mirror of
				https://github.com/intel/isa-l.git
				synced 2025-10-30 13:47:09 +01:00 
			
		
		
		
	 aaeedf60c4
			
		
	
	aaeedf60c4
	
	
	
		
			
			Change-Id: I872c48b150be1799b97b2115aed0804a36eb5a0c Signed-off-by: Greg Tucker <greg.b.tucker@intel.com>
		
			
				
	
	
		
			519 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			519 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**********************************************************************
 | |
|   Copyright(c) 2011-2018 Intel Corporation All rights reserved.
 | |
| 
 | |
|   Redistribution and use in source and binary forms, with or without
 | |
|   modification, are permitted provided that the following conditions
 | |
|   are met:
 | |
|     * Redistributions of source code must retain the above copyright
 | |
|       notice, this list of conditions and the following disclaimer.
 | |
|     * Redistributions in binary form must reproduce the above copyright
 | |
|       notice, this list of conditions and the following disclaimer in
 | |
|       the documentation and/or other materials provided with the
 | |
|       distribution.
 | |
|     * Neither the name of Intel Corporation nor the names of its
 | |
|       contributors may be used to endorse or promote products derived
 | |
|       from this software without specific prior written permission.
 | |
| 
 | |
|   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
|   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
|   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
|   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
|   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
|   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| **********************************************************************/
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <getopt.h>
 | |
| #include "erasure_code.h"	// use <isa-l.h> instead when linking against installed
 | |
| #include "test.h"
 | |
| 
 | |
| #define MMAX 255
 | |
| #define KMAX 255
 | |
| 
 | |
| typedef unsigned char u8;
 | |
| int verbose = 0;
 | |
| 
 | |
| int usage(void)
 | |
| {
 | |
| 	fprintf(stderr,
 | |
| 		"Usage: ec_piggyback_example [options]\n"
 | |
| 		"  -h        Help\n"
 | |
| 		"  -k <val>  Number of source fragments\n"
 | |
| 		"  -p <val>  Number of parity fragments\n"
 | |
| 		"  -l <val>  Length of fragments\n"
 | |
| 		"  -e <val>  Simulate erasure on frag index val. Zero based. Can be repeated.\n"
 | |
| 		"  -v        Verbose\n"
 | |
| 		"  -b        Run timed benchmark\n"
 | |
| 		"  -s        Toggle use of sparse matrix opt\n"
 | |
| 		"  -r <seed> Pick random (k, p) with seed\n");
 | |
| 	exit(0);
 | |
| }
 | |
| 
 | |
| // Cauchy-based matrix
 | |
| void gf_gen_full_pb_cauchy_matrix(u8 * a, int m, int k)
 | |
| {
 | |
| 	int i, j, p = m - k;
 | |
| 
 | |
| 	// Identity matrix in top k x k to indicate a symetric code
 | |
| 	memset(a, 0, k * m);
 | |
| 	for (i = 0; i < k; i++)
 | |
