isa-l/crc/crc64_iso_norm_by16_10.asm
H.J. Lu cd888f01a4 x86: Add ENDBR32/ENDBR64 at function entries for Intel CET
To support Intel CET, all indirect branch targets must start with
ENDBR32/ENDBR64.  Here is a patch to define endbranch and add it to
function entries in x86 assembly codes which are indirect branch
targets as discovered by running testsuite on Intel CET machine and
visual inspection.

Verified with

$ CC="gcc -Wl,-z,cet-report=error -fcf-protection" CXX="g++ -Wl,-z,cet-report=error -fcf-protection" .../configure x86_64-linux
$ make -j8
$ make -j8 check

with both nasm and yasm on both CET and non-CET machines.

Change-Id: I9822578e7294fb5043a64ab7de5c41de81a7d337
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
2020-05-26 09:16:49 -07:00

526 lines
14 KiB
NASM

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright(c) 2011-2019 Intel Corporation All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in
; the documentation and/or other materials provided with the
; distribution.
; * Neither the name of Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived
; from this software without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Function API:
; uint64_t crc64_iso_norm_by16_10(
; uint64_t init_crc, //initial CRC value, 64 bits
; const unsigned char *buf, //buffer pointer to calculate CRC on
; uint64_t len //buffer length in bytes (64-bit data)
; );
;
%include "reg_sizes.asm"
%ifndef FUNCTION_NAME
%define FUNCTION_NAME crc64_iso_norm_by16_10
%endif
%if (AS_FEATURE_LEVEL) >= 10
%define fetch_dist 1024
[bits 64]
default rel
section .text
%ifidn __OUTPUT_FORMAT__, win64
%xdefine arg1 rcx
%xdefine arg2 rdx
%xdefine arg3 r8
%else
%xdefine arg1 rdi
%xdefine arg2 rsi
%xdefine arg3 rdx
%endif
%ifidn __OUTPUT_FORMAT__, win64
%define XMM_SAVE 16*2
%define VARIABLE_OFFSET 16*12+8
%else
%define VARIABLE_OFFSET 16*2+8
%endif
align 16
mk_global FUNCTION_NAME, function
FUNCTION_NAME:
endbranch
not arg1
sub rsp, VARIABLE_OFFSET
%ifidn __OUTPUT_FORMAT__, win64
; push the xmm registers into the stack to maintain
vmovdqa [rsp + XMM_SAVE + 16*0], xmm6
vmovdqa [rsp + XMM_SAVE + 16*1], xmm7
vmovdqa [rsp + XMM_SAVE + 16*2], xmm8
vmovdqa [rsp + XMM_SAVE + 16*3], xmm9
vmovdqa [rsp + XMM_SAVE + 16*4], xmm10
vmovdqa [rsp + XMM_SAVE + 16*5], xmm11
vmovdqa [rsp + XMM_SAVE + 16*6], xmm12
vmovdqa [rsp + XMM_SAVE + 16*7], xmm13
vmovdqa [rsp + XMM_SAVE + 16*8], xmm14
vmovdqa [rsp + XMM_SAVE + 16*9], xmm15
%endif
vbroadcasti32x4 zmm18, [SHUF_MASK]
cmp arg3, 256
jl _less_than_256
; load the initial crc value
vmovq xmm10, arg1 ; initial crc
; crc value does not need to be byte-reflected, but it needs to be moved to the high part of the register.
; because data will be byte-reflected and will align with initial crc at correct place.
