;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Copyright(c) 2011-2020 Intel Corporation All rights reserved. ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions ; are met: ; * Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; * Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in ; the documentation and/or other materials provided with the ; distribution. ; * Neither the name of Intel Corporation nor the names of its ; contributors may be used to endorse or promote products derived ; from this software without specific prior written permission. ; ; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Function API: ; UINT32 crc32_ieee_02( ; UINT32 init_crc, //initial CRC value, 32 bits ; const unsigned char *buf, //buffer pointer to calculate CRC on ; UINT64 len //buffer length in bytes (64-bit data) ; ); ; ; Authors: ; Erdinc Ozturk ; Vinodh Gopal ; James Guilford ; ; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction" ; URL: http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf %include "reg_sizes.asm" %define fetch_dist 1024 [bits 64] default rel section .text %ifidn __OUTPUT_FORMAT__, win64 %xdefine arg1 rcx %xdefine arg2 rdx %xdefine arg3 r8 %xdefine arg1_low32 ecx %else %xdefine arg1 rdi %xdefine arg2 rsi %xdefine arg3 rdx %xdefine arg1_low32 edi %endif %define TMP 16*0 %ifidn __OUTPUT_FORMAT__, win64 %define XMM_SAVE 16*2 %define VARIABLE_OFFSET 16*10+8 %else %define VARIABLE_OFFSET 16*2+8 %endif align 16 mk_global crc32_ieee_02, function crc32_ieee_02: not arg1_low32 ;~init_crc sub rsp,VARIABLE_OFFSET %ifidn __OUTPUT_FORMAT__, win64 ; push the xmm registers into the stack to maintain vmovdqa [rsp + XMM_SAVE + 16*0], xmm6 vmovdqa [rsp + XMM_SAVE + 16*1], xmm7 vmovdqa [rsp + XMM_SAVE + 16*2], xmm8 vmovdqa [rsp + XMM_SAVE + 16*3], xmm9 vmovdqa [rsp + XMM_SAVE + 16*4], xmm10 vmovdqa [rsp + XMM_SAVE + 16*5], xmm11 vmovdqa [rsp + XMM_SAVE + 16*6], xmm12 vmovdqa [rsp + XMM_SAVE + 16*7], xmm13 %endif ; check if smaller than 256 cmp arg3, 256 ; for sizes less than 256, we can't fold 128B at a time... jl _less_than_256 ; load the initial crc value vmovd xmm10, arg1_low32 ; initial crc ; crc value does not need to be byte-reflected, but it needs to be moved to the high part of the register. ; because data will be byte-reflected and will align with initial crc at correct place. vpslldq xmm10, 12 vmovdqa xmm11, [SHUF_MASK] ; receive the initial 128B data, xor the initial crc value vmovdqu xmm0, [arg2+16*0] vmovdqu xmm1, [arg2+16*1] vmovdqu xmm2, [arg2+16*2] vmovdqu xmm3, [arg2+16*3] vmovdqu xmm4, [arg2+16*4] vmovdqu xmm5, [arg2+16*5] vmovdqu xmm6, [arg2+16*6] vmovdqu xmm7, [arg2+16*7] vpshufb xmm0, xmm11 ; XOR the initial_crc value vpxor xmm0, xmm10 vpshufb xmm1, xmm11 vpshufb xmm2, xmm11 vpshufb xmm3, xmm11 vpshufb xmm4, xmm11 vpshufb xmm5, xmm11 vpshufb xmm6, xmm11 vpshufb xmm7, xmm11 vmovdqa xmm10, [rk3] ;xmm10 has rk3 and rk4 ;imm value of pclmulqdq instruction will determine which constant to use ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; we subtract 256 instead of 128 to save one instruction from the loop sub arg3, 256 ; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The _fold_128_B_loop ; loop will fold 128B at a time until we have 128+y Bytes of buffer ; fold 128B at a time. This section of the code folds 8 xmm registers in parallel _fold_128_B_loop: ; update the buffer pointer add arg2, 128 ; buf += 128; prefetchnta [arg2+fetch_dist+0] vmovdqu