| 		a[k * i + i] = 1;
 | |
| 
 | |
| 	for (i = k; i < (k + p / 2); i++) {
 | |
| 		for (j = 0; j < k / 2; j++)
 | |
| 			a[k * i + j] = gf_inv(i ^ j);
 | |
| 		for (; j < k; j++)
 | |
| 			a[k * i + j] = 0;
 | |
| 	}
 | |
| 	for (; i < m; i++) {
 | |
| 		for (j = 0; j < k / 2; j++)
 | |
| 			a[k * i + j] = 0;
 | |
| 		for (; j < k; j++)
 | |
| 			a[k * i + j] = gf_inv((i - p / 2) ^ (j - k / 2));
 | |
| 	}
 | |
| 
 | |
| 	// Fill in mixture of B parity depending on a few localized A sources
 | |
| 	int r = 0, c = 0;
 | |
| 	int repeat_len = k / (p - 2);
 | |
| 	int parity_rows = p / 2;
 | |
| 
 | |
| 	for (i = 1 + k + parity_rows; i < m; i++, r++) {
 | |
| 		if (r == (parity_rows - 1) - ((k / 2 % (parity_rows - 1))))
 | |
| 			repeat_len++;
 | |
| 
 | |
| 		for (j = 0; j < repeat_len; j++, c++)
 | |
| 			a[k * i + c] = gf_inv((k + 1) ^ c);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Vandermonde based matrix - not recommended due to limits when invertable
 | |
| void gf_gen_full_pb_vand_matrix(u8 * a, int m, int k)
 | |
| {
 | |
| 	int i, j, p = m - k;
 | |
| 	unsigned char q, gen = 1;
 | |
| 
 | |
| 	// Identity matrix in top k x k to indicate a symetric code
 | |
| 	memset(a, 0, k * m);
 | |
| 	for (i = 0; i < k; i++)
 | |
| 		a[k * i + i] = 1;
 | |
| 
 | |
| 	for (i = k; i < (k + (p / 2)); i++) {
 | |
| 		q = 1;
 | |
| 		for (j = 0; j < k / 2; j++) {
 | |
| 			a[k * i + j] = q;
 | |
| 			q = gf_mul(q, gen);
 | |
| 		}
 | |
| 		for (; j < k; j++)
 | |
| 			a[k * i + j] = 0;
 | |
| 		gen = gf_mul(gen, 2);
 | |
| 	}
 | |
| 	gen = 1;
 | |
| 	for (; i < m; i++) {
 | |
| 		q = 1;
 | |
| 		for (j = 0; j < k / 2; j++) {
 | |
| 			a[k * i + j] = 0;
 | |
| 		}
 | |
| 		for (; j < k; j++) {
 | |
| 			a[k * i + j] = q;
 | |
| 			q = gf_mul(q, gen);
 | |
| 		}
 | |
| 		gen = gf_mul(gen, 2);
 | |
| 	}
 | |
| 
 | |
| 	// Fill in mixture of B parity depending on a few localized A sources
 | |
| 	int r = 0, c = 0;
 | |
| 	int repeat_len = k / (p - 2);
 | |
| 	int parity_rows = p / 2;
 | |
| 
 | |
| 	for (i = 1 + k + parity_rows; i < m; i++, r++) {
 | |
| 		if (r == (parity_rows - 1) - ((k / 2 % (parity_rows - 1))))
 | |
| 			repeat_len++;
 | |
| 
 | |
| 		for (j = 0; j < repeat_len; j++)
 | |
| 			a[k * i + c++] = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void print_matrix(int m, int k, unsigned char *s, const char *msg)
 | |
| {
 | |
| 	int i, j;
 | |
| 
 | |
| 	printf("%s:\n", msg);
 | |
| 	for (i = 0; i < m; i++) {
 | |
| 		printf("%3d- ", i);
 | |
| 		for (j = 0; j < k; j++) {
 | |
| 			printf(" %2x", 0xff & s[j + (i * k)]);
 | |
| 		}
 | |
| 		printf("\n");
 | |
| 	}
 | |
| 	printf("\n");
 | |
| }
 | |
| 
 | |
| void print_list(int n, unsigned char *s, const char *msg)
 | |
| {
 | |
| 	int i;
 | |
| 	if (!verbose)
 | |
| 		return;
 | |
| 
 | |
| 	printf("%s: ", msg);
 | |
| 	for (i = 0; i < n; i++)
 | |
| 		printf(" %d", s[i]);
 | |
| 	printf("\n");
 | |
| }
 | |
| 
 | |
| static int gf_gen_decode_matrix(u8 * encode_matrix,
