix from encode matrix
|
|
static int gf_gen_decode_matrix(unsigned char *encode_matrix,
|
|
unsigned char *decode_matrix,
|
|
unsigned char *invert_matrix,
|
|
unsigned int *decode_index,
|
|
unsigned char *src_err_list,
|
|
unsigned char *src_in_err,
|
|
int nerrs, int nsrcerrs, int k, int m)
|
|
{
|
|
int i, j, p;
|
|
int r;
|
|
unsigned char *backup, *b, s;
|
|
int incr = 0;
|
|
|
|
b = malloc(MMAX * KMAX);
|
|
backup = malloc(MMAX * KMAX);
|
|
|
|
if (b == NULL || backup == NULL) {
|
|
printf("Test failure! Error with malloc\n");
|
|
free(b);
|
|
free(backup);
|
|
return -1;
|
|
}
|
|
// Construct matrix b by removing error rows
|
|
for (i = 0, r = 0; i < k; i++, r++) {
|
|
while (src_in_err[r])
|
|
r++;
|
|
for (j = 0; j < k; j++) {
|
|
b[k * i + j] = encode_matrix[k * r + j];
|
|
backup[k * i + j] = encode_matrix[k * r + j];
|
|
}
|
|
decode_index[i] = r;
|
|
}
|
|
incr = 0;
|
|
while (gf_invert_matrix(b, invert_matrix, k) < 0) {
|
|
if (nerrs == (m - k)) {
|
|
free(b);
|
|
free(backup);
|
|
printf("BAD MATRIX\n");
|
|
return NO_INVERT_MATRIX;
|
|
}
|
|
incr++;
|
|
memcpy(b, backup, MMAX * KMAX);
|
|
for (i = nsrcerrs; i < nerrs - nsrcerrs; i++) {
|
|
if (src_err_list[i] == (decode_index[k - 1] + incr)) {
|
|
// skip the erased parity line
|
|
incr++;
|
|
continue;
|
|
}
|
|
}
|
|
if (decode_index[k - 1] + incr >= m) {
|
|
free(b);
|
|
free(backup);
|
|
printf("BAD MATRIX\n");
|
|
return NO_INVERT_MATRIX;
|
|
}
|
|
decode_index[k - 1] += incr;
|
|
for (j = 0; j < k; j++)
|
|
b[k * (k - 1) + j] = encode_matrix[k * decode_index[k - 1] + j];
|
|
|
|
};
|
|
|
|
for (i = 0; i < nsrcerrs; i++) {
|
|
for (j = 0; j < k; j++) {
|
|
decode_matrix[k * i + j] = invert_matrix[k * src_err_list[i] + j];
|
|
}
|
|
}
|
|
/* src_err_list from encode_matrix * invert of b for parity decoding */
|
|
for (p = nsrcerrs; p < nerrs; p++) {
|
|
for (i = 0; i < k; i++) {
|
|
s = 0;
|
|
for (j = 0; j < k; j++)
|
|
s ^= gf_mul(invert_matrix[j * k + i],
|
|
encode_matrix[k * src_err_list[p] + j]);
|
|
|
|
decode_matrix[k * p + i] = s;
|
|
}
|
|
}
|
|
free(b);
|
|
free(backup);
|
|
return 0;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
int re = 0;
|
|
int i, j, p, rtest, m, k;
|
|
int nerrs, nsrcerrs;
|
|
void *buf;
|
|
unsigned int decode_index[MMAX];
|
|
unsigned char *temp_buffs[TEST_SOURCES], *buffs[TEST_SOURCES];
|
|
unsigned char *encode_matrix, *decode_matrix, *invert_matrix, *g_tbls;
|
|
unsigned char src_in_err[TEST_SOURCES], src_err_list[TEST_SOURCES];
|
|
unsigned char *recov[TEST_SOURCES];
|
|
|
|
int rows, align, size;
|
|
unsigned char *efence_buffs[TEST_SOURCES];
|
|
unsigned int offset;
|
|
u8 *ubuffs[TEST_SOURCES];
|
|
u8 *temp_ubuffs[TEST_SOURCES];
|
|
|
|
printf("erasure_code_base_test: %dx%d ", TEST_SOURCES, TEST_LEN);
|
|
srand(TEST_SEED);
|
|
|
|
// Allocate the arrays
|
|
for (i = 0; i < TEST_SOURCES; i++) {
|
|
if (posix_memalign(&buf, 64, TEST_LEN)) {
|
|
printf("alloc error: Fail");
|
|
return -1;
|
|
}
|
|
buffs[i] = buf;
|
|
}
|
|
|
|
for (i = 0; i < TEST_SOURCES; i++) {
|
|
if (posix_memalign(&buf, 64, TEST_LEN)) {
