;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Copyright(c) 2011-2020 Intel Corporation All rights reserved. ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions ; are met: ; * Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; * Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in ; the documentation and/or other materials provided with the ; distribution. ; * Neither the name of Intel Corporation nor the names of its ; contributors may be used to endorse or promote products derived ; from this software without specific prior written permission. ; ; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Function API: ; UINT32 crc32_gzip_refl_by8_02( ; UINT32 init_crc, //initial CRC value, 32 bits ; const unsigned char *buf, //buffer pointer to calculate CRC on ; UINT64 len //buffer length in bytes (64-bit data) ; ); ; ; Authors: ; Erdinc Ozturk ; Vinodh Gopal ; James Guilford ; ; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction" ; URL: http://download.intel.com/design/intarch/papers/323102.pdf ; ; ; sample yasm command line: ; yasm -f x64 -f elf64 -X gnu -g dwarf2 crc32_gzip_refl_by8 ; ; As explained here: ; http://docs.oracle.com/javase/7/docs/api/java/util/zip/package-summary.html ; CRC-32 checksum is described in RFC 1952 ; Implementing RFC 1952 CRC: ; http://www.ietf.org/rfc/rfc1952.txt %include "reg_sizes.asm" %define fetch_dist 1024 [bits 64] default rel section .text %ifidn __OUTPUT_FORMAT__, win64 %xdefine arg1 rcx %xdefine arg2 rdx %xdefine arg3 r8 %xdefine arg1_low32 ecx %else %xdefine arg1 rdi %xdefine arg2 rsi %xdefine arg3 rdx %xdefine arg1_low32 edi %endif %define TMP 16*0 %ifidn __OUTPUT_FORMAT__, win64 %define XMM_SAVE 16*2 %define VARIABLE_OFFSET 16*10+8 %else %define VARIABLE_OFFSET 16*2+8 %endif align 16 mk_global crc32_gzip_refl_by8_02, function crc32_gzip_refl_by8_02: endbranch not arg1_low32 sub rsp, VARIABLE_OFFSET %ifidn __OUTPUT_FORMAT__, win64 ; push the xmm registers into the stack to maintain vmovdqa [rsp + XMM_SAVE + 16*0], xmm6 vmovdqa [rsp + XMM_SAVE + 16*1], xmm7 vmovdqa [rsp + XMM_SAVE + 16*2], xmm8 vmovdqa [rsp + XMM_SAVE + 16*3], xmm9 vmovdqa [rsp + XMM_SAVE + 16*4], xmm10 vmovdqa [rsp + XMM_SAVE + 16*5], xmm11 vmovdqa [rsp + XMM_SAVE + 16*6], xmm12 vmovdqa [rsp + XMM_SAVE + 16*7], xmm13 %endif ; check if smaller than 256B cmp arg3, 256 jl .less_than_256 ; load the initial crc value vmovd xmm10, arg1_low32 ; initial crc ; receive the initial 64B data, xor the initial crc value vmovdqu xmm0, [arg2+16*0] vmovdqu xmm1, [arg2+16*1] vmovdqu xmm2, [arg2+16*2] vmovdqu xmm3, [arg2+16*3] vmovdqu xmm4, [arg2+16*4] vmovdqu xmm5, [arg2+16*5] vmovdqu xmm6, [arg2+16*6] vmovdqu xmm7, [arg2+16*7] ; XOR the initial_crc value vpxor xmm0, xmm10 vmovdqa xmm10, [rk3] ;xmm10 has rk3 and rk4 ;imm value of pclmulqdq instruction will determine which constant to use ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; we subtract 256 instead of 128 to save one instruction from the loop sub arg3, 256 ; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The fold_128_B_loop ; loop will fold 128B at a time until we have 128+y Bytes of buffer ; fold 128B at a time. This section of the code folds 8 xmm registers in parallel .fold_128_B_loop: add arg2, 128 prefetchnta [arg2+fetch_dist+0] vmovdqu xmm9, [arg2+16*0] vmovdqu xmm12, [arg2+16*1] vpclmulqdq xmm8, xmm0, xmm10, 0x10 vpclmulqdq xmm0, xmm0, xmm10 , 0x1 vpclmulqdq xmm13, xmm1, xmm10, 0x10 vpclmulqdq xmm1, xmm1, xmm10 , 0x1 vpxor xmm0, xmm9 vxorps xmm0, xmm8 vpxor xmm1, xmm12 vxorps