xmm9, [arg2+16*0] vmovdqu xmm12, [arg2+16*1] vpshufb xmm9, xmm11 vpshufb xmm12, xmm11 vmovdqa xmm8, xmm0 vmovdqa xmm13, xmm1 vpclmulqdq xmm0, xmm10, 0x0 vpclmulqdq xmm8, xmm10 , 0x11 vpclmulqdq xmm1, xmm10, 0x0 vpclmulqdq xmm13, xmm10 , 0x11 vpxor xmm0, xmm9 vxorps xmm0, xmm8 vpxor xmm1, xmm12 vxorps xmm1, xmm13 prefetchnta [arg2+fetch_dist+32] vmovdqu xmm9, [arg2+16*2] vmovdqu xmm12, [arg2+16*3] vpshufb xmm9, xmm11 vpshufb xmm12, xmm11 vmovdqa xmm8, xmm2 vmovdqa xmm13, xmm3 vpclmulqdq xmm2, xmm10, 0x0 vpclmulqdq xmm8, xmm10 , 0x11 vpclmulqdq xmm3, xmm10, 0x0 vpclmulqdq xmm13, xmm10 , 0x11 vpxor xmm2, xmm9 vxorps xmm2, xmm8 vpxor xmm3, xmm12 vxorps xmm3, xmm13 prefetchnta [arg2+fetch_dist+64] vmovdqu xmm9, [arg2+16*4] vmovdqu xmm12, [arg2+16*5] vpshufb xmm9, xmm11 vpshufb xmm12, xmm11 vmovdqa xmm8, xmm4 vmovdqa xmm13, xmm5 vpclmulqdq xmm4, xmm10, 0x0 vpclmulqdq xmm8, xmm10 , 0x11 vpclmulqdq xmm5, xmm10, 0x0 vpclmulqdq xmm13, xmm10 , 0x11 vpxor xmm4, xmm9 vxorps xmm4, xmm8 vpxor xmm5, xmm12 vxorps xmm5, xmm13 prefetchnta [arg2+fetch_dist+96] vmovdqu xmm9, [arg2+16*6] vmovdqu xmm12, [arg2+16*7] vpshufb xmm9, xmm11 vpshufb xmm12, xmm11 vmovdqa xmm8, xmm6 vmovdqa xmm13, xmm7 vpclmulqdq xmm6, xmm10, 0x0 vpclmulqdq xmm8, xmm10 , 0x11 vpclmulqdq xmm7, xmm10, 0x0 vpclmulqdq xmm13, xmm10 , 0x11 vpxor xmm6, xmm9 vxorps xmm6, xmm8 vpxor xmm7, xmm12 vxorps xmm7, xmm13 sub arg3, 128 ; check if there is another 128B in the buffer to be able to fold jge _fold_128_B_loop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; add arg2, 128 ; at this point, the buffer pointer is pointing at the last y Bytes of the buffer ; the 128 of folded data is in 4 of the xmm registers: xmm0, xmm1, xmm2, xmm3 ; fold the 8 xmm registers to 1 xmm register with different constants vmovdqa xmm10, [rk9] vmovdqa xmm8, xmm0 vpclmulqdq xmm0, xmm10, 0x11 vpclmulqdq xmm8, xmm10, 0x0 vpxor xmm7, xmm8 vxorps xmm7, xmm0 vmovdqa xmm10, [rk11] vmovdqa xmm8, xmm1 vpclmulqdq xmm1, xmm10, 0x11 vpclmulqdq xmm8, xmm10, 0x0 vpxor xmm7, xmm8 vxorps xmm7, xmm1 vmovdqa xmm10, [rk13] vmovdqa xmm8, xmm2 vpclmulqdq xmm2, xmm10, 0x11 vpclmulqdq xmm8, xmm10, 0x0 vpxor xmm7, xmm8 vpxor xmm7, xmm2 vmovdqa xmm10, [rk15] vmovdqa xmm8, xmm3 vpclmulqdq xmm3, xmm10, 0x11 vpclmulqdq xmm8, xmm10, 0x0 vpxor xmm7, xmm8 vxorps xmm7, xmm3 vmovdqa xmm10, [rk17] vmovdqa xmm8, xmm4 vpclmulqdq xmm4, xmm10, 0x11 vpclmulqdq xmm8, xmm10, 0x0 vpxor xmm7, xmm8 vpxor xmm7, xmm4 vmovdqa xmm10, [rk19] vmovdqa xmm8, xmm5 vpclmulqdq xmm5, xmm10, 0x11 vpclmulqdq xmm8, xmm10, 0x0 vpxor xmm7, xmm8 vxorps xmm7, xmm5 vmovdqa xmm10, [rk1] ;xmm10 has rk1 and rk2 ;imm value of pclmulqdq instruction will determine which constant to use vmovdqa xmm8, xmm6 vpclmulqdq xmm6, xmm10, 0x11 vpclmulqdq xmm8, xmm10, 0x0 vpxor xmm7, xmm8 vpxor xmm7, xmm6 ; instead of 128, we add 112 to the loop counter to save 1 instruction from the loop ; instead of a cmp instruction, we use the negative flag with the jl instruction add arg3, 128-16 jl _final_reduction_for_128 ; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory ; we can fold 16 bytes at a time if y>=16 ; continue folding 16B at a time _16B_reduction_loop: vmovdqa xmm8, xmm7 vpclmulqdq xmm7, xmm10, 0x11 vpclmulqdq xmm8, xmm10, 0x0 vpxor xmm7, xmm8 vmovdqu xmm0, [arg2] vpshufb xmm0, xmm11 vpxor xmm7, xmm0 add arg2, 16 sub arg3, 16 ; instead of a cmp instruction, we utilize the flags with the jge instruction ; equivalent