|
|
printf("alloc error: Fail");
|
|
return -1;
|
|
}
|
|
temp_buffs[i] = buf;
|
|
}
|
|
|
|
// Test erasure code by encode and recovery
|
|
|
|
encode_matrix = malloc(MMAX * KMAX);
|
|
decode_matrix = malloc(MMAX * KMAX);
|
|
invert_matrix = malloc(MMAX * KMAX);
|
|
g_tbls = malloc(KMAX * TEST_SOURCES * 32);
|
|
if (encode_matrix == NULL || decode_matrix == NULL
|
|
|| invert_matrix == NULL || g_tbls == NULL) {
|
|
printf("Test failure! Error with malloc\n");
|
|
return -1;
|
|
}
|
|
// Pick a first test
|
|
m = 9;
|
|
k = 5;
|
|
assert((m <= MMAX) && (k <= KMAX));
|
|
|
|
// Make random data
|
|
for (i = 0; i < k; i++)
|
|
for (j = 0; j < TEST_LEN; j++)
|
|
buffs[i][j] = rand();
|
|
|
|
// Generate encode matrix encode_matrix
|
|
// The matrix generated by gf_gen_rs_matrix
|
|
// is not always invertable.
|
|
gf_gen_rs_matrix(encode_matrix, m, k);
|
|
|
|
// Generate g_tbls from encode matrix encode_matrix
|
|
ec_init_tables_base(k, m - k, &encode_matrix[k * k], g_tbls);
|
|
|
|
// Perform matrix dot_prod for EC encoding
|
|
// using g_tbls from encode matrix encode_matrix
|
|
ec_encode_data_base(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]);
|
|
|
|
// Choose random buffers to be in erasure
|
|
memset(src_in_err, 0, TEST_SOURCES);
|
|
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
|
|
|
|
// Generate decode matrix
|
|
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
|
|
invert_matrix, decode_index, src_err_list, src_in_err,
|
|
nerrs, nsrcerrs, k, m);
|
|
if (re != 0) {
|
|
printf("Fail to gf_gen_decode_matrix\n");
|
|
return -1;
|
|
}
|
|
// Pack recovery array as list of valid sources
|
|
// Its order must be the same as the order
|
|
// to generate matrix b in gf_gen_decode_matrix
|
|
for (i = 0; i < k; i++) {
|
|
recov[i] = buffs[decode_index[i]];
|
|
}
|
|
|
|
// Recover data
|
|
ec_init_tables_base(k, nerrs, decode_matrix, g_tbls);
|
|
ec_encode_data_base(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]);
|
|
for (i = 0; i < nerrs; i++) {
|
|
|
|
if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], TEST_LEN)) {
|
|
printf("Fail error recovery (%d, %d, %d)\n", m, k, nerrs);
|
|
printf(" - erase list = ");
|
|
for (j = 0; j < nerrs; j++)
|
|
printf(" %d", src_err_list[j]);
|
|
printf(" - Index = ");
|
|
for (p = 0; p < k; p++)
|
|
printf(" %d", decode_index[p]);
|
|
printf("\nencode_matrix:\n");
|
|
dump_u8xu8((u8 *) encode_matrix, m, k);
|
|
printf("inv b:\n");
|
|
dump_u8xu8((u8 *) invert_matrix, k, k);
|
|
printf("\ndecode_matrix:\n");
|
|
dump_u8xu8((u8 *) decode_matrix, m, k);
|
|
printf("recov %d:", src_err_list[i]);
|
|
dump(temp_buffs[k + i], 25);
|
|
printf("orig :");
|
|
dump(buffs[src_err_list[i]], 25);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// Pick a first test
|
|
m = 9;
|
|
k = 5;
|
|
if (m > MMAX || k > KMAX)
|
|
return -1;
|
|
|
|
// Make random data
|
|
for (i = 0; i < k; i++)
|
|
for (j = 0; j < TEST_LEN; j++)
|
|
buffs[i][j] = rand();
|
|
|
|
// The matrix generated by gf_gen_cauchy1_matrix
|
|
// is always invertable.