xmm1, xmm13 prefetchnta [arg2+fetch_dist+32] vmovdqu xmm9, [arg2+16*2] vmovdqu xmm12, [arg2+16*3] vpclmulqdq xmm8, xmm2, xmm10, 0x10 vpclmulqdq xmm2, xmm2, xmm10 , 0x1 vpclmulqdq xmm13, xmm3, xmm10, 0x10 vpclmulqdq xmm3, xmm3, xmm10 , 0x1 vpxor xmm2, xmm9 vxorps xmm2, xmm8 vpxor xmm3, xmm12 vxorps xmm3, xmm13 prefetchnta [arg2+fetch_dist+64] vmovdqu xmm9, [arg2+16*4] vmovdqu xmm12, [arg2+16*5] vpclmulqdq xmm8, xmm4, xmm10, 0x10 vpclmulqdq xmm4, xmm4, xmm10 , 0x1 vpclmulqdq xmm13, xmm5, xmm10, 0x10 vpclmulqdq xmm5, xmm5, xmm10 , 0x1 vpxor xmm4, xmm9 vxorps xmm4, xmm8 vpxor xmm5, xmm12 vxorps xmm5, xmm13 prefetchnta [arg2+fetch_dist+96] vmovdqu xmm9, [arg2+16*6] vmovdqu xmm12, [arg2+16*7] vpclmulqdq xmm8, xmm6, xmm10, 0x10 vpclmulqdq xmm6, xmm6, xmm10 , 0x1 vpclmulqdq xmm13, xmm7, xmm10, 0x10 vpclmulqdq xmm7, xmm7, xmm10 , 0x1 vpxor xmm6, xmm9 vxorps xmm6, xmm8 vpxor xmm7, xmm12 vxorps xmm7, xmm13 sub arg3, 128 jge .fold_128_B_loop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; add arg2, 128 ; at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 ; the 128B of folded data is in 8 of the xmm registers: xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 ; fold the 8 xmm registers to 1 xmm register with different constants vmovdqa xmm10, [rk9] vpclmulqdq xmm8, xmm0, xmm10, 0x1 vpclmulqdq xmm0, xmm0, xmm10, 0x10 vpxor xmm7, xmm8 vxorps xmm7, xmm0 vmovdqa xmm10, [rk11] vpclmulqdq xmm8, xmm1, xmm10, 0x1 vpclmulqdq xmm1, xmm1, xmm10, 0x10 vpxor xmm7, xmm8 vxorps xmm7, xmm1 vmovdqa xmm10, [rk13] vpclmulqdq xmm8, xmm2, xmm10, 0x1 vpclmulqdq xmm2, xmm2, xmm10, 0x10 vpxor xmm7, xmm8 vpxor xmm7, xmm2 vmovdqa xmm10, [rk15] vpclmulqdq xmm8, xmm3, xmm10, 0x1 vpclmulqdq xmm3, xmm3, xmm10, 0x10 vpxor xmm7, xmm8 vxorps xmm7, xmm3 vmovdqa xmm10, [rk17] vpclmulqdq xmm8, xmm4, xmm10, 0x1 vpclmulqdq xmm4, xmm4, xmm10, 0x10 vpxor xmm7, xmm8 vpxor xmm7, xmm4 vmovdqa xmm10, [rk19] vpclmulqdq xmm8, xmm5, xmm10, 0x1 vpclmulqdq xmm5, xmm5, xmm10, 0x10 vpxor xmm7, xmm8 vxorps xmm7, xmm5 vmovdqa xmm10, [rk1] vpclmulqdq xmm8, xmm6, xmm10, 0x1 vpclmulqdq xmm6, xmm6, xmm10, 0x10 vpxor xmm7, xmm8 vpxor xmm7, xmm6 ; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop ; instead of a cmp instruction, we use the negative flag with the jl instruction add arg3, 128-16 jl .final_reduction_for_128 ; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory ; we can fold 16 bytes at a time if y>=16 ; continue folding 16B at a time .16B_reduction_loop: vpclmulqdq xmm8, xmm7, xmm10, 0x1 vpclmulqdq xmm7, xmm7, xmm10, 0x10 vpxor xmm7, xmm8 vmovdqu xmm0, [arg2] vpxor xmm7, xmm0 add arg2, 16 sub arg3, 16 ; instead of a cmp instruction, we utilize the flags with the jge instruction ; equivalent of: cmp arg3, 16-16 ; check if there is any more 16B in the buffer to be able to fold jge .16B_reduction_loop ;now we have 16+z bytes left to reduce, where 0<= z < 16. ;first, we reduce the data in the xmm7 register .final_reduction_for_128: add arg3, 16 je .128_done ; here we are getting data that is less than 16 bytes. ; since we know that there was data before the pointer, we can offset ; the input pointer before the actual point, to receive exactly 16 bytes. ; after that the registers need to be adjusted. .get_last_two_xmms: vmovdqa xmm2, xmm7 vmovdqu xmm1, [arg2 - 16 + arg3] ; get rid of the extra data that was loaded before ; load the shift constant lea rax, [pshufb_shf_table] add rax, arg3 vmovdqu xmm0, [rax] vpshufb xmm7, xmm0 vpxor xmm0, [mask3] vpshufb xmm2, xmm0 vpblendvb xmm2, xmm2, xmm1, xmm0 ;;;;;;;;;; vpclmulqdq