mirror of
https://github.com/intel/isa-l.git
synced 2024-12-14 02:05:11 +01:00
acbe0deecf
Fix following compilation error crc/crc32_iscsi_by16_10.s:408: error: invalid combination of opcode and operands Fixes #257. Signed-off-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
567 lines
16 KiB
NASM
567 lines
16 KiB
NASM
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
; Copyright(c) 2011-2020 Intel Corporation All rights reserved.
|
|
;
|
|
; Redistribution and use in source and binary forms, with or without
|
|
; modification, are permitted provided that the following conditions
|
|
; are met:
|
|
; * Redistributions of source code must retain the above copyright
|
|
; notice, this list of conditions and the following disclaimer.
|
|
; * Redistributions in binary form must reproduce the above copyright
|
|
; notice, this list of conditions and the following disclaimer in
|
|
; the documentation and/or other materials provided with the
|
|
; distribution.
|
|
; * Neither the name of Intel Corporation nor the names of its
|
|
; contributors may be used to endorse or promote products derived
|
|
; from this software without specific prior written permission.
|
|
;
|
|
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
; Function API:
|
|
; UINT32 crc32_gzip_refl_by16_10(
|
|
; UINT32 init_crc, //initial CRC value, 32 bits
|
|
; const unsigned char *buf, //buffer pointer to calculate CRC on
|
|
; UINT64 len //buffer length in bytes (64-bit data)
|
|
; );
|
|
;
|
|
; Authors:
|
|
; Erdinc Ozturk
|
|
; Vinodh Gopal
|
|
; James Guilford
|
|
;
|
|
; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
|
|
; URL: http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
|
|
;
|
|
;
|
|
|
|
%include "reg_sizes.asm"
|
|
|
|
%ifndef FUNCTION_NAME
|
|
%define FUNCTION_NAME crc32_ieee_by16_10
|
|
%endif
|
|
|
|
%if (AS_FEATURE_LEVEL) >= 10
|
|
|
|
[bits 64]
|
|
default rel
|
|
|
|
section .text
|
|
|
|
|
|
%ifidn __OUTPUT_FORMAT__, win64
|
|
%xdefine arg1 rcx
|
|
%xdefine arg2 rdx
|
|
%xdefine arg3 r8
|
|
|
|
%xdefine arg1_low32 ecx
|
|
%else
|
|
%xdefine arg1 rdi
|
|
%xdefine arg2 rsi
|
|
%xdefine arg3 rdx
|
|
|
|
%xdefine arg1_low32 edi
|
|
%endif
|
|
|
|
align 16
|
|
mk_global FUNCTION_NAME, function
|
|
FUNCTION_NAME:
|
|
endbranch
|
|
|
|
not arg1_low32
|
|
|
|
%ifidn __OUTPUT_FORMAT__, win64
|
|
sub rsp, (16*10 + 8)
|
|
|
|
; push the xmm registers into the stack to maintain
|
|
vmovdqa [rsp + 16*0], xmm6
|
|
vmovdqa [rsp + 16*1], xmm7
|
|
vmovdqa [rsp + 16*2], xmm8
|
|
vmovdqa [rsp + 16*3], xmm9
|
|
vmovdqa [rsp + 16*4], xmm10
|
|
vmovdqa [rsp + 16*5], xmm11
|
|
vmovdqa [rsp + 16*6], xmm12
|
|
vmovdqa [rsp + 16*7], xmm13
|
|
vmovdqa [rsp + 16*8], xmm14
|
|
vmovdqa [rsp + 16*9], xmm15
|
|
%endif
|
|
|
|
vbroadcasti32x4 zmm18, [SHUF_MASK]
|
|
cmp arg3, 256
|
|
jl .less_than_256
|
|
|
|
; load the initial crc value
|
|
vmovd xmm10, arg1_low32 ; initial crc
|
|
|
|
; crc value does not need to be byte-reflected, but it needs to be moved to the high part of the register.
|
|
; because data will be byte-reflected and will align with initial crc at correct place.