|
|
gf_gen_cauchy1_matrix(encode_matrix, m, k);
|
|
|
|
// Generate g_tbls from encode matrix encode_matrix
|
|
ec_init_tables_base(k, m - k, &encode_matrix[k * k], g_tbls);
|
|
|
|
// Perform matrix dot_prod for EC encoding
|
|
// using g_tbls from encode matrix encode_matrix
|
|
ec_encode_data_base(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]);
|
|
|
|
// Choose random buffers to be in erasure
|
|
memset(src_in_err, 0, TEST_SOURCES);
|
|
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
|
|
|
|
// Generate decode matrix
|
|
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
|
|
invert_matrix, decode_index, src_err_list, src_in_err,
|
|
nerrs, nsrcerrs, k, m);
|
|
if (re != 0) {
|
|
printf("Fail to gf_gen_decode_matrix\n");
|
|
return -1;
|
|
}
|
|
// Pack recovery array as list of valid sources
|
|
// Its order must be the same as the order
|
|
// to generate matrix b in gf_gen_decode_matrix
|
|
for (i = 0; i < k; i++) {
|
|
recov[i] = buffs[decode_index[i]];
|
|
}
|
|
|
|
// Recover data
|
|
ec_init_tables_base(k, nerrs, decode_matrix, g_tbls);
|
|
ec_encode_data_base(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]);
|
|
for (i = 0; i < nerrs; i++) {
|
|
|
|
if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], TEST_LEN)) {
|
|
printf("Fail error recovery (%d, %d, %d)\n", m, k, nerrs);
|
|
printf(" - erase list = ");
|
|
for (j = 0; j < nerrs; j++)
|
|
printf(" %d", src_err_list[j]);
|
|
printf(" - Index = ");
|
|
for (p = 0; p < k; p++)
|
|
printf(" %d", decode_index[p]);
|
|
printf("\nencode_matrix:\n");
|
|
dump_u8xu8((u8 *) encode_matrix, m, k);
|
|
printf("inv b:\n");
|
|
dump_u8xu8((u8 *) invert_matrix, k, k);
|
|
printf("\ndecode_matrix:\n");
|
|
dump_u8xu8((u8 *) decode_matrix, m, k);
|
|
printf("recov %d:", src_err_list[i]);
|
|
dump(temp_buffs[k + i], 25);
|
|
printf("orig :");
|
|
dump(buffs[src_err_list[i]], 25);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// Do more random tests
|
|
for (rtest = 0; rtest < RANDOMS; rtest++) {
|
|
while ((m = (rand() % MMAX)) < 2) ;
|
|
while ((k = (rand() % KMAX)) >= m || k < 1) ;
|
|
|
|
if (m > MMAX || k > KMAX)
|
|
continue;
|
|
|
|
// Make random data
|
|
for (i = 0; i < k; i++)
|
|
for (j = 0; j < TEST_LEN; j++)
|
|
buffs[i][j] = rand();
|
|
|
|
// The matrix generated by gf_gen_cauchy1_matrix
|
|
// is always invertable.
|
|
gf_gen_cauchy1_matrix(encode_matrix, m, k);
|
|
|
|
// Make parity vects
|
|
// Generate g_tbls from encode matrix a
|
|
ec_init_tables_base(k, m - k, &encode_matrix[k * k], g_tbls);
|
|
// Perform matrix dot_prod for EC encoding
|
|
// using g_tbls from encode matrix a
|
|
ec_encode_data_base(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]);
|
|
|
|
// Random errors
|
|
memset(src_in_err, 0, TEST_SOURCES);
|
|
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
|
|
|
|
// Generate decode matrix
|
|
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
|
|
invert_matrix, decode_index, src_err_list,
|
|
src_in_err, nerrs, nsrcerrs, k, m);
|
|
if (re != 0) {
|
|
printf("Fail to gf_gen_decode_matrix\n");
|
|
return -1;
|
|
}
|
|
// Pack recovery array as list of valid sources
|
|
// Its order must be the same as the order
|
|
// to generate matrix b in gf_gen_decode_matrix
|
|
for (i = 0; i < k; i++) {
|
|
recov[i] = buffs[decode_index[i]];
|
|
}
|
|
|