vpslldq xmm10, 8
; receive the initial 128B data, xor the initial crc value
vmovdqu8 zmm0, [arg2+16*0]
vmovdqu8 zmm4, [arg2+16*4]
vpshufb zmm0, zmm0, zmm18
vpshufb zmm4, zmm4, zmm18
vpxorq zmm0, zmm10
vbroadcasti32x4 zmm10, [rk3] ;zmm10 has rk3 and rk4
;imm value of pclmulqdq instruction will determine which constant to use
sub arg3, 256
cmp arg3, 256
jl _fold_128_B_loop
vmovdqu8 zmm7, [arg2+16*8]
vmovdqu8 zmm8, [arg2+16*12]
vpshufb zmm7, zmm7, zmm18
vpshufb zmm8, zmm8, zmm18
vbroadcasti32x4 zmm16, [rk_1] ;zmm16 has rk-1 and rk-2
sub arg3, 256
_fold_256_B_loop:
add arg2, 256
vmovdqu8 zmm3, [arg2+16*0]
vpshufb zmm3, zmm3, zmm18
vpclmulqdq zmm1, zmm0, zmm16, 0x00
vpclmulqdq zmm2, zmm0, zmm16, 0x11
vpxorq zmm0, zmm1, zmm2
vpxorq zmm0, zmm0, zmm3
vmovdqu8 zmm9, [arg2+16*4]
vpshufb zmm9, zmm9, zmm18
vpclmulqdq zmm5, zmm4, zmm16, 0x00
vpclmulqdq zmm6, zmm4, zmm16, 0x11
vpxorq zmm4, zmm5, zmm6
vpxorq zmm4, zmm4, zmm9
vmovdqu8 zmm11, [arg2+16*8]
vpshufb zmm11, zmm11, zmm18
vpclmulqdq zmm12, zmm7, zmm16, 0x00
vpclmulqdq zmm13, zmm7, zmm16, 0x11
vpxorq zmm7, zmm12, zmm13
vpxorq zmm7, zmm7, zmm11
vmovdqu8 zmm17, [arg2+16*12]
vpshufb zmm17, zmm17, zmm18
vpclmulqdq zmm14, zmm8, zmm16, 0x00
vpclmulqdq zmm15, zmm8, zmm16, 0x11
vpxorq zmm8, zmm14, zmm15
vpxorq zmm8, zmm8, zmm17
sub arg3, 256
jge _fold_256_B_loop
;; Fold 256 into 128
add arg2, 256
vpclmulqdq zmm1, zmm0, zmm10, 0x00
vpclmulqdq zmm2, zmm0, zmm10, 0x11
vpternlogq zmm7, zmm1, zmm2, 0x96 ; xor ABC
vpclmulqdq zmm5, zmm4, zmm10, 0x00
vpclmulqdq zmm6, zmm4, zmm10, 0x11
vpternlogq zmm8, zmm5, zmm6, 0x96 ; xor ABC
vmovdqa32 zmm0, zmm7
vmovdqa32 zmm4, zmm8
add arg3, 128
jmp _fold_128_B_register
; fold 128B at a time. This section of the code folds 2 zmm registers in parallel
_fold_128_B_loop:
add arg2, 128 ; update the buffer pointer
vmovdqu8 zmm8, [arg2+16*0]
vpshufb zmm8, zmm8, zmm18
vpclmulqdq zmm1, zmm0, zmm10, 0x00
vpclmulqdq zmm2, zmm0, zmm10, 0x11
vpxorq zmm0, zmm1, zmm2
vpxorq zmm0, zmm0, zmm8
vmovdqu8 zmm9, [arg2+16*4]
vpshufb zmm9, zmm9, zmm18
vpclmulqdq zmm5, zmm4, zmm10, 0x00
vpclmulqdq zmm6, zmm4, zmm10, 0x11
vpxorq zmm4, zmm5, zmm6
vpxorq zmm4, zmm4, zmm9
sub arg3, 128
jge _fold_128_B_loop
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
add arg2, 128
; at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
; the 128B of folded data is in 2 zmm registers: zmm0, zmm4
_fold_128_B_register:
; fold the 8 128b parts into 1 xmm register with different constants
vmovdqu8 zmm16, [rk9] ; multiply by rk9-rk16
vmovdqu8 zmm11, [rk17] ; multiply by rk17-rk20, rk1,rk2, 0,0
vpclmulqdq zmm1, zmm0, zmm16, 0x00
vpclmulqdq zmm2, zmm0, zmm16, 0x11
vextracti64x2 xmm7, zmm4, 3 ; save last that has no multiplicand
vpclmulqdq zmm5, zmm4, zmm11, 0x00
vpclmulqdq zmm6, zmm4, zmm11, 0x11
vmovdqa xmm10, [rk1] ; Needed later in reduction loop
vpternlogq zmm1, zmm2, zmm5, 0x96 ; xor ABC
vpternlogq zmm1, zmm6, zmm7, 0x96 ; xor ABC
vshufi64x2 zmm8, zmm1, zmm1, 0x4e ; Swap 1,0,3,2 - 01 00 11 10
vpxorq ymm8, ymm8, ymm1
vextracti64x2 xmm5, ymm8, 1
vpxorq xmm7, xmm5, xmm8
; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop
; instead of a cmp instruction, we use the negative flag with the jl instruction
add arg3, 128-16
jl _final_reduction_for_128
; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
; we can fold 16 bytes at a time if y>=16
; continue folding 16B at a time
_16B_reduction_loop:
vmovdqa xmm8, xmm7
vpclmulqdq xmm7, xmm10, 0x11
vpclmulqdq xmm8, xmm10, 0x00
vpxor xmm7, xmm8
vmovdqu xmm0, [arg2]
vpshufb xmm0, xmm0, xmm18
vpxor xmm7, xmm0
add arg2, 16
sub arg3, 16
; instead of a cmp instruction, we utilize the flags with the jge instruction
; equivalent of: cmp arg3, 16-16
; check if there is any more 16B in the buffer to be able to fold
jge _16B_reduction_loop
;now we have 16+z bytes left to reduce, where 0<= z < 16.