|
|
vpslldq xmm10, 12
|
|
|
|
; receive the initial 64B data, xor the initial crc value
|
|
vmovdqu8 zmm0, [arg2+16*0]
|
|
vmovdqu8 zmm4, [arg2+16*4]
|
|
vpshufb zmm0, zmm0, zmm18
|
|
vpshufb zmm4, zmm4, zmm18
|
|
vpxorq zmm0, zmm10
|
|
vbroadcasti32x4 zmm10, [rk3] ;xmm10 has rk3 and rk4
|
|
;imm value of pclmulqdq instruction will determine which constant to use
|
|
|
|
sub arg3, 256
|
|
cmp arg3, 256
|
|
jl .fold_128_B_loop
|
|
|
|
vmovdqu8 zmm7, [arg2+16*8]
|
|
vmovdqu8 zmm8, [arg2+16*12]
|
|
vpshufb zmm7, zmm7, zmm18
|
|
vpshufb zmm8, zmm8, zmm18
|
|
vbroadcasti32x4 zmm16, [rk_1] ;zmm16 has rk-1 and rk-2
|
|
sub arg3, 256
|
|
|
|
align 16
|
|
.fold_256_B_loop:
|
|
add arg2, 256
|
|
vmovdqu8 zmm3, [arg2+16*0]
|
|
vpshufb zmm3, zmm3, zmm18
|
|
vpclmulqdq zmm1, zmm0, zmm16, 0x00
|
|
vpclmulqdq zmm0, zmm0, zmm16, 0x11
|
|
vpternlogq zmm0, zmm1, zmm3, 0x96
|
|
|
|
vmovdqu8 zmm9, [arg2+16*4]
|
|
vpshufb zmm9, zmm9, zmm18
|
|
vpclmulqdq zmm5, zmm4, zmm16, 0x00
|
|
vpclmulqdq zmm4, zmm4, zmm16, 0x11
|
|
vpternlogq zmm4, zmm5, zmm9, 0x96
|
|
|
|
vmovdqu8 zmm11, [arg2+16*8]
|
|
vpshufb zmm11, zmm11, zmm18
|
|
vpclmulqdq zmm12, zmm7, zmm16, 0x00
|
|
vpclmulqdq zmm7, zmm7, zmm16, 0x11
|
|
vpternlogq zmm7, zmm12, zmm11, 0x96
|
|
|
|
vmovdqu8 zmm17, [arg2+16*12]
|
|
vpshufb zmm17, zmm17, zmm18
|
|
vpclmulqdq zmm14, zmm8, zmm16, 0x00
|
|
vpclmulqdq zmm8, zmm8, zmm16, 0x11
|
|
vpternlogq zmm8, zmm14, zmm17, 0x96
|
|
|
|
sub arg3, 256
|
|
jge .fold_256_B_loop
|
|
|
|
;; Fold 256 into 128
|
|
add arg2, 256
|
|
vpclmulqdq zmm1, zmm0, zmm10, 0x00
|
|
vpclmulqdq zmm2, zmm0, zmm10, 0x11
|
|
vpternlogq zmm7, zmm1, zmm2, 0x96 ; xor ABC
|
|
|
|
vpclmulqdq zmm5, zmm4, zmm10, 0x00
|
|
vpclmulqdq zmm6, zmm4, zmm10, 0x11
|
|
vpternlogq zmm8, zmm5, zmm6, 0x96 ; xor ABC
|
|
|
|
vmovdqa32 zmm0, zmm7
|
|
vmovdqa32 zmm4, zmm8
|
|
|
|
add arg3, 128
|
|
jmp .less_than_128_B
|
|
|
|
; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The fold_128_B_loop
|
|
; loop will fold 128B at a time until we have 128+y Bytes of buffer
|
|
|
|
; fold 128B at a time. This section of the code folds 8 xmm registers in parallel
|
|
align 16
|
|
.fold_128_B_loop:
|
|
add arg2, 128
|
|
vmovdqu8 zmm8, [arg2+16*0]
|
|
vpshufb zmm8, zmm8, zmm18
|
|
vpclmulqdq zmm2, zmm0, zmm10, 0x00
|
|
vpclmulqdq zmm0, zmm0, zmm10, 0x11
|
|
vpternlogq zmm0, zmm2, zmm8, 0x96
|
|
|
|
vmovdqu8 zmm9, [arg2+16*4]
|
|
vpshufb zmm9, zmm9, zmm18
|
|
vpclmulqdq zmm5, zmm4, zmm10, 0x00
|
|
vpclmulqdq zmm4, zmm4, zmm10, 0x11
|
|
vpternlogq zmm4, zmm5, zmm9, 0x96
|
|
|
|
sub arg3, 128
|
|
jge .fold_128_B_loop
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
add arg2, 128
|
|
align 16
|
|
.less_than_128_B:
|
|
;; At this point, the buffer pointer is pointing at the last
|
|
;; y bytes of the buffer, where 0 <= y < 128.