|
// Recover data
|
|
ec_init_tables_base(k, nerrs, decode_matrix, g_tbls);
|
|
ec_encode_data_base(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]);
|
|
|
|
for (i = 0; i < nerrs; i++) {
|
|
|
|
if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], TEST_LEN)) {
|
|
printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
|
|
printf(" - erase list = ");
|
|
for (j = 0; j < nerrs; j++)
|
|
printf(" %d", src_err_list[j]);
|
|
printf(" - Index = ");
|
|
for (p = 0; p < k; p++)
|
|
printf(" %d", decode_index[p]);
|
|
printf("\nencode_matrix:\n");
|
|
dump_u8xu8((u8 *) encode_matrix, m, k);
|
|
printf("inv b:\n");
|
|
dump_u8xu8((u8 *) invert_matrix, k, k);
|
|
printf("\ndecode_matrix:\n");
|
|
dump_u8xu8((u8 *) decode_matrix, m, k);
|
|
printf("orig data:\n");
|
|
dump_matrix(buffs, m, 25);
|
|
printf("orig :");
|
|
dump(buffs[src_err_list[i]], 25);
|
|
printf("recov %d:", src_err_list[i]);
|
|
dump(temp_buffs[k + i], 25);
|
|
return -1;
|
|
}
|
|
}
|
|
#ifdef TEST_VERBOSE
|
|
putchar('.');
|
|
#endif
|
|
}
|
|
|
|
// Run tests at end of buffer for Electric Fence
|
|
k = 16;
|
|
align = (LEN_ALIGN_CHK_B != 0) ? 1 : 16;
|
|
if (k > KMAX)
|
|
return -1;
|
|
|
|
for (rows = 1; rows <= 16; rows++) {
|
|
m = k + rows;
|
|
if (m > MMAX)
|
|
return -1;
|
|
|
|
// Make random data
|
|
for (i = 0; i < k; i++)
|
|
for (j = 0; j < TEST_LEN; j++)
|
|
buffs[i][j] = rand();
|
|
|
|
for (size = EFENCE_TEST_MIN_SIZE; size <= TEST_SIZE; size += align) {
|
|
for (i = 0; i < m; i++) { // Line up TEST_SIZE from end
|
|
efence_buffs[i] = buffs[i] + TEST_LEN - size;
|
|
}
|
|
|
|
// The matrix generated by gf_gen_cauchy1_matrix
|
|
// is always invertable.
|
|
gf_gen_cauchy1_matrix(encode_matrix, m, k);
|
|
|
|
// Make parity vects
|
|
// Generate g_tbls from encode matrix a
|
|
ec_init_tables_base(k, m - k, &encode_matrix[k * k], g_tbls);
|
|
// Perform matrix dot_prod for EC encoding
|
|
// using g_tbls from encode matrix a
|
|
ec_encode_data_base(size, k, m - k, g_tbls, efence_buffs,
|
|
&efence_buffs[k]);
|
|
|
|
// Random errors
|
|
memset(src_in_err, 0, TEST_SOURCES);
|
|
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
|
|
|
|
// Generate decode matrix
|
|
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
|
|
invert_matrix, decode_index, src_err_list,
|
|
src_in_err, nerrs, nsrcerrs, k, m);
|
|
if (re != 0) {
|
|
printf("Fail to gf_gen_decode_matrix\n");
|
|
return -1;
|
|
}
|
|
// Pack recovery array as list of valid sources
|
|
// Its order must be the same as the order
|
|
// to generate matrix b in gf_gen_decode_matrix
|
|
for (i = 0; i < k; i++) {
|
|
recov[i] = efence_buffs[decode_index[i]];
|
|
}
|
|
|
|
// Recover data
|
|
ec_init_tables_base(k, nerrs, decode_matrix, g_tbls);
|
|
ec_encode_data_base(size, k, nerrs, g_tbls, recov, &temp_buffs[k]);
|
|
|
|
for (i = 0; i < nerrs; i++) {
|
|
|
|
if (0 !=
|
|
memcmp(temp_buffs[k + i], efence_buffs[src_err_list[i]],
|
|
size)) {
|
|
printf("Efence: Fail error recovery (%d, %d, %d)\n", m,
|
|
k, nerrs);
|
|
|
|
printf("size = %d\n", size);
|
|
|
|
printf("Test erase list = ");
|
|
for (j = 0; j < nerrs; j++)
|
|
printf(" %d", src_err_list[j]);
|
|
printf(" - Index = ");
|
|
for (p = 0; p < k; p++)
|
|
printf(" %d", decode_index[p]);
|
|
printf("\nencode_matrix:\n");
|
|
dump_u8xu8((u8 *) encode_matrix, m, k);
|
|
