mirror of
https://github.com/intel/isa-l.git
synced 2025-01-19 04:26:08 +01:00
9d99f8215d
Signed-off-by: Marcel Cornu <marcel.d.cornu@intel.com>
459 lines
15 KiB
C
459 lines
15 KiB
C
/**********************************************************************
|
|
Copyright(c) 2011-2023 Intel Corporation All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
* Neither the name of Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived
|
|
from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
**********************************************************************/
|
|
|
|
/**
|
|
* @file crc_combine_example.c
|
|
* @brief Example of CRC combine logic.
|
|
*
|
|
* Combine functions can produce the CRC from independent pieces as though they
|
|
* were computed sequentially. The example includes combine functions that are
|
|
* split into two parts; one that depends on length only, and another with
|
|
* optimizations that uses the previous and individual CRCs to combine. By
|
|
* splitting, the length-dependent constants can be pre-computed and the
|
|
* remaining combine logic kept fast and simple.
|
|
*
|
|
*/
|
|
|
|
// Compile as c++ for multi-function versions
|
|
|
|
#include <stdio.h>
|
|
#include <inttypes.h>
|
|
#include <immintrin.h>
|
|
#include <isa-l.h>
|
|
|
|
int verbose; // Global for tests
|
|
|
|
#if defined(_MSC_VER)
|
|
#define __builtin_parity(x) (__popcnt64(x) & 1)
|
|
#endif
|
|
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#define ATTRIBUTE_TARGET(x) __attribute__((target(x)))
|
|
#else
|
|
#define ATTRIBUTE_TARGET(x)
|
|
#endif
|
|
|
|
struct crc64_desc {
|
|
uint64_t poly;
|
|
uint64_t k5;
|
|
uint64_t k7;
|
|
uint64_t k8;
|
|
};
|
|
|
|
void
|
|
gen_crc64_refl_consts(uint64_t poly, struct crc64_desc *c)
|
|
{
|
|
uint64_t quotienth = 0;
|
|
uint64_t div;
|
|
uint64_t rem = 1ull;
|
|
int i;
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
div = (rem & 1ull) != 0;
|
|
quotienth = (quotienth >> 1) | (div ? 0x8000000000000000ull : 0);
|
|
rem = (div ? poly : 0) ^ (rem >> 1);
|
|
}
|
|
c->k5 = rem;
|
|
c->poly = poly;
|
|
c->k7 = quotienth;
|
|
c->k8 = poly << 1;
|
|
}
|
|
|
|
void
|
|
gen_crc64_norm_consts(uint64_t poly, struct crc64_desc *c)
|
|
{
|
|
uint64_t quotientl = 0;
|
|
uint64_t div;
|
|
uint64_t rem = 1ull << 63;
|
|
int i;
|
|
|
|
for (i = 0; i < 65; i++) {
|
|
div = (rem & 0x8000000000000000ull) != 0;
|
|
quotientl = (quotientl << 1) | div;
|
|
rem = (div ? poly : 0) ^ (rem << 1);
|
|
}
|
|
|
|
c->poly = poly;
|
|
c->k5 = rem;
|
|
c->k7 = quotientl;