 | |
| 				u8 * decode_matrix,
 | |
| 				u8 * invert_matrix,
 | |
| 				u8 * temp_matrix,
 | |
| 				u8 * decode_index,
 | |
| 				u8 * frag_err_list, int nerrs, int k, int m);
 | |
| 
 | |
| int main(int argc, char *argv[])
 | |
| {
 | |
| 	int i, j, m, c, e, ret;
 | |
| 	int k = 10, p = 4, len = 8 * 1024;	// Default params
 | |
| 	int nerrs = 0;
 | |
| 	int benchmark = 0;
 | |
| 	int sparse_matrix_opt = 1;
 | |
| 
 | |
| 	// Fragment buffer pointers
 | |
| 	u8 *frag_ptrs[MMAX];
 | |
| 	u8 *parity_ptrs[KMAX];
 | |
| 	u8 *recover_srcs[KMAX];
 | |
| 	u8 *recover_outp[KMAX];
 | |
| 	u8 frag_err_list[MMAX];
 | |
| 
 | |
| 	// Coefficient matrices
 | |
| 	u8 *encode_matrix, *decode_matrix;
 | |
| 	u8 *invert_matrix, *temp_matrix;
 | |
| 	u8 *g_tbls;
 | |
| 	u8 decode_index[MMAX];
 | |
| 
 | |
| 	if (argc == 1)
 | |
| 		for (i = 0; i < p; i++)
 | |
| 			frag_err_list[nerrs++] = rand() % (k + p);
 | |
| 
 | |
| 	while ((c = getopt(argc, argv, "k:p:l:e:r:hvbs")) != -1) {
 | |
| 		switch (c) {
 | |
| 		case 'k':
 | |
| 			k = atoi(optarg);
 | |
| 			break;
 | |
| 		case 'p':
 | |
| 			p = atoi(optarg);
 | |
| 			break;
 | |
| 		case 'l':
 | |
| 			len = atoi(optarg);
 | |
| 			if (len < 0)
 | |
| 				usage();
 | |
| 			break;
 | |
| 		case 'e':
 | |
| 			e = atoi(optarg);
 | |
| 			frag_err_list[nerrs++] = e;
 | |
| 			break;
 | |
| 		case 'r':
 | |
| 			srand(atoi(optarg));
 | |
| 			k = (rand() % MMAX) / 4;
 | |
| 			k = (k < 2) ? 2 : k;
 | |
| 			p = (rand() % (MMAX - k)) / 4;
 | |
| 			p = (p < 2) ? 2 : p;
 | |
| 			for (i = 0; i < k && nerrs < p; i++)
 | |
| 				if (rand() & 1)
 | |
| 					frag_err_list[nerrs++] = i;
 | |
| 			break;
 | |
| 		case 'v':
 | |
| 			verbose++;
 | |
| 			break;
 | |
| 		case 'b':
 | |
| 			benchmark = 1;
 | |
| 			break;
 | |
| 		case 's':
 | |
| 			sparse_matrix_opt = !sparse_matrix_opt;
 | |
| 			break;
 | |
| 		case 'h':
 | |
| 		default:
 | |
| 			usage();
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	m = k + p;
 | |
| 
 | |
| 	// Check for valid parameters
 | |
| 	if (m > (MMAX / 2) || k > (KMAX / 2) || m < 0 || p < 2 || k < 1) {
 | |
| 		printf(" Input test parameter error m=%d, k=%d, p=%d, erasures=%d\n",
 | |
| 		       m, k, p, nerrs);
 | |
| 		usage();
 | |
| 	}
 | |
| 	if (nerrs > p) {
 | |
| 		printf(" Number of erasures chosen exceeds power of code erasures=%d p=%d\n",
 | |
| 		       nerrs, p);
 | |
| 	}
 | |
| 	for (i = 0; i < nerrs; i++) {
 | |
| 		if (frag_err_list[i] >= m)
 | |
| 			printf(" fragment %d not in range\n", frag_err_list[i]);
 | |
| 	}
 | |
| 
 | |
| 	printf("ec_piggyback_example:\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * One simple way to implement piggyback codes is to keep a 2x wide matrix
 | |
| 	 * that covers the how each parity is related to both A and B sources.  This
 | |
| 	 * keeps it easy to generalize in parameters m,k and the resulting sparse
 | |
| 	 * matrix multiplication can be optimized by pre-removal of zero items.