|
|
;; The 128 bytes of folded data is in 2 of the zmm registers:
|
|
;; zmm0 and zmm4
|
|
|
|
cmp arg3, -64
|
|
jl .fold_128_B_register
|
|
|
|
vbroadcasti32x4 zmm10, [rk15]
|
|
;; If there are still 64 bytes left, folds from 128 bytes to 64 bytes
|
|
;; and handles the next 64 bytes
|
|
vpclmulqdq zmm2, zmm0, zmm10, 0x00
|
|
vpclmulqdq zmm0, zmm0, zmm10, 0x11
|
|
vpternlogq zmm0, zmm2, zmm4, 0x96
|
|
add arg3, 128
|
|
|
|
jmp .fold_64B_loop
|
|
|
|
align 16
|
|
.fold_128_B_register:
|
|
; fold the 8 128b parts into 1 xmm register with different constants
|
|
vmovdqu8 zmm16, [rk9] ; multiply by rk9-rk16
|
|
vmovdqu8 zmm11, [rk17] ; multiply by rk17-rk20, rk1,rk2, 0,0
|
|
vpclmulqdq zmm1, zmm0, zmm16, 0x00
|
|
vpclmulqdq zmm2, zmm0, zmm16, 0x11
|
|
vextracti64x2 xmm7, zmm4, 3 ; save last that has no multiplicand
|
|
|
|
vpclmulqdq zmm5, zmm4, zmm11, 0x00
|
|
vpclmulqdq zmm6, zmm4, zmm11, 0x11
|
|
vmovdqa xmm10, [rk1] ; Needed later in reduction loop
|
|
vpternlogq zmm1, zmm2, zmm5, 0x96 ; xor ABC
|
|
vpternlogq zmm1, zmm6, zmm7, 0x96 ; xor ABC
|
|
|
|
vshufi64x2 zmm8, zmm1, zmm1, 0x4e ; Swap 1,0,3,2 - 01 00 11 10
|
|
vpxorq ymm8, ymm8, ymm1
|
|
vextracti64x2 xmm5, ymm8, 1
|
|
vpxorq xmm7, xmm5, xmm8
|
|
|
|
; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop
|
|
; instead of a cmp instruction, we use the negative flag with the jl instruction
|
|
add arg3, 128-16
|
|
jl .final_reduction_for_128
|
|
|
|
; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
|
|
; we can fold 16 bytes at a time if y>=16
|
|
; continue folding 16B at a time
|
|
|
|
align 16
|
|
.16B_reduction_loop:
|
|
vpclmulqdq xmm8, xmm7, xmm10, 0x11
|
|
vpclmulqdq xmm7, xmm7, xmm10, 0x00
|
|
vpxor xmm7, xmm8
|
|
vmovdqu xmm0, [arg2]
|
|
vpshufb xmm0, xmm0, xmm18
|
|
vpxor xmm7, xmm0
|
|
add arg2, 16
|
|
sub arg3, 16
|
|
; instead of a cmp instruction, we utilize the flags with the jge instruction
|
|
; equivalent of: cmp arg3, 16-16
|
|
; check if there is any more 16B in the buffer to be able to fold
|
|
jge .16B_reduction_loop
|
|
|
|
;now we have 16+z bytes left to reduce, where 0<= z < 16.