;first, we reduce the data in the xmm7 register
_final_reduction_for_128:
add arg3, 16
je _128_done
; here we are getting data that is less than 16 bytes.
; since we know that there was data before the pointer, we can offset
; the input pointer before the actual point, to receive exactly 16 bytes.
; after that the registers need to be adjusted.
_get_last_two_xmms:
vmovdqa xmm2, xmm7
vmovdqu xmm1, [arg2 - 16 + arg3]
vpshufb xmm1, xmm18
; get rid of the extra data that was loaded before
; load the shift constant
lea rax, [pshufb_shf_table + 16]
sub rax, arg3
vmovdqu xmm0, [rax]
; shift xmm2 to the left by arg3 bytes
vpshufb xmm2, xmm0
; shift xmm7 to the right by 16-arg3 bytes
vpxor xmm0, [mask1]
vpshufb xmm7, xmm0
vpblendvb xmm1, xmm1, xmm2, xmm0
; fold 16 Bytes
vmovdqa xmm2, xmm1
vmovdqa xmm8, xmm7
vpclmulqdq xmm7, xmm10, 0x11
vpclmulqdq xmm8, xmm10, 0x0
vpxor xmm7, xmm8
vpxor xmm7, xmm2
_128_done:
; compute crc of a 128-bit value
vmovdqa xmm10, [rk5]
vmovdqa xmm0, xmm7
;64b fold
vpclmulqdq xmm7, xmm10, 0x01 ; H*L
vpslldq xmm0, 8
vpxor xmm7, xmm0
;barrett reduction
_barrett:
vmovdqa xmm10, [rk7] ; rk7 and rk8 in xmm10
vmovdqa xmm0, xmm7
vmovdqa xmm1, xmm7
vpand xmm1, [mask3]
vpclmulqdq xmm7, xmm10, 0x01
vpxor xmm7, xmm1
vpclmulqdq xmm7, xmm10, 0x11
vpxor xmm7, xmm0
vpextrq rax, xmm7, 0
_cleanup:
not rax
%ifidn __OUTPUT_FORMAT__, win64
vmovdqa xmm6, [rsp + XMM_SAVE + 16*0]
vmovdqa xmm7, [rsp + XMM_SAVE + 16*1]
vmovdqa xmm8, [rsp + XMM_SAVE + 16*2]
vmovdqa xmm9, [rsp + XMM_SAVE + 16*3]
vmovdqa xmm10, [rsp + XMM_SAVE + 16*4]
vmovdqa xmm11, [rsp + XMM_SAVE + 16*5]
vmovdqa xmm12, [rsp + XMM_SAVE + 16*6]
vmovdqa xmm13, [rsp + XMM_SAVE + 16*7]
vmovdqa xmm14, [rsp + XMM_SAVE + 16*8]
vmovdqa xmm15, [rsp + XMM_SAVE + 16*9]
%endif
add rsp, VARIABLE_OFFSET
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 16
_less_than_256:
; check if there is enough buffer to be able to fold 16B at a time
cmp arg3, 32
jl _less_than_32
; if there is, load the constants
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
vmovq xmm0, arg1 ; get the initial crc value
vpslldq xmm0, 8 ; align it to its correct place
vmovdqu xmm7, [arg2] ; load the plaintext
vpshufb xmm7, xmm18 ; byte-reflect the plaintext
vpxor xmm7, xmm0
; update the buffer pointer
add arg2, 16
; update the counter. subtract 32 instead of 16 to save one instruction from the loop
sub arg3, 32
jmp _16B_reduction_loop
align 16
_less_than_32:
; mov initial crc to the return value. this is necessary for zero-length buffers.