 | |
| 	 */
 | |
| 
 | |
| 	int k2 = 2 * k;
 | |
| 	int p2 = 2 * p;
 | |
| 	int m2 = k2 + p2;
 | |
| 	int nerrs2 = nerrs;
 | |
| 
 | |
| 	encode_matrix = malloc(m2 * k2);
 | |
| 	decode_matrix = malloc(m2 * k2);
 | |
| 	invert_matrix = malloc(m2 * k2);
 | |
| 	temp_matrix = malloc(m2 * k2);
 | |
| 	g_tbls = malloc(k2 * p2 * 32);
 | |
| 
 | |
| 	if (encode_matrix == NULL || decode_matrix == NULL
 | |
| 	    || invert_matrix == NULL || temp_matrix == NULL || g_tbls == NULL) {
 | |
| 		printf("Test failure! Error with malloc\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	// Allocate the src fragments
 | |
| 	for (i = 0; i < k; i++) {
 | |
| 		if (NULL == (frag_ptrs[i] = malloc(len))) {
 | |
| 			printf("alloc error: Fail\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	// Allocate the parity fragments
 | |
| 	for (i = 0; i < p2; i++) {
 | |
| 		if (NULL == (parity_ptrs[i] = malloc(len / 2))) {
 | |
| 			printf("alloc error: Fail\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Allocate buffers for recovered data
 | |
| 	for (i = 0; i < p2; i++) {
 | |
| 		if (NULL == (recover_outp[i] = malloc(len / 2))) {
 | |
| 			printf("alloc error: Fail\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Fill sources with random data
 | |
| 	for (i = 0; i < k; i++)
 | |
| 		for (j = 0; j < len; j++)
 | |
| 			frag_ptrs[i][j] = rand();
 | |
| 
 | |
| 	printf(" encode (m,k,p)=(%d,%d,%d) len=%d\n", m, k, p, len);
 | |
| 
 | |
| 	// Pick an encode matrix.
 | |
| 	gf_gen_full_pb_cauchy_matrix(encode_matrix, m2, k2);
 | |
| 
 | |
| 	if (verbose)
 | |
| 		print_matrix(m2, k2, encode_matrix, "encode matrix");
 | |
| 
 | |
| 	// Initialize g_tbls from encode matrix
 | |
| 	ec_init_tables(k2, p2, &encode_matrix[k2 * k2], g_tbls);
 | |
| 
 | |
| 	// Fold A and B into single list of fragments
 | |
| 	for (i = 0; i < k; i++)
 | |
| 		frag_ptrs[i + k] = &frag_ptrs[i][len / 2];
 | |
| 
 | |
| 	if (!sparse_matrix_opt) {
 | |
| 		// Standard encode using no assumptions on the encode matrix
 | |
| 
 | |
| 		// Generate EC parity blocks from sources
 | |
| 		ec_encode_data(len / 2, k2, p2, g_tbls, frag_ptrs, parity_ptrs);
 | |
| 
 | |
| 		if (benchmark) {
 | |
| 			struct perf start, stop;
 | |
| 			unsigned long long iterations = (1ull << 32) / (m * len);
 | |
| 			perf_start(&start);
 | |
| 			for (i = 0; i < iterations; i++) {
 | |
| 				ec_encode_data(len / 2, k2, p2, g_tbls, frag_ptrs,
 | |
| 					       parity_ptrs);
 | |
| 			}
 | |
| 			perf_stop(&stop);
 | |
| 			printf("ec_piggyback_encode_std: ");
 | |
| 			perf_print(stop, start, iterations * m2 * len / 2);
 | |
| 		}
 | |
| 	} else {
 | |
| 		// Sparse matrix optimization - use fact that input matrix is sparse
 | |
| 
 | |
| 		// Keep an encode matrix with some zero elements removed
 | |
| 		u8 *encode_matrix_faster, *g_tbls_faster;
 | |
| 		encode_matrix_faster = malloc(m * k);
 | |
| 		g_tbls_faster = malloc(k * p * 32);
 | |
| 		if (encode_matrix_faster == NULL || g_tbls_faster == NULL) {
 | |
| 			printf("Test failure! Error with malloc\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Pack with only the part that we know are non-zero.  Alternatively
 | |
| 		 * we could search and keep track of non-zero elements but for
 | |
| 		 * simplicity we just skip the lower quadrant.