|
|
c->k8 = poly;
|
|
}
|
|
|
|
uint32_t
|
|
calc_xi_mod(int n)
|
|
{
|
|
uint32_t rem = 0x1ul;
|
|
int i, j;
|
|
|
|
const uint32_t poly = 0x82f63b78;
|
|
|
|
if (n < 16)
|
|
return 0;
|
|
|
|
for (i = 0; i < n - 8; i++)
|
|
for (j = 0; j < 8; j++)
|
|
rem = (rem & 0x1ul) ? (rem >> 1) ^ poly : (rem >> 1);
|
|
|
|
return rem;
|
|
}
|
|
|
|
uint64_t
|
|
calc64_refl_xi_mod(int n, struct crc64_desc *c)
|
|
{
|
|
uint64_t rem = 1ull;
|
|
int i, j;
|
|
|
|
const uint64_t poly = c->poly;
|
|
|
|
if (n < 32)
|
|
return 0;
|
|
|
|
for (i = 0; i < n - 16; i++)
|
|
for (j = 0; j < 8; j++)
|
|
rem = (rem & 0x1ull) ? (rem >> 1) ^ poly : (rem >> 1);
|
|
|
|
return rem;
|
|
}
|
|
|
|
uint64_t
|
|
calc64_norm_xi_mod(int n, struct crc64_desc *c)
|
|
{
|
|
uint64_t rem = 1ull;
|
|
int i, j;
|
|
|
|
const uint64_t poly = c->poly;
|
|
|
|
if (n < 32)
|
|
return 0;
|
|
|
|
for (i = 0; i < n - 8; i++)
|
|
for (j = 0; j < 8; j++)
|
|
rem = (rem & 0x8000000000000000ull ? poly : 0) ^ (rem << 1);
|
|
|
|
return rem;
|
|
}
|
|
|
|
// Base function for crc32_iscsi_shiftx() if c++ multi-function versioning
|
|
#ifdef __cplusplus
|
|
|
|
static inline uint32_t
|
|
bit_reverse32(uint32_t x)
|
|
{
|
|
x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
|
|
x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
|
|
x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
|
|
x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
|
|
return ((x >> 16) | (x << 16));
|
|
}
|
|
|
|
// Base function for crc32_iscsi_shiftx without clmul optimizations
|
|
|
|
ATTRIBUTE_TARGET("default")
|
|
uint32_t
|
|
crc32_iscsi_shiftx(uint32_t crc1, uint32_t x)
|
|
{
|
|
int i;
|
|
uint64_t xrev, q = 0;
|
|
union {
|
|
uint8_t a[8];
|
|
uint64_t q;
|
|
} qu;
|
|
|
|
xrev = bit_reverse32(x);
|
|
xrev <<= 32;
|
|
|
|
for (i = 0; i < 64; i++, xrev >>= 1)
|
|
q = (q << 1) | __builtin_parity(crc1 & xrev);
|
|
|
|
qu.q = q;
|
|
return crc32_iscsi(qu.a, 8, 0);
|
|
}
|
|
#endif // cplusplus
|
|
|
|
ATTRIBUTE_TARGET("pclmul,sse4.2")
|
|
uint32_t
|
|
crc32_iscsi_shiftx(uint32_t crc1, uint32_t x)
|
|
{
|
|
__m128i crc1x, constx;
|
|
uint64_t crc64;
|
|
|
|
crc1x = _mm_setr_epi32(crc1, 0, 0, 0);
|
|
constx = _mm_setr_epi32(x, 0, 0, 0);
|
|
crc1x = _mm_clmulepi64_si128(crc1x, constx, 0);
|
|
crc64 = _mm_cvtsi128_si64(crc1x);
|
|
crc64 = _mm_crc32_u64(0, crc64);
|
|
return crc64 & 0xffffffff;
|
|
}
|
|
|
|
ATTRIBUTE_TARGET("pclmul,sse4.2")
|
|
uint64_t
|
|
crc64_refl_shiftx(uint64_t crc1, uint64_t x, struct crc64_desc *c)
|
|
{
|
|
__m128i crc1x, crc2x, crc3x, constx;
|