of: cmp arg3, 16-16 ; check if there is any more 16B in the buffer to be able to fold jge _16B_reduction_loop ;now we have 16+z bytes left to reduce, where 0<= z < 16. ;first, we reduce the data in the xmm7 register _final_reduction_for_128: ; check if any more data to fold. If not, compute the CRC of the final 128 bits add arg3, 16 je _128_done ; here we are getting data that is less than 16 bytes. ; since we know that there was data before the pointer, we can offset the input pointer before the actual point, to receive exactly 16 bytes. ; after that the registers need to be adjusted. _get_last_two_xmms: vmovdqa xmm2, xmm7 vmovdqu xmm1, [arg2 - 16 + arg3] vpshufb xmm1, xmm11 ; get rid of the extra data that was loaded before ; load the shift constant lea rax, [pshufb_shf_table + 16] sub rax, arg3 vmovdqu xmm0, [rax] ; shift xmm2 to the left by arg3 bytes vpshufb xmm2, xmm0 ; shift xmm7 to the right by 16-arg3 bytes vpxor xmm0, [mask1] vpshufb xmm7, xmm0 vpblendvb xmm1, xmm1, xmm2, xmm0 ; fold 16 Bytes vmovdqa xmm2, xmm1 vmovdqa xmm8, xmm7 vpclmulqdq xmm7, xmm10, 0x11 vpclmulqdq xmm8, xmm10, 0x0 vpxor xmm7, xmm8 vpxor xmm7, xmm2 _128_done: ; compute crc of a 128-bit value vmovdqa xmm10, [rk5] ; rk5 and rk6 in xmm10 vmovdqa xmm0, xmm7 ;64b fold vpclmulqdq xmm7, xmm10, 0x1 vpslldq xmm0, 8 vpxor xmm7, xmm0 ;32b fold vmovdqa xmm0, xmm7 vpand xmm0, [mask2] vpsrldq xmm7, 12 vpclmulqdq xmm7, xmm10, 0x10 vpxor xmm7, xmm0 ;barrett reduction _barrett: vmovdqa xmm10, [rk7] ; rk7 and rk8 in xmm10 vmovdqa xmm0, xmm7 vpclmulqdq xmm7, xmm10, 0x01 vpslldq xmm7, 4 vpclmulqdq xmm7, xmm10, 0x11 vpslldq xmm7, 4 vpxor xmm7, xmm0 vpextrd eax, xmm7,1 _cleanup: not eax %ifidn __OUTPUT_FORMAT__, win64 vmovdqa xmm6, [rsp + XMM_SAVE + 16*0] vmovdqa xmm7, [rsp + XMM_SAVE + 16*1] vmovdqa xmm8, [rsp + XMM_SAVE + 16*2] vmovdqa xmm9, [rsp + XMM_SAVE + 16*3] vmovdqa xmm10, [rsp + XMM_SAVE + 16*4] vmovdqa xmm11, [rsp + XMM_SAVE + 16*5] vmovdqa xmm12, [rsp + XMM_SAVE + 16*6] vmovdqa xmm13, [rsp + XMM_SAVE + 16*7] %endif add rsp,VARIABLE_OFFSET ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; align 16 _less_than_256: ; check if there is enough buffer to be able to fold 16B at a time cmp arg3, 32 jl _less_than_32 vmovdqa xmm11, [SHUF_MASK] ; if there is, load the constants vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10 vmovd xmm0, arg1_low32 ; get the initial crc value vpslldq xmm0, 12 ; align it to its correct place vmovdqu xmm7, [arg2] ; load the plaintext vpshufb xmm7, xmm11 ; byte-reflect the plaintext vpxor xmm7, xmm0 ; update the buffer pointer add arg2, 16 ; update the counter. subtract 32 instead of 16 to save one instruction from the loop sub arg3, 32 jmp _16B_reduction_loop align 16 _less_than_32: ; mov initial crc to the return value. this is necessary for zero-length buffers. mov eax, arg1_low32 test arg3, arg3 je _cleanup vmovdqa xmm11, [SHUF_MASK] vmovd xmm0, arg1_low32 ; get the initial crc value vpslldq xmm0, 12 ; align it to its correct place cmp arg3, 16 je _exact_16_left jl _less_than_16_left vmovdqu xmm7, [arg2] ; load the plaintext vpshufb xmm7, xmm11 ; byte-reflect the plaintext vpxor xmm7, xmm0 ; xor the initial crc value add arg2, 16 sub arg3, 16 vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10 jmp _get_last_two_xmms align 16 _less_than_16_left: ; use stack space to load data less than 16 bytes, zero-out the 16B in memory first. vpxor xmm1, xmm1 mov r11, rsp vmovdqa [r11], xmm1 cmp arg3, 4 jl _only_less_than_4 ; backup the counter value mov r9, arg3 cmp arg3, 8 jl _less_than_8_left ; load 8 Bytes mov rax, [arg2] mov [r11], rax add r11, 8 sub arg3, 8 add arg2, 8 _less_than_8_left: cmp arg3, 4 jl _less_than_4_left ; load 4 Bytes mov eax, [arg2] mov [r11], eax add r11, 4 sub arg3, 4 add arg2, 4 _less_than_4_left: cmp arg3, 2 jl _less_than_2_left ; load 2 Bytes mov ax, [arg2] mov [r11], ax add r11, 2 sub arg3, 2 add arg2, 2 _less_than_2_left: cmp arg3, 1 jl _zero_left ; load 1 Byte mov al, [arg2] mov [r11], al _zero_left: vmovdqa xmm7, [rsp] vpshufb xmm7, xmm11 vpxor xmm7, xmm0 ; xor the initial crc value ; shl r9, 4 lea rax, [pshufb_shf_table + 16] sub rax, r9 vmovdqu xmm0, [rax] vpxor xmm0, [mask1] vpshufb xmm7, xmm0 jmp _128_done align 16 _exact_16_left: vmovdqu xmm7, [arg2] vpshufb xmm7, xmm11 vpxor xmm7, xmm0 ; xor the initial crc value jmp _128_done _only_less_than_4: cmp arg3, 3 jl _only_less_than_3 ; load 3 Bytes mov al, [arg2] mov [r11], al mov al, [arg2+1] mov [r11+1], al mov al, [arg2+2] mov [r11+2], al vmovdqa xmm7, [rsp] vpshufb xmm7, xmm11 vpxor xmm7, xmm0 ; xor the initial crc value vpsrldq xmm7, 5 jmp _barrett _only_less_than_3: cmp arg3, 2 jl _only_less_than_2 ; load 2 Bytes mov al, [arg2] mov [r11], al mov al, [arg2+1] mov [r11+1], al vmovdqa xmm7, [rsp] vpshufb xmm7, xmm11 vpxor xmm7, xmm0 ; xor the initial crc value vpsrldq xmm7, 6 jmp _barrett _only_less_than_2: ; load 1 Byte mov al, [arg2] mov [r11], al vmovdqa xmm7, [rsp] vpshufb xmm7, xmm11 vpxor xmm7, xmm0 ; xor the initial crc value vpsrldq xmm7, 7 jmp _barrett section .data ; precomputed constants align 16 rk1 : DQ 0xf200aa6600000000 rk2 : DQ 0x17d3315d00000000 rk3 : DQ 0x022ffca500000000 rk4 : DQ 0x9d9ee22f00000000 rk5 : DQ 0xf200aa6600000000 rk6 : DQ 0x490d678d00000000 rk7 : DQ 0x0000000104d101df rk8 : DQ 0x0000000104c11db7 rk9 : DQ 0x6ac7e7d700000000 rk10 : DQ 0xfcd922af00000000 rk11 : DQ 0x34e45a6300000000 rk12 : DQ 0x8762c1f600000000 rk13 : DQ 0x5395a0ea00000000 rk14 : DQ 0x54f2d5c700000000 rk15 : DQ 0xd3504ec700000000 rk16 : DQ 0x57a8445500000000 rk17 : DQ 0xc053585d00000000 rk18 : DQ 0x766f1b7800000000 rk19 : DQ 0xcd8c54b500000000 rk20 : DQ 0xab40b71e00000000 mask1: dq 0x8080808080808080, 0x8080808080808080 mask2: dq 0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFF SHUF_MASK: dq 0x08090A0B0C0D0E0F, 0x0001020304050607 pshufb_shf_table: ; use these values for shift constants for the pshufb instruction ; different alignments result in values as shown: ; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1 ; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2 ; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3 ; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4 ; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5 ; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6 ; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7 ; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8 ; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9 ; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10 ; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11 ; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12 ; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13 ; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14 ; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15 dq 0x8786858483828100, 0x8f8e8d8c8b8a8988 dq 0x0706050403020100, 0x000e0d0c0b0a0908