|
|
;first, we reduce the data in the xmm7 register
|
|
|
|
|
|
align 16
|
|
.final_reduction_for_128:
|
|
add arg3, 16
|
|
je .128_done
|
|
|
|
; here we are getting data that is less than 16 bytes.
|
|
; since we know that there was data before the pointer, we can offset
|
|
; the input pointer before the actual point, to receive exactly 16 bytes.
|
|
; after that the registers need to be adjusted.
|
|
align 16
|
|
.get_last_two_xmms:
|
|
|
|
vmovdqa xmm2, xmm7
|
|
vmovdqu xmm1, [arg2 - 16 + arg3]
|
|
vpshufb xmm1, xmm18
|
|
|
|
; get rid of the extra data that was loaded before
|
|
; load the shift constant
|
|
lea rax, [rel pshufb_shf_table + 16]
|
|
sub rax, arg3
|
|
vmovdqu xmm0, [rax]
|
|
|
|
vpshufb xmm2, xmm0
|
|
vpxor xmm0, [mask1]
|
|
vpshufb xmm7, xmm0
|
|
vpblendvb xmm1, xmm1, xmm2, xmm0
|
|
|
|
vpclmulqdq xmm8, xmm7, xmm10, 0x11
|
|
vpclmulqdq xmm7, xmm7, xmm10, 0x00
|
|
vpternlogq xmm7, xmm8, xmm1, 0x96
|
|
|
|
align 16
|
|
.128_done:
|
|
; compute crc of a 128-bit value
|
|
vmovdqa xmm10, [rk5]
|
|
vmovdqa xmm0, xmm7
|
|
|
|
;64b fold
|
|
vpclmulqdq xmm7, xmm10, 0x01 ; H*L
|
|
vpslldq xmm0, 8
|
|
vpxor xmm7, xmm0
|
|
|
|
;32b fold
|
|
vpand xmm0, xmm7, [mask2]
|
|
vpsrldq xmm7, 12
|
|
vpclmulqdq xmm7, xmm10, 0x10
|
|
vpxor xmm7, xmm0
|
|
|
|
;barrett reduction
|
|
align 16
|
|
.barrett:
|
|
vmovdqa xmm10, [rk7] ; rk7 and rk8 in xmm10
|
|
vmovdqa xmm0, xmm7
|
|
vpclmulqdq xmm7, xmm10, 0x01
|
|
vpslldq xmm7, 4
|
|
vpclmulqdq xmm7, xmm10, 0x11
|
|
|
|
vpslldq xmm7, 4
|
|
vpxor xmm7, xmm0
|
|
vpextrd eax, xmm7, 1
|
|
|
|
align 16
|
|
.cleanup:
|
|
not eax
|
|
|
|
|
|
%ifidn __OUTPUT_FORMAT__, win64
|
|
vmovdqa xmm6, [rsp + 16*0]
|
|
vmovdqa xmm7, [rsp + 16*1]
|
|
vmovdqa xmm8, [rsp + 16*2]
|
|
vmovdqa xmm9, [rsp + 16*3]
|
|
vmovdqa xmm10, [rsp + 16*4]
|
|
vmovdqa xmm11, [rsp + 16*5]
|
|
vmovdqa xmm12, [rsp + 16*6]
|
|
vmovdqa xmm13, [rsp + 16*7]
|
|
vmovdqa xmm14, [rsp + 16*8]
|
|
vmovdqa xmm15, [rsp + 16*9]
|
|
add rsp, (16*10 + 8)
|
|
%endif
|
|
ret
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
align 16
|
|
.less_than_256:
|
|
|
|
; check if there is enough buffer to be able to fold 16B at a time
|
|
cmp arg3, 32
|
|
jl .less_than_32
|
|
|
|
vmovd xmm1, arg1_low32 ; get the initial crc value
|
|
vpslldq xmm1, 12
|
|
|
|
cmp arg3, 64
|
|
jl .less_than_64
|
|
|
|
;; receive the initial 64B data, xor the initial crc value
|
|
vmovdqu8 zmm0, [arg2]
|
|
vpshufb zmm0, zmm18
|
|
vpxorq zmm0, zmm1
|
|
add arg2, 64
|
|
sub arg3, 64
|
|
|
|
cmp arg3, 64
|
|
jb .reduce_64B
|
|
|
|
vbroadcasti32x4 zmm10, [rk15]
|
|
|
|
align 16
|
|
.fold_64B_loop:
|
|
vmovdqu8 zmm4, [arg2]
|
|
vpshufb zmm4, zmm18
|
|
vpclmulqdq zmm2, zmm0, zmm10, 0x11
|
|
vpclmulqdq zmm0, zmm0, zmm10, 0x00