 | |
| 		 */
 | |
| 		for (i = k, j = k2; i < m; i++, j++)
 | |
| 			memcpy(&encode_matrix_faster[k * i], &encode_matrix[k2 * j], k);
 | |
| 
 | |
| 		if (verbose) {
 | |
| 			print_matrix(p, k, &encode_matrix_faster[k * k],
 | |
| 				     "encode via sparse-opt");
 | |
| 			print_matrix(p2 / 2, k2, &encode_matrix[(k2 + p2 / 2) * k2],
 | |
| 				     "encode via sparse-opt");
 | |
| 		}
 | |
| 		// Initialize g_tbls from encode matrix
 | |
| 		ec_init_tables(k, p, &encode_matrix_faster[k * k], g_tbls_faster);
 | |
| 
 | |
| 		// Generate EC parity blocks from sources
 | |
| 		ec_encode_data(len / 2, k, p, g_tbls_faster, frag_ptrs, parity_ptrs);
 | |
| 		ec_encode_data(len / 2, k2, p, &g_tbls[k2 * p * 32], frag_ptrs,
 | |
| 			       &parity_ptrs[p]);
 | |
| 
 | |
| 		if (benchmark) {
 | |
| 			struct perf start, stop;
 | |
| 			unsigned long long iterations = (1ull << 32) / (m * len);
 | |
| 			perf_start(&start);
 | |
| 			for (i = 0; i < iterations; i++) {
 | |
| 				ec_encode_data(len / 2, k, p, g_tbls_faster, frag_ptrs,
 | |
| 					       parity_ptrs);
 | |
| 				ec_encode_data(len / 2, k2, p, &g_tbls[k2 * p * 32], frag_ptrs,
 | |
| 					       &parity_ptrs[p]);
 | |
| 			}
 | |
| 			perf_stop(&stop);
 | |
| 			printf("ec_piggyback_encode_sparse: ");
 | |
| 			perf_print(stop, start, iterations * m2 * len / 2);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nerrs <= 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	printf(" recover %d fragments\n", nerrs);
 | |
| 
 | |
| 	// Set frag pointers to correspond to parity
 | |
| 	for (i = k2; i < m2; i++)
 | |
| 		frag_ptrs[i] = parity_ptrs[i - k2];
 | |
| 
 | |
| 	print_list(nerrs2, frag_err_list, " frag err list");
 | |
| 
 | |
| 	// Find a decode matrix to regenerate all erasures from remaining frags
 | |
| 	ret = gf_gen_decode_matrix(encode_matrix, decode_matrix,
 | |
| 				   invert_matrix, temp_matrix, decode_index, frag_err_list,
 | |
| 				   nerrs2, k2, m2);
 | |
| 
 | |
| 	if (ret != 0) {
 | |
| 		printf("Fail on generate decode matrix\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	// Pack recovery array pointers as list of valid fragments
 | |
| 	for (i = 0; i < k2; i++)
 | |
| 		if (decode_index[i] < k2)
 | |
| 			recover_srcs[i] = frag_ptrs[decode_index[i]];
 | |
| 		else
 | |
| 			recover_srcs[i] = parity_ptrs[decode_index[i] - k2];
 | |
| 
 | |
| 	print_list(k2, decode_index, " decode index");
 | |
| 
 | |
| 	// Recover data
 | |
| 	ec_init_tables(k2, nerrs2, decode_matrix, g_tbls);
 | |
| 	ec_encode_data(len / 2, k2, nerrs2, g_tbls, recover_srcs, recover_outp);
 | |
| 
 | |
| 	if (benchmark) {
 | |
| 		struct perf start, stop;
 | |
| 		unsigned long long iterations = (1ull << 32) / (k * len);
 | |
| 		perf_start(&start);
 | |
| 		for (i = 0; i < iterations; i++) {
 | |