printf("inv b:\n");
|
|
dump_u8xu8((u8 *) invert_matrix, k, k);
|
|
printf("\ndecode_matrix:\n");
|
|
dump_u8xu8((u8 *) decode_matrix, m, k);
|
|
|
|
printf("recov %d:", src_err_list[i]);
|
|
dump(temp_buffs[k + i], align);
|
|
printf("orig :");
|
|
dump(efence_buffs[src_err_list[i]], align);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// Test rand ptr alignment if available
|
|
|
|
for (rtest = 0; rtest < RANDOMS; rtest++) {
|
|
while ((m = (rand() % MMAX)) < 2) ;
|
|
while ((k = (rand() % KMAX)) >= m || k < 1) ;
|
|
|
|
if (m > MMAX || k > KMAX)
|
|
continue;
|
|
|
|
size = (TEST_LEN - PTR_ALIGN_CHK_B) & ~15;
|
|
|
|
offset = (PTR_ALIGN_CHK_B != 0) ? 1 : PTR_ALIGN_CHK_B;
|
|
// Add random offsets
|
|
for (i = 0; i < m; i++) {
|
|
memset(buffs[i], 0, TEST_LEN); // zero pad to check write-over
|
|
memset(temp_buffs[i], 0, TEST_LEN); // zero pad to check write-over
|
|
ubuffs[i] = buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
|
|
temp_ubuffs[i] = temp_buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
|
|
}
|
|
|
|
for (i = 0; i < k; i++)
|
|
for (j = 0; j < size; j++)
|
|
ubuffs[i][j] = rand();
|
|
|
|
// The matrix generated by gf_gen_cauchy1_matrix
|
|
// is always invertable.
|
|
gf_gen_cauchy1_matrix(encode_matrix, m, k);
|
|
|
|
// Make parity vects
|
|
// Generate g_tbls from encode matrix a
|
|
ec_init_tables_base(k, m - k, &encode_matrix[k * k], g_tbls);
|
|
// Perform matrix dot_prod for EC encoding
|
|
// using g_tbls from encode matrix a
|
|
ec_encode_data_base(size, k, m - k, g_tbls, ubuffs, &ubuffs[k]);
|
|
|
|
// Random errors
|
|
memset(src_in_err, 0, TEST_SOURCES);
|
|
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
|
|
|
|
// Generate decode matrix
|
|
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
|
|
invert_matrix, decode_index, src_err_list,
|
|
src_in_err, nerrs, nsrcerrs, k, m);
|
|
if (re != 0) {
|
|
printf("Fail to gf_gen_decode_matrix\n");
|
|
return -1;
|
|
}
|
|
// Pack recovery array as list of valid sources
|
|
// Its order must be the same as the order
|
|
// to generate matrix b in gf_gen_decode_matrix
|
|
for (i = 0; i < k; i++) {
|
|
recov[i] = ubuffs[decode_index[i]];
|
|
}
|
|
|
|
// Recover data
|
|
ec_init_tables_base(k, nerrs, decode_matrix, g_tbls);
|
|
ec_encode_data_base(size, k, nerrs, g_tbls, recov, &temp_ubuffs[k]);
|
|
|
|
for (i = 0; i < nerrs; i++) {
|
|
|
|
if (0 != memcmp(temp_ubuffs[k + i], ubuffs[src_err_list[i]], size)) {
|
|
printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
|
|
printf(" - erase list = ");
|
|
for (j = 0; j < nerrs; j++)
|
|
printf(" %d", src_err_list[j]);
|
|
printf(" - Index = ");
|
|
for (p = 0; p < k; p++)
|
|
printf(" %d", decode_index[p]);
|
|
printf("\nencode_matrix:\n");
|
|
dump_u8xu8((unsigned char *)encode_matrix, m, k);
|
|
printf("inv b:\n");
|
|
dump_u8xu8((unsigned char *)invert_matrix, k, k);
|
|
printf("\ndecode_matrix:\n");
|
|
dump_u8xu8((unsigned char *)decode_matrix, m, k);
|
|
printf("orig data:\n");
|
|
dump_matrix(ubuffs, m, 25);
|
|
printf("orig :");
|
|
dump(ubuffs[src_err_list[i]], 25);
|
|
printf("recov %d:", src_err_list[i]);
|
|
dump(temp_ubuffs[k + i], 25);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// Confirm that padding around dests is unchanged
|
|
memset(temp_buffs[0], 0, PTR_ALIGN_CHK_B); // Make reference zero buff
