Files
isa-l/crc/crc32_iscsi_by8_02.asm
Maodi Ma 8c3badea9b crc: crc32_iscsi_by8_02 opt when data become 16 bytes or less
- Use CRC32 instruction to calculate:
    a. short data no more than 16 bytes;
    b. long data when folding until 16 bytes.
- Add fastpath for short data to make the procedure more efficient.

Signed-off-by: Maodi Ma <mamaodi@hygon.cn>
2025-11-24 13:16:06 +00:00

526 lines
15 KiB
NASM

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright(c) 2011-2025 Intel Corporation All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in
; the documentation and/or other materials provided with the
; distribution.
; * Neither the name of Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived
; from this software without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Function API:
; UINT32 crc32_iscsi_by8_02(
; const unsigned char *buf, //buffer pointer to calculate CRC on
; UINT64 len, //buffer length in bytes (64-bit data)
; UINT32 init_crc //initial CRC value, 32 bits
; );
;
; Authors:
; Erdinc Ozturk
; Vinodh Gopal
; James Guilford
;
; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
; URL: http://download.intel.com/design/intarch/papers/323102.pdf
;
;
; CRC-32 checksum is described in RFC 1952
; Implementing RFC 1952 CRC:
; http://www.ietf.org/rfc/rfc1952.txt
%include "reg_sizes.asm"
%ifndef fetch_dist
%define fetch_dist 4096
%endif
%ifndef PREFETCH
%define PREFETCH prefetcht1
%endif
[bits 64]
default rel
section .text
%ifidn __OUTPUT_FORMAT__, win64
%xdefine arg1 rcx
%xdefine arg2 rdx
%xdefine arg3 r8
%xdefine arg3_low32 r8d
%else
%xdefine arg1 rdi
%xdefine arg2 rsi
%xdefine arg3 rdx
%xdefine arg3_low32 edx
%endif
%define in_buf arg1
%define buf_len arg2
%define init_crc arg3_low32
%xdefine tmp r10
%xdefine tmp2 r11
%ifidn __OUTPUT_FORMAT__, win64
%define XMM_OFFSET 16*2
%define VARIABLE_OFFSET 16*10+8
%else
%define VARIABLE_OFFSET 16*2+8
%endif
align 16
mk_global crc32_iscsi_by8_02, function
crc32_iscsi_by8_02:
endbranch
sub rsp,VARIABLE_OFFSET
%ifidn __OUTPUT_FORMAT__, win64
; push the xmm registers into the stack to maintain
vmovdqa [rsp + XMM_OFFSET + 16*0], xmm6
vmovdqa [rsp + XMM_OFFSET + 16*1], xmm7
vmovdqa [rsp + XMM_OFFSET + 16*2], xmm8
vmovdqa [rsp + XMM_OFFSET + 16*3], xmm9
vmovdqa [rsp + XMM_OFFSET + 16*4], xmm10
vmovdqa [rsp + XMM_OFFSET + 16*5], xmm11
vmovdqa [rsp + XMM_OFFSET + 16*6], xmm12
vmovdqa [rsp + XMM_OFFSET + 16*7], xmm13
%endif
;; fastpath for short data
mov eax, init_crc
cmp buf_len, 4
jb _less_than_4
cmp buf_len, 8
jb _less_than_8
cmp buf_len, 16
jbe _no_more_than_16
; check if smaller than 256
cmp buf_len, 256
; for sizes less than 256, we can't fold 128B at a time...