|
const __m128i rk5 = _mm_loadu_si64(&c->k5);
|
|
const __m128i rk7 = _mm_loadu_si128((__m128i *) &c->k7);
|
|
|
|
crc1x = _mm_cvtsi64_si128(crc1);
|
|
constx = _mm_cvtsi64_si128(x);
|
|
crc1x = _mm_clmulepi64_si128(crc1x, constx, 0x00);
|
|
|
|
// Fold to 64b
|
|
crc2x = _mm_clmulepi64_si128(crc1x, rk5, 0x00);
|
|
crc3x = _mm_bsrli_si128(crc1x, 8);
|
|
crc1x = _mm_xor_si128(crc2x, crc3x);
|
|
|
|
// Reduce
|
|
crc2x = _mm_clmulepi64_si128(crc1x, rk7, 0x00);
|
|
crc3x = _mm_clmulepi64_si128(crc2x, rk7, 0x10);
|
|
crc2x = _mm_bslli_si128(crc2x, 8);
|
|
crc1x = _mm_xor_si128(crc1x, crc2x);
|
|
crc1x = _mm_xor_si128(crc1x, crc3x);
|
|
return _mm_extract_epi64(crc1x, 1);
|
|
}
|
|
|
|
ATTRIBUTE_TARGET("pclmul,sse4.2")
|
|
uint64_t
|
|
crc64_norm_shiftx(uint64_t crc1, uint64_t x, struct crc64_desc *c)
|
|
{
|
|
__m128i crc1x, crc2x, crc3x, constx;
|
|
const __m128i rk5 = _mm_loadu_si64(&c->k5);
|
|
const __m128i rk7 = _mm_loadu_si128((__m128i *) &c->k7);
|
|
|
|
crc1x = _mm_cvtsi64_si128(crc1);
|
|
constx = _mm_cvtsi64_si128(x);
|
|
crc1x = _mm_clmulepi64_si128(crc1x, constx, 0x00);
|
|
|
|
// Fold to 64b
|
|
crc2x = _mm_clmulepi64_si128(crc1x, rk5, 0x01);
|
|
crc3x = _mm_bslli_si128(crc1x, 8);
|
|
crc1x = _mm_xor_si128(crc2x, crc3x);
|
|
|
|
// Reduce
|
|
crc2x = _mm_clmulepi64_si128(crc1x, rk7, 0x01);
|
|
crc2x = _mm_xor_si128(crc1x, crc2x);
|
|
crc3x = _mm_clmulepi64_si128(crc2x, rk7, 0x11);
|
|
crc1x = _mm_xor_si128(crc1x, crc3x);
|
|
return _mm_extract_epi64(crc1x, 0);
|
|
}
|
|
|
|
uint32_t
|
|
crc32_iscsi_combine_4k(uint32_t *crc_array, int n)
|
|
{
|
|
const uint32_t cn4k = 0x82f89c77; // calc_xi_mod(4*1024);
|
|
int i;
|
|
|
|
if (n < 1)
|
|
return 0;
|
|
|
|
uint32_t crc = crc_array[0];
|
|
|
|
for (i = 1; i < n; i++)
|
|
crc = crc32_iscsi_shiftx(crc, cn4k) ^ crc_array[i];
|
|
|
|
return crc;
|
|
}
|
|
|
|
// Tests
|
|
|
|
#define printv(...) \
|
|
{ \
|
|
if (verbose) \
|
|
printf(__VA_ARGS__); \
|
|
else \
|
|
printf("."); \
|
|
}
|
|
|
|
uint64_t
|
|
test_combine64(uint8_t *inp, size_t len, uint64_t poly, int reflected,
|
|
uint64_t (*func)(uint64_t, const uint8_t *, uint64_t))
|
|
{
|
|
|
|
uint64_t crc64_init, crc64, crc64a, crc64b;
|
|
uint64_t crc64_1, crc64_2, crc64_3, crc64_n, err = 0;
|
|
uint64_t xi_mod;
|
|
struct crc64_desc crc64_c;
|
|
size_t l1, l2, l3;
|
|
|
|
l1 = len / 2;
|
|
l2 = len - l1;
|
|
|
|
crc64_init = rand();
|
|
crc64 = func(crc64_init, inp, len);
|
|
printv("\ncrc64 all = 0x%" PRIx64 "\n", crc64);
|
|
|
|
// Do a sequential crc update
|
|