|
|
|
|
for (i = 0; i < m; i++) {
|
|
|
|
offset = ubuffs[i] - buffs[i];
|
|
|
|
if (memcmp(buffs[i], temp_buffs[0], offset)) {
|
|
printf("Fail rand ualign encode pad start\n");
|
|
return -1;
|
|
}
|
|
if (memcmp
|
|
(buffs[i] + offset + size, temp_buffs[0],
|
|
PTR_ALIGN_CHK_B - offset)) {
|
|
printf("Fail rand ualign encode pad end\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < nerrs; i++) {
|
|
|
|
offset = temp_ubuffs[k + i] - temp_buffs[k + i];
|
|
if (memcmp(temp_buffs[k + i], temp_buffs[0], offset)) {
|
|
printf("Fail rand ualign decode pad start\n");
|
|
return -1;
|
|
}
|
|
if (memcmp
|
|
(temp_buffs[k + i] + offset + size, temp_buffs[0],
|
|
PTR_ALIGN_CHK_B - offset)) {
|
|
printf("Fail rand ualign decode pad end\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
#ifdef TEST_VERBOSE
|
|
putchar('.');
|
|
#endif
|
|
}
|
|
|
|
// Test size alignment
|
|
|
|
align = (LEN_ALIGN_CHK_B != 0) ? 13 : 16;
|
|
|
|
for (size = TEST_LEN; size > 0; size -= align) {
|
|
while ((m = (rand() % MMAX)) < 2) ;
|
|
while ((k = (rand() % KMAX)) >= m || k < 1) ;
|
|
|
|
if (m > MMAX || k > KMAX)
|
|
continue;
|
|
|
|
for (i = 0; i < k; i++)
|
|
for (j = 0; j < size; j++)
|
|
buffs[i][j] = rand();
|
|
|
|
// The matrix generated by gf_gen_cauchy1_matrix
|
|
// is always invertable.
|
|
gf_gen_cauchy1_matrix(encode_matrix, m, k);
|
|
|
|
// Make parity vects
|
|
// Generate g_tbls from encode matrix a
|
|
ec_init_tables_base(k, m - k, &encode_matrix[k * k], g_tbls);
|
|
// Perform matrix dot_prod for EC encoding
|
|
// using g_tbls from encode matrix a
|
|
ec_encode_data_base(size, k, m - k, g_tbls, buffs, &buffs[k]);
|
|
|
|
// Random errors
|
|
memset(src_in_err, 0, TEST_SOURCES);
|
|
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
|
|
// Generate decode matrix
|
|
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
|
|
invert_matrix, decode_index, src_err_list,
|
|
src_in_err, nerrs, nsrcerrs, k, m);
|
|
if (re != 0) {
|
|
printf("Fail to gf_gen_decode_matrix\n");
|
|
return -1;
|
|
}
|
|
// Pack recovery array as list of valid sources
|
|
// Its order must be the same as the order
|
|
// to generate matrix b in gf_gen_decode_matrix
|
|
for (i = 0; i < k; i++) {
|
|
recov[i] = buffs[decode_index[i]];
|
|
}
|
|
|
|
// Recover data
|
|
ec_init_tables_base(k, nerrs, decode_matrix, g_tbls);
|
|
ec_encode_data_base(size, k, nerrs, g_tbls, recov, &temp_buffs[k]);
|
|
|
|
for (i = 0; i < nerrs; i++) {
|
|
|
|
if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], size)) {
|
|
printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
|
|
printf(" - erase list = ");
|
|
for (j = 0; j < nerrs; j++)
|
|
printf(" %d", src_err_list[j]);
|
|
printf(" - Index = ");
|
|
for (p = 0; p < k; p++)
|
|
printf(" %d", decode_index[p]);
|
|
printf("\nencode_matrix:\n");
|
|
dump_u8xu8((unsigned char *)encode_matrix, m, k);
|
|
printf("inv b:\n");
|
|
dump_u8xu8((unsigned char *)invert_matrix, k, k);
|
|
printf("\ndecode_matrix:\n");
|
|
dump_u8xu8((unsigned char *)decode_matrix, m, k);
|
|
printf("orig data:\n");
|
|
dump_matrix(buffs, m, 25);
|
|
printf("orig :");
|
|
dump(buffs[src_err_list[i]], 25);
|
|
printf("recov %d:", src_err_list[i]);
|
|
dump(temp_buffs[k + i], 25);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
printf("done EC tests: Pass\n");
|
|
return 0;
|
|
}
|