jl _less_than_256
; load the initial crc value
vmovd xmm10, init_crc ; initial crc
; receive the initial 128B data, xor the initial crc value
vmovdqu xmm0, [in_buf+16*0]
vmovdqu xmm1, [in_buf+16*1]
vmovdqu xmm2, [in_buf+16*2]
vmovdqu xmm3, [in_buf+16*3]
vmovdqu xmm4, [in_buf+16*4]
vmovdqu xmm5, [in_buf+16*5]
vmovdqu xmm6, [in_buf+16*6]
vmovdqu xmm7, [in_buf+16*7]
; XOR the initial_crc value
vpxor xmm0, xmm10
vmovdqa xmm10, [rk3] ;xmm10 has rk3 and rk4
;imm value of pclmulqdq instruction will determine which constant to use
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; we subtract 256 instead of 128 to save one instruction from the loop
sub buf_len, 256
; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The _fold_128_B_loop
; loop will fold 128B at a time until we have 128+y Bytes of buffer
%if fetch_dist != 0
; check if there is at least 4kb (fetch distance) + 128b in the buffer
cmp buf_len, (fetch_dist + 128)
jb _fold_128_B_loop
; fold 128B at a time. This section of the code folds 8 xmm registers in parallel
align 16
_fold_and_prefetch_128_B_loop:
; update the buffer pointer
add in_buf, 128 ; buf += 128;
PREFETCH [in_buf+fetch_dist+0]
vmovdqu xmm9, [in_buf+16*0]
vmovdqu xmm12, [in_buf+16*1]
vpclmulqdq xmm8, xmm0, xmm10, 0x10
vpclmulqdq xmm0, xmm0, xmm10, 0x1
vpclmulqdq xmm13, xmm1, xmm10, 0x10
vpclmulqdq xmm1, xmm1, xmm10, 0x1
vpxor xmm0, xmm9
vpxor xmm0, xmm8
vpxor xmm1, xmm12
vpxor xmm1, xmm13
vmovdqu xmm9, [in_buf+16*2]
vmovdqu xmm12, [in_buf+16*3]
vpclmulqdq xmm8, xmm2, xmm10, 0x10
vpclmulqdq xmm2, xmm2, xmm10, 0x1
vpclmulqdq xmm13, xmm3, xmm10, 0x10
vpclmulqdq xmm3, xmm3, xmm10, 0x1
vpxor xmm2, xmm9
vpxor xmm2, xmm8
vpxor xmm3, xmm12
vpxor xmm3, xmm13
PREFETCH [in_buf+fetch_dist+64]
vmovdqu xmm9, [in_buf+16*4]
vmovdqu xmm12, [in_buf+16*5]
vpclmulqdq xmm8, xmm4, xmm10, 0x10
vpclmulqdq xmm4, xmm4, xmm10, 0x1
vpclmulqdq xmm13, xmm5, xmm10, 0x10
vpclmulqdq xmm5, xmm5, xmm10, 0x1
vpxor xmm4, xmm9
vpxor xmm4, xmm8
vpxor xmm5, xmm12
vpxor xmm5, xmm13
vmovdqu xmm9, [in_buf+16*6]
vmovdqu xmm12, [in_buf+16*7]
vmovdqa xmm8, xmm6
vmovdqa xmm13, xmm7
vpclmulqdq xmm6, xmm10, 0x10
vpclmulqdq xmm8, xmm10 , 0x1
vpclmulqdq xmm7, xmm10, 0x10
vpclmulqdq xmm13, xmm10 , 0x1
vpxor xmm6, xmm9
vxorps xmm6, xmm8
vpxor xmm7, xmm12
vxorps xmm7, xmm13
sub buf_len, 128
; check if there is another 4KB (fetch distance) + 128B in the buffer
cmp buf_len, (fetch_dist + 128)
jge _fold_and_prefetch_128_B_loop
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%endif ; fetch_dist != 0
align 16
_fold_128_B_loop:
; update the buffer pointer
add in_buf, 128 ; buf += 128;
vmovdqu xmm9, [in_buf+16*0]
vmovdqu xmm12, [in_buf+16*1]
vmovdqa xmm8, xmm0
vmovdqa xmm13, xmm1
vpclmulqdq xmm0, xmm10, 0x10
vpclmulqdq xmm8, xmm10 , 0x1
vpclmulqdq xmm1, xmm10, 0x10
vpclmulqdq xmm13, xmm10 , 0x1
vpxor xmm0, xmm9
vxorps xmm0, xmm8
vpxor xmm1, xmm12
vxorps xmm1, xmm13
vmovdqu xmm9, [in_buf+16*2]
vmovdqu xmm12, [in_buf+16*3]
vmovdqa xmm8, xmm2
vmovdqa xmm13, xmm3
vpclmulqdq xmm2, xmm10, 0x10
vpclmulqdq xmm8, xmm10 , 0x1
vpclmulqdq xmm3, xmm10, 0x10
vpclmulqdq xmm13, xmm10 , 0x1
vpxor xmm2, xmm9
vxorps xmm2, xmm8