crc64a = func(crc64_init, &inp[0], l1);
|
|
crc64b = func(crc64a, &inp[l1], l2);
|
|
printv("crc64 seq = 0x%" PRIx64 "\n", crc64b);
|
|
|
|
// Split into 2 independent crc calc and combine
|
|
crc64_1 = func(crc64_init, &inp[0], l1);
|
|
crc64_2 = func(0, &inp[l1], l2);
|
|
|
|
if (reflected) {
|
|
gen_crc64_refl_consts(poly, &crc64_c);
|
|
xi_mod = calc64_refl_xi_mod(l1, &crc64_c);
|
|
crc64_1 = crc64_refl_shiftx(crc64_1, xi_mod, &crc64_c);
|
|
} else {
|
|
gen_crc64_norm_consts(poly, &crc64_c);
|
|
xi_mod = calc64_norm_xi_mod(l1, &crc64_c);
|
|
crc64_1 = crc64_norm_shiftx(crc64_1, xi_mod, &crc64_c);
|
|
}
|
|
crc64_n = crc64_1 ^ crc64_2;
|
|
|
|
printv("crc64 combined2 = 0x%" PRIx64 "\n", crc64_n);
|
|
err |= crc64_n ^ crc64;
|
|
if (err)
|
|
return err;
|
|
|
|
// Split into 3 uneven segments and combine
|
|
l1 = len / 3;
|
|
l2 = (len / 3) - 3;
|
|
l3 = len - l2 - l1;
|
|
crc64_1 = func(crc64_init, &inp[0], l1);
|
|
crc64_2 = func(0, &inp[l1], l2);
|
|
crc64_3 = func(0, &inp[l1 + l2], l3);
|
|
if (reflected) {
|
|
xi_mod = calc64_refl_xi_mod(l3, &crc64_c);
|
|
crc64_2 = crc64_refl_shiftx(crc64_2, xi_mod, &crc64_c);
|
|
xi_mod = calc64_refl_xi_mod(len - l1, &crc64_c);
|
|
crc64_1 = crc64_refl_shiftx(crc64_1, xi_mod, &crc64_c);
|
|
} else {
|
|
xi_mod = calc64_norm_xi_mod(l3, &crc64_c);
|
|
crc64_2 = crc64_norm_shiftx(crc64_2, xi_mod, &crc64_c);
|
|
xi_mod = calc64_norm_xi_mod(len - l1, &crc64_c);
|
|
crc64_1 = crc64_norm_shiftx(crc64_1, xi_mod, &crc64_c);
|
|
}
|
|
crc64_n = crc64_1 ^ crc64_2 ^ crc64_3;
|
|
|
|
printv("crc64 combined3 = 0x%" PRIx64 "\n", crc64_n);
|
|
err |= crc64_n ^ crc64;
|
|
|
|
return err;
|
|
}
|
|
|
|
#define N (1024)
|
|
#define B (2 * N)
|
|
#define T (3 * N)
|
|
#define N4k (4 * 1024)
|
|
#define NMAX 32
|
|
#define NMAX_SIZE (NMAX * N4k)
|
|
|
|
int
|
|
main(int argc, char *argv[])
|
|
{
|
|
int i;
|
|
uint32_t crc, crca, crcb, crc1, crc2, crc3, crcn;
|
|
uint32_t crc_init = rand();
|
|
uint32_t err = 0;
|
|
uint8_t *inp = (uint8_t *) malloc(NMAX_SIZE);
|
|
verbose = argc - 1;
|
|
|
|
if (NULL == inp)
|
|
return -1;
|
|
|
|
for (int i = 0; i < NMAX_SIZE; i++)
|
|
inp[i] = rand();
|
|
|
|
printf("crc_combine_test:");
|
|
|
|
// Calc crc all at once
|
|
crc = crc32_iscsi(inp, B, crc_init);
|
|
printv("\ncrcB all = 0x%" PRIx32 "\n", crc);
|
|
|
|
// Do a sequential crc update
|
|
crca = crc32_iscsi(&inp[0], N, crc_init);
|
|
crcb = crc32_iscsi(&inp[N], N, crca);
|
|
printv("crcB seq = 0x%" PRIx32 "\n", crcb);
|
|
|
|
// Split into 2 independent crc calc and combine
|