mov rax, arg1
test arg3, arg3
je _cleanup
vmovq xmm0, arg1 ; get the initial crc value
vpslldq xmm0, 8 ; align it to its correct place
cmp arg3, 16
je _exact_16_left
jl _less_than_16_left
vmovdqu xmm7, [arg2] ; load the plaintext
vpshufb xmm7, xmm18 ; byte-reflect the plaintext
vpxor xmm7, xmm0 ; xor the initial crc value
add arg2, 16
sub arg3, 16
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
jmp _get_last_two_xmms
align 16
_less_than_16_left:
; use stack space to load data less than 16 bytes, zero-out the 16B in memory first.
vpxor xmm1, xmm1
mov r11, rsp
vmovdqa [r11], xmm1
; backup the counter value
mov r9, arg3
cmp arg3, 8
jl _less_than_8_left
; load 8 Bytes
mov rax, [arg2]
mov [r11], rax
add r11, 8
sub arg3, 8
add arg2, 8
_less_than_8_left:
cmp arg3, 4
jl _less_than_4_left
; load 4 Bytes
mov eax, [arg2]
mov [r11], eax
add r11, 4
sub arg3, 4
add arg2, 4
_less_than_4_left:
cmp arg3, 2
jl _less_than_2_left
; load 2 Bytes
mov ax, [arg2]
mov [r11], ax
add r11, 2
sub arg3, 2
add arg2, 2
_less_than_2_left:
cmp arg3, 1
jl _zero_left
; load 1 Byte
mov al, [arg2]
mov [r11], al
_zero_left:
vmovdqa xmm7, [rsp]
vpshufb xmm7, xmm18
vpxor xmm7, xmm0 ; xor the initial crc value
lea rax, [pshufb_shf_table + 16]
sub rax, r9
cmp r9, 8
jl _end_1to7
_end_8to15:
vmovdqu xmm0, [rax]
vpxor xmm0, [mask1]
vpshufb xmm7, xmm0
jmp _128_done
_end_1to7:
; Right shift (8-length) bytes in XMM
add rax, 8
vmovdqu xmm0, [rax]
vpshufb xmm7,xmm0
jmp _barrett
align 16
_exact_16_left:
vmovdqu xmm7, [arg2]
vpshufb xmm7, xmm18
vpxor xmm7, xmm0 ; xor the initial crc value
jmp _128_done
section .data
align 32
%ifndef USE_CONSTS
; precomputed constants
rk_1: dq 0x0000001a00000144
rk_2: dq 0x0000015e00001dac
rk1: dq 0x0000000000000145
rk2: dq 0x0000000000001db7
rk3: dq 0x000100000001001a
rk4: dq 0x001b0000001b015e
rk5: dq 0x0000000000000145
rk6: dq 0x0000000000000000
rk7: dq 0x000000000000001b
rk8: dq 0x000000000000001b
rk9: dq 0x0150145145145015
rk10: dq 0x1c71db6db6db71c7
rk11: dq 0x0001110110110111
rk12: dq 0x001aab1ab1ab1aab
rk13: dq 0x0000014445014445
rk14: dq 0x00001daab71daab7
rk15: dq 0x0000000101000101
rk16: dq 0x0000001b1b001b1b
rk17: dq 0x0000000001514515
rk18: dq 0x000000001c6db6c7
rk19: dq 0x0000000000011011
rk20: dq 0x00000000001ab1ab
rk_1b: dq 0x0000000000000145
rk_2b: dq 0x0000000000001db7
dq 0x0000000000000000
dq 0x0000000000000000
%else
INCLUDE_CONSTS
%endif
mask1: dq 0x8080808080808080, 0x8080808080808080
mask2: dq 0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFF
mask3: dq 0x0000000000000000, 0xFFFFFFFFFFFFFFFF
SHUF_MASK: dq 0x08090A0B0C0D0E0F, 0x0001020304050607
pshufb_shf_table:
; use these values for shift constants for the pshufb instruction
; different alignments result in values as shown:
; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7
; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8
; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9
; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10
; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11
; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12
; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13
; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14
; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
dq 0x0706050403020100, 0x0f0e0d0c0b0a0908
dq 0x8080808080808080, 0x0f0e0d0c0b0a0908
dq 0x8080808080808080, 0x8080808080808080
%else ; Assembler doesn't understand these opcodes. Add empty symbol for windows.
%ifidn __OUTPUT_FORMAT__, win64
global no_ %+ FUNCTION_NAME
no_ %+ FUNCTION_NAME %+ :
%endif
%endif ; (AS_FEATURE_LEVEL) >= 10