| 			ec_encode_data(len / 2, k2, nerrs2, g_tbls, recover_srcs,
 | |
| 				       recover_outp);
 | |
| 		}
 | |
| 		perf_stop(&stop);
 | |
| 		printf("ec_piggyback_decode: ");
 | |
| 		perf_print(stop, start, iterations * (k2 + nerrs2) * len / 2);
 | |
| 	}
 | |
| 	// Check that recovered buffers are the same as original
 | |
| 	printf(" check recovery of block {");
 | |
| 	for (i = 0; i < nerrs2; i++) {
 | |
| 		printf(" %d", frag_err_list[i]);
 | |
| 		if (memcmp(recover_outp[i], frag_ptrs[frag_err_list[i]], len / 2)) {
 | |
| 			printf(" Fail erasure recovery %d, frag %d\n", i, frag_err_list[i]);
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	printf(" } done all: Pass\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| // Generate decode matrix from encode matrix and erasure list
 | |
| 
 | |
| static int gf_gen_decode_matrix(u8 * encode_matrix,
 | |
| 				u8 * decode_matrix,
 | |
| 				u8 * invert_matrix,
 | |
| 				u8 * temp_matrix,
 | |
| 				u8 * decode_index, u8 * frag_err_list, int nerrs, int k, int m)
 | |
| {
 | |
| 	int i, j, p, r;
 | |
| 	int nsrcerrs = 0;
 | |
| 	u8 s, *b = temp_matrix;
 | |
| 	u8 frag_in_err[MMAX];
 | |
| 
 | |
| 	memset(frag_in_err, 0, sizeof(frag_in_err));
 | |
| 
 | |
| 	// Order the fragments in erasure for easier sorting
 | |
| 	for (i = 0; i < nerrs; i++) {
 | |
| 		if (frag_err_list[i] < k)
 | |
| 			nsrcerrs++;
 | |
| 		frag_in_err[frag_err_list[i]] = 1;
 | |
| 	}
 | |
| 
 | |
| 	// Construct b (matrix that encoded remaining frags) by removing erased rows
 | |
| 	for (i = 0, r = 0; i < k; i++, r++) {
 | |
| 		while (frag_in_err[r])
 | |
| 			r++;
 | |
| 		for (j = 0; j < k; j++)
 | |
| 			b[k * i + j] = encode_matrix[k * r + j];
 | |
| 		decode_index[i] = r;
 | |
| 	}
 | |
| 	if (verbose > 1)
 | |
| 		print_matrix(k, k, b, "matrix to invert");
 | |
| 
 | |
| 	// Invert matrix to get recovery matrix
 | |
| 	if (gf_invert_matrix(b, invert_matrix, k) < 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (verbose > 2)
 | |
| 		print_matrix(k, k, invert_matrix, "matrix inverted");
 | |
| 
 | |
| 	// Get decode matrix with only wanted recovery rows
 | |
| 	for (i = 0; i < nsrcerrs; i++) {
 | |
| 		for (j = 0; j < k; j++) {
 | |
| 			decode_matrix[k * i + j] = invert_matrix[k * frag_err_list[i] + j];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// For non-src (parity) erasures need to multiply encode matrix * invert
 | |
| 	for (p = nsrcerrs; p < nerrs; p++) {
 | |
| 		for (i = 0; i < k; i++) {
 | |
| 			s = 0;
 | |
| 			for (j = 0; j < k; j++)
 | |
| 				s ^= gf_mul(invert_matrix[j * k + i],
 | |
| 					    encode_matrix[k * frag_err_list[p] + j]);
 | |
| 
 | |
| 			decode_matrix[k * p + i] = s;
 | |
| 		}
 | |
| 	}
 | |
| 	if (verbose > 1)
 | |
| 		print_matrix(nerrs, k, decode_matrix, "decode matrix");
 | |
| 	return 0;
 | |
| }
 |