|
crc1 = crc32_iscsi(&inp[0], N, crc_init);
|
|
crc2 = crc32_iscsi(&inp[N], N, 0);
|
|
crcn = crc32_iscsi_shiftx(crc1, calc_xi_mod(N)) ^ crc2;
|
|
printv("crcB combined2 = 0x%" PRIx32 "\n", crcn);
|
|
err |= crcn ^ crc;
|
|
|
|
// Split into 3 uneven segments and combine
|
|
crc1 = crc32_iscsi(&inp[0], 100, crc_init);
|
|
crc2 = crc32_iscsi(&inp[100], 100, 0);
|
|
crc3 = crc32_iscsi(&inp[200], B - 200, 0);
|
|
crcn = crc3 ^ crc32_iscsi_shiftx(crc2, calc_xi_mod(B - 200)) ^
|
|
crc32_iscsi_shiftx(crc1, calc_xi_mod(B - 100));
|
|
printv("crcB combined3 = 0x%" PRIx32 "\n\n", crcn);
|
|
err |= crcn ^ crc;
|
|
|
|
// Call all size T at once
|
|
crc = crc32_iscsi(inp, T, crc_init);
|
|
printv("crcT all = 0x%" PRIx32 "\n", crc);
|
|
|
|
// Split into 3 segments and combine with 2 consts
|
|
crc1 = crc32_iscsi(&inp[0], N, crc_init);
|
|
crc2 = crc32_iscsi(&inp[N], N, 0);
|
|
crc3 = crc32_iscsi(&inp[2 * N], N, 0);
|
|
crcn = crc3 ^ crc32_iscsi_shiftx(crc2, calc_xi_mod(N)) ^
|
|
crc32_iscsi_shiftx(crc1, calc_xi_mod(2 * N));
|
|
printv("crcT combined3 = 0x%" PRIx32 "\n", crcn);
|
|
err |= crcn ^ crc;
|
|
|
|
// Combine 3 segments with one const by sequential shift
|
|
uint32_t xi_mod_n = calc_xi_mod(N);
|
|
crcn = crc3 ^ crc32_iscsi_shiftx(crc32_iscsi_shiftx(crc1, xi_mod_n) ^ crc2, xi_mod_n);
|
|
printv("crcT comb3 seq = 0x%" PRIx32 "\n\n", crcn);
|
|
err |= crcn ^ crc;
|
|
|
|
// Test 4k array function
|
|
crc = crc32_iscsi(inp, NMAX_SIZE, crc_init);
|
|
printv("crc 4k x n all = 0x%" PRIx32 "\n", crc);
|
|
|
|
// Test crc 4k array combine function
|
|
uint32_t crcs[NMAX];
|
|
crcs[0] = crc32_iscsi(&inp[0], N4k, crc_init);
|
|
for (i = 1; i < NMAX; i++)
|
|
crcs[i] = crc32_iscsi(&inp[i * N4k], N4k, 0);
|
|
|
|
crcn = crc32_iscsi_combine_4k(crcs, NMAX);
|
|
printv("crc4k_array = 0x%" PRIx32 "\n", crcn);
|
|
err |= crcn ^ crc;
|
|
|
|
// CRC64 generic poly tests - reflected
|
|
uint64_t len = NMAX_SIZE;
|
|
err |= test_combine64(inp, len, 0xc96c5795d7870f42ull, 1, crc64_ecma_refl);
|
|
err |= test_combine64(inp, len, 0xd800000000000000ull, 1, crc64_iso_refl);
|
|
err |= test_combine64(inp, len, 0x95ac9329ac4bc9b5ull, 1, crc64_jones_refl);
|
|
|
|
// CRC64 non-reflected polynomial tests
|
|
err |= test_combine64(inp, len, 0x42f0e1eba9ea3693ull, 0, crc64_ecma_norm);
|
|
err |= test_combine64(inp, len, 0x000000000000001bull, 0, crc64_iso_norm);
|
|
err |= test_combine64(inp, len, 0xad93d23594c935a9ull, 0, crc64_jones_norm);
|
|
|
|
printf(err == 0 ? "pass\n" : "fail\n");
|
|
free(inp);
|
|
return err;
|
|
}
|