|
|
vpternlogq zmm0, zmm2, zmm4, 0x96
|
|
|
|
add arg2, 64
|
|
sub arg3, 64
|
|
|
|
cmp arg3, 64
|
|
jge .fold_64B_loop
|
|
|
|
align 16
|
|
.reduce_64B:
|
|
; Reduce from 64 bytes to 16 bytes
|
|
vmovdqu8 zmm11, [rk17]
|
|
vpclmulqdq zmm1, zmm0, zmm11, 0x11
|
|
vpclmulqdq zmm2, zmm0, zmm11, 0x00
|
|
vextracti64x2 xmm7, zmm0, 3 ; save last that has no multiplicand
|
|
vpternlogq zmm1, zmm2, zmm7, 0x96
|
|
|
|
vmovdqa xmm10, [rk_1b] ; Needed later in reduction loop
|
|
|
|
vshufi64x2 zmm8, zmm1, zmm1, 0x4e ; Swap 1,0,3,2 - 01 00 11 10
|
|
vpxorq ymm8, ymm8, ymm1
|
|
vextracti64x2 xmm5, ymm8, 1
|
|
vpxorq xmm7, xmm5, xmm8
|
|
|
|
sub arg3, 16
|
|
jns .16B_reduction_loop ; At least 16 bytes of data to digest
|
|
jmp .final_reduction_for_128
|
|
|
|
align 16
|
|
.less_than_64:
|
|
;; if there is, load the constants
|
|
vmovdqa xmm10, [rk_1b]
|
|
|
|
vmovdqu xmm7, [arg2] ; load the plaintext
|
|
vpshufb xmm7, xmm18
|
|
vpxor xmm7, xmm1 ; xmm1 already has initial crc value
|
|
|
|
;; update the buffer pointer
|
|
add arg2, 16
|
|
|
|
;; update the counter
|
|
;; - subtract 32 instead of 16 to save one instruction from the loop
|
|
sub arg3, 32
|
|
jmp .16B_reduction_loop
|
|
|
|
align 16
|
|
.less_than_32:
|
|
; mov initial crc to the return value. this is necessary for zero-length buffers.
|
|
mov eax, arg1_low32
|
|
test arg3, arg3
|
|
je .cleanup
|
|
|
|
vmovd xmm0, arg1_low32 ; get the initial crc value
|
|
vpslldq xmm0, 12 ; align it to its correct place
|
|
|
|
cmp arg3, 16
|
|
je .exact_16_left
|
|
jl .less_than_16_left
|
|
|
|
vmovdqu xmm7, [arg2] ; load the plaintext
|
|
vpshufb xmm7, xmm18
|
|
vpxor xmm7, xmm0 ; xor the initial crc value
|
|
add arg2, 16
|
|
sub arg3, 16
|
|
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
|
|
jmp .get_last_two_xmms
|
|
|
|
align 16
|
|
.less_than_16_left:
|
|
xor r10, r10
|
|
bts r10, arg3
|
|
dec r10
|
|
kmovw k2, r10d
|
|
vmovdqu8 xmm7{k2}{z}, [arg2]
|
|
vpshufb xmm7, xmm18 ; byte-reflect the plaintext
|
|
|
|
vpxor xmm7, xmm0 ; xor the initial crc value
|
|
|
|
cmp arg3, 4
|
|
jb .only_less_than_4
|
|
|
|
lea rax, [rel pshufb_shf_table + 16]
|
|
sub rax, arg3
|
|
vmovdqu xmm0, [rax]
|
|
vpxor xmm0, [mask1]
|
|
|
|
vpshufb xmm7,xmm0
|
|
jmp .128_done
|
|
|
|
align 16
|
|
.only_less_than_4:
|
|
lea r11, [rel pshufb_shift_table + 3]
|
|
sub r11, arg3
|
|
vmovdqu xmm0, [r11]
|
|
vpshufb xmm7, xmm0
|
|
jmp .barrett
|
|
align 32
|
|
.exact_16_left:
|
|
vmovdqu xmm7, [arg2]
|
|
vpshufb xmm7, xmm18
|
|
vpxor xmm7, xmm0 ; xor the initial crc value
|
|
|
|
jmp .128_done
|
|
|
|
section .data
|
|
align 32
|
|
|
|
%ifndef USE_CONSTS
|
|
; precomputed constants
|
|
rk_1: dq 0x1851689900000000
|
|
rk_2: dq 0xa3dc855100000000
|
|