vpxor xmm3, xmm12
vxorps xmm3, xmm13
vmovdqu xmm9, [in_buf+16*4]
vmovdqu xmm12, [in_buf+16*5]
vmovdqa xmm8, xmm4
vmovdqa xmm13, xmm5
vpclmulqdq xmm4, xmm10, 0x10
vpclmulqdq xmm8, xmm10 , 0x1
vpclmulqdq xmm5, xmm10, 0x10
vpclmulqdq xmm13, xmm10 , 0x1
vpxor xmm4, xmm9
vxorps xmm4, xmm8
vpxor xmm5, xmm12
vxorps xmm5, xmm13
vmovdqu xmm9, [in_buf+16*6]
vmovdqu xmm12, [in_buf+16*7]
vpclmulqdq xmm8, xmm6, xmm10, 0x10
vpclmulqdq xmm6, xmm6, xmm10, 0x1
vpclmulqdq xmm13, xmm7, xmm10, 0x10
vpclmulqdq xmm7, xmm7, xmm10, 0x1
vpxor xmm6, xmm9
vpxor xmm6, xmm8
vpxor xmm7, xmm12
vpxor xmm7, xmm13
sub buf_len, 128
; check if there is another 128B in the buffer to be able to fold
jge _fold_128_B_loop
add in_buf, 128
; at this point, the buffer pointer is pointing at the last y Bytes of the buffer
; the 128 of folded data is in 4 of the xmm registers: xmm0, xmm1, xmm2, xmm3
; fold the 8 xmm registers to 1 xmm register with different constants
vmovdqa xmm10, [rk9]
vpclmulqdq xmm8, xmm0, xmm10, 0x1
vpclmulqdq xmm0, xmm0, xmm10, 0x10
vpxor xmm7, xmm8
vpxor xmm7, xmm0
vmovdqa xmm10, [rk11]
vpclmulqdq xmm8, xmm1, xmm10, 0x1
vpclmulqdq xmm1, xmm1, xmm10, 0x10
vpxor xmm7, xmm8
vpxor xmm7, xmm1
vmovdqa xmm10, [rk13]
vpclmulqdq xmm8, xmm2, xmm10, 0x1
vpclmulqdq xmm2, xmm2, xmm10, 0x10
vpxor xmm7, xmm8
vpxor xmm7, xmm2
vmovdqa xmm10, [rk15]
vpclmulqdq xmm8, xmm3, xmm10, 0x1
vpclmulqdq xmm3, xmm3, xmm10, 0x10
vpxor xmm7, xmm8
vpxor xmm7, xmm3
vmovdqa xmm10, [rk17]
vpclmulqdq xmm8, xmm4, xmm10, 0x1
vpclmulqdq xmm4, xmm4, xmm10, 0x10
vpxor xmm7, xmm8
vpxor xmm7, xmm4
vmovdqa xmm10, [rk19]
vpclmulqdq xmm8, xmm5, xmm10, 0x1
vpclmulqdq xmm5, xmm5, xmm10, 0x10
vpxor xmm7, xmm8
vpxor xmm7, xmm5
vmovdqa xmm10, [rk1] ;xmm10 has rk1 and rk2
;imm value of pclmulqdq instruction will determine which constant to use
vpclmulqdq xmm8, xmm6, xmm10, 0x1
vpclmulqdq xmm6, xmm6, xmm10, 0x10
vpxor xmm7, xmm8
vpxor xmm7, xmm6
; instead of 128, we add 112 to the loop counter to save 1 instruction from the loop
; instead of a cmp instruction, we use the negative flag with the jl instruction
add buf_len, 128-16
jl _final_reduction_for_128
; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
; we can fold 16 bytes at a time if y>=16
; continue folding 16B at a time
_16B_reduction_loop:
vpclmulqdq xmm8, xmm7, xmm10, 0x1
vpclmulqdq xmm7, xmm7, xmm10, 0x10
vpxor xmm7, xmm8
vmovdqu xmm0, [in_buf]
vpxor xmm7, xmm0
add in_buf, 16
sub buf_len, 16
; instead of a cmp instruction, we utilize the flags with the jge instruction
; equivalent of: cmp buf_len, 16-16
; check if there is any more 16B in the buffer to be able to fold
jge _16B_reduction_loop
;now we have 16+z bytes left to reduce, where 0<= z < 16.
;first, we reduce the data in the xmm7 register
_final_reduction_for_128:
; check if any more data to fold. If not, compute the CRC of the final 128 bits
add buf_len, 16
je _128_done
; here we are getting data that is less than 16 bytes.
; since we know that there was data before the pointer, we can offset the input pointer before the actual point, to receive exactly 16 bytes.
; after that the registers need to be adjusted.