rk1: dq 0xf200aa6600000000
|
|
rk2: dq 0x17d3315d00000000
|
|
rk3: dq 0x022ffca500000000
|
|
rk4: dq 0x9d9ee22f00000000
|
|
rk5: dq 0xf200aa6600000000
|
|
rk6: dq 0x490d678d00000000
|
|
rk7: dq 0x0000000104d101df
|
|
rk8: dq 0x0000000104c11db7
|
|
rk9: dq 0x6ac7e7d700000000
|
|
rk10: dq 0xfcd922af00000000
|
|
rk11: dq 0x34e45a6300000000
|
|
rk12: dq 0x8762c1f600000000
|
|
rk13: dq 0x5395a0ea00000000
|
|
rk14: dq 0x54f2d5c700000000
|
|
rk15: dq 0xd3504ec700000000
|
|
rk16: dq 0x57a8445500000000
|
|
rk17: dq 0xc053585d00000000
|
|
rk18: dq 0x766f1b7800000000
|
|
rk19: dq 0xcd8c54b500000000
|
|
rk20: dq 0xab40b71e00000000
|
|
|
|
rk_1b: dq 0xf200aa6600000000
|
|
rk_2b: dq 0x17d3315d00000000
|
|
dq 0x0000000000000000
|
|
dq 0x0000000000000000
|
|
%else
|
|
INCLUDE_CONSTS
|
|
%endif
|
|
|
|
align 16
|
|
pshufb_shift_table:
|
|
;; use these values to shift data for the pshufb instruction
|
|
db 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
|
|
db 0x0C, 0x0D, 0x0E, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF
|
|
db 0xFF, 0xFF
|
|
|
|
mask1: dq 0x8080808080808080, 0x8080808080808080
|
|
mask2: dq 0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFF
|
|
|
|
SHUF_MASK: dq 0x08090A0B0C0D0E0F, 0x0001020304050607
|
|
|
|
pshufb_shf_table:
|
|
; use these values for shift constants for the pshufb instruction
|
|
; different alignments result in values as shown:
|
|
; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
|
|
; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
|
|
; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
|
|
; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
|
|
; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
|
|
; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
|
|
; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7
|
|
; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8
|
|
; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9
|
|
; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10
|
|
; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11
|
|
; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12
|
|
; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13
|
|
; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14
|
|
; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15
|
|
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
|
|
dq 0x0706050403020100, 0x000e0d0c0b0a0908
|
|
dq 0x8080808080808080, 0x0f0e0d0c0b0a0908
|
|
dq 0x8080808080808080, 0x8080808080808080
|
|
|
|
%else ; Assembler doesn't understand these opcodes. Add empty symbol for windows.
|
|
%ifidn __OUTPUT_FORMAT__, win64
|
|
global no_ %+ FUNCTION_NAME
|
|
no_ %+ FUNCTION_NAME %+ :
|
|
%endif
|
|
%endif ; (AS_FEATURE_LEVEL) >= 10
|