_get_last_two_xmms:
vmovdqa xmm2, xmm7
vmovdqu xmm1, [in_buf - 16 + buf_len]
; get rid of the extra data that was loaded before
; load the shift constant
lea rax, [pshufb_shf_table]
add rax, buf_len
vmovdqu xmm0, [rax]
vpshufb xmm7, xmm0
vpxor xmm0, [mask3]
vpshufb xmm2, xmm0
vpblendvb xmm2, xmm2, xmm1, xmm0
;;;;;;;;;;
vpclmulqdq xmm8, xmm7, xmm10, 0x1
vpclmulqdq xmm7, xmm7, xmm10, 0x10
vpxor xmm7, xmm8
vpxor xmm7, xmm2
_128_done:
; compute crc of a 128-bit value
; using CRC32Q can be easier than barrett reduction
vmovq tmp, xmm7
vpextrq tmp2, xmm7, 1
xor rax, rax
crc32 rax, tmp
crc32 rax, tmp2
_cleanup:
%ifidn __OUTPUT_FORMAT__, win64
vmovdqa xmm6, [rsp + XMM_OFFSET + 16*0]
vmovdqa xmm7, [rsp + XMM_OFFSET + 16*1]
vmovdqa xmm8, [rsp + XMM_OFFSET + 16*2]
vmovdqa xmm9, [rsp + XMM_OFFSET + 16*3]
vmovdqa xmm10, [rsp + XMM_OFFSET + 16*4]
vmovdqa xmm11, [rsp + XMM_OFFSET + 16*5]
vmovdqa xmm12, [rsp + XMM_OFFSET + 16*6]
vmovdqa xmm13, [rsp + XMM_OFFSET + 16*7]
%endif
add rsp,VARIABLE_OFFSET
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 16
_less_than_256:
; check if there is enough buffer to be able to fold 16B at a time
cmp buf_len, 32
jl _less_than_32
; if there is, load the constants
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
vmovd xmm0, init_crc ; get the initial crc value
vmovdqu xmm7, [in_buf] ; load the plaintext
vpxor xmm7, xmm0
; update the buffer pointer
add in_buf, 16
; update the counter. subtract 32 instead of 16 to save one instruction from the loop
sub buf_len, 32
jmp _16B_reduction_loop
align 16
_less_than_32:
; data length can't be less than 17 bytes. already dealt with these cases in fastpath.
; mov initial crc to the return value. this is necessary for zero-length buffers.
vmovd xmm0, init_crc ; get the initial crc value
vmovdqu xmm7, [in_buf] ; load the plaintext
vpxor xmm7, xmm0 ; xor the initial crc value
add in_buf, 16
sub buf_len, 16
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
jmp _get_last_two_xmms
; fastpath for short data
align 16
_no_more_than_16:
test buf_len, 16 ; check if exact 16 bytes
jz _less_than_16 ; no, do 8 bytes check
crc32 rax, qword[in_buf]
crc32 rax, qword[in_buf+8]
jmp _cleanup ; done
align 16
_less_than_16:
test buf_len, 8 ; check if 8 bytes remaining at least
jz _less_than_8 ; no, do 4 bytes check
crc32 rax, qword[in_buf] ; calculate 8 bytes anyway
add in_buf,8
_less_than_8:
test buf_len, 4 ; check if 4 bytes remaining at least
jz _less_than_4 ; no, do 2 bytes check
crc32 eax, dword[in_buf] ; calculate 4 bytes anyway
add in_buf, 4
_less_than_4:
test buf_len, 2 ; check if 2 bytes remaining at least
jz _less_than_2 ; no, do 1 byte check
crc32 eax, word[in_buf] ; calculate 2 bytes anyway
add in_buf,2
_less_than_2:
test buf_len,1 ; check if 1 byte remaining
jz _cleanup ; no, done
crc32 eax, byte[in_buf] ; calculate 1 byte
jmp _cleanup ; all done
section .data
; precomputed constants
align 16
rk1: dq 0x00000000493c7d27
rk2: dq 0x0000000ec1068c50
rk3: dq 0x0000000206e38d70
rk4: dq 0x000000006992cea2
rk5: dq 0x00000000493c7d27
rk6: dq 0x00000000dd45aab8
rk7: dq 0x00000000dea713f0
rk8: dq 0x0000000105ec76f0
rk9: dq 0x0000000047db8317
rk10: dq 0x000000002ad91c30
rk11: dq 0x000000000715ce53
rk12: dq 0x00000000c49f4f67
rk13: dq 0x0000000039d3b296
rk14: dq 0x00000000083a6eec
rk15: dq 0x000000009e4addf8
rk16: dq 0x00000000740eef02
rk17: dq 0x00000000ddc0152b
rk18: dq 0x000000001c291d04
rk19: dq 0x00000000ba4fc28e
rk20: dq 0x000000003da6d0cb
mask:
dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000
mask2:
dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF
mask3:
dq 0x8080808080808080, 0x8080808080808080
pshufb_shf_table:
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
dq 0x0706050403020100, 0x000e0d0c0b0a0908