xmm8, xmm7, xmm10, 0x1 vpclmulqdq xmm7, xmm7, xmm10, 0x10 vpxor xmm7, xmm8 vpxor xmm7, xmm2 .128_done: ; compute crc of a 128-bit value vmovdqa xmm10, [rk5] vmovdqa xmm0, xmm7 ;64b fold vpclmulqdq xmm7, xmm10, 0 vpsrldq xmm0, 8 vpxor xmm7, xmm0 ;32b fold vmovdqa xmm0, xmm7 vpslldq xmm7, 4 vpclmulqdq xmm7, xmm10, 0x10 vpxor xmm7, xmm0 ;barrett reduction .barrett: vpand xmm7, [mask2] vmovdqa xmm1, xmm7 vmovdqa xmm2, xmm7 vmovdqa xmm10, [rk7] vpclmulqdq xmm7, xmm10, 0 vpxor xmm7, xmm2 vpand xmm7, [mask] vmovdqa xmm2, xmm7 vpclmulqdq xmm7, xmm10, 0x10 vpxor xmm7, xmm2 vpxor xmm7, xmm1 vpextrd eax, xmm7, 2 .cleanup: not eax %ifidn __OUTPUT_FORMAT__, win64 vmovdqa xmm6, [rsp + XMM_SAVE + 16*0] vmovdqa xmm7, [rsp + XMM_SAVE + 16*1] vmovdqa xmm8, [rsp + XMM_SAVE + 16*2] vmovdqa xmm9, [rsp + XMM_SAVE + 16*3] vmovdqa xmm10, [rsp + XMM_SAVE + 16*4] vmovdqa xmm11, [rsp + XMM_SAVE + 16*5] vmovdqa xmm12, [rsp + XMM_SAVE + 16*6] vmovdqa xmm13, [rsp + XMM_SAVE + 16*7] %endif add rsp, VARIABLE_OFFSET ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; align 16 .less_than_256: ; check if there is enough buffer to be able to fold 16B at a time cmp arg3, 32 jl .less_than_32 ; if there is, load the constants vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10 vmovd xmm0, arg1_low32 ; get the initial crc value vmovdqu xmm7, [arg2] ; load the plaintext vpxor xmm7, xmm0 ; update the buffer pointer add arg2, 16 ; update the counter. subtract 32 instead of 16 to save one instruction from the loop sub arg3, 32 jmp .16B_reduction_loop align 16 .less_than_32: ; mov initial crc to the return value. this is necessary for zero-length buffers. mov eax, arg1_low32 test arg3, arg3 je .cleanup vmovd xmm0, arg1_low32 ; get the initial crc value cmp arg3, 16 je .exact_16_left jl .less_than_16_left vmovdqu xmm7, [arg2] ; load the plaintext vpxor xmm7, xmm0 ; xor the initial crc value add arg2, 16 sub arg3, 16 vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10 jmp .get_last_two_xmms align 16 .less_than_16_left: ; use stack space to load data less than 16 bytes, zero-out the 16B in memory first. vpxor xmm1, xmm1 mov r11, rsp vmovdqa [r11], xmm1 cmp arg3, 4 jl .only_less_than_4 ; backup the counter value mov r9, arg3 cmp arg3, 8 jl .less_than_8_left ; load 8 Bytes mov rax, [arg2] mov [r11], rax add r11, 8 sub arg3, 8 add arg2, 8 .less_than_8_left: cmp arg3, 4 jl .less_than_4_left ; load 4 Bytes mov eax, [arg2] mov [r11], eax add r11, 4 sub arg3, 4 add arg2, 4 .less_than_4_left: cmp arg3, 2 jl .less_than_2_left ; load 2 Bytes mov ax, [arg2] mov [r11], ax add r11, 2 sub arg3, 2 add arg2, 2 .less_than_2_left: cmp arg3, 1 jl .zero_left ; load 1 Byte mov al, [arg2] mov [r11], al .zero_left: vmovdqa xmm7, [rsp] vpxor xmm7, xmm0 ; xor the initial crc value lea rax,[pshufb_shf_table] vmovdqu xmm0, [rax + r9] vpshufb xmm7,xmm0 jmp .128_done align 16 .exact_16_left: vmovdqu xmm7, [arg2] vpxor xmm7, xmm0 ; xor the initial crc value jmp .128_done .only_less_than_4: cmp arg3, 3 jl .only_less_than_3 ; load 3 Bytes mov al, [arg2] mov [r11], al mov al, [arg2+1] mov [r11+1], al mov al, [arg2+2] mov [r11+2], al vmovdqa xmm7, [rsp] vpxor xmm7, xmm0 ; xor the initial crc value vpslldq xmm7, 5 jmp .barrett .only_less_than_3: cmp arg3, 2 jl .only_less_than_2 ; load 2 Bytes mov al, [arg2] mov [r11], al mov al, [arg2+1] mov [r11+1], al vmovdqa xmm7, [rsp] vpxor xmm7, xmm0 ; xor the initial crc value vpslldq xmm7, 6 jmp .barrett .only_less_than_2: ; load 1 Byte mov al, [arg2] mov [r11], al vmovdqa xmm7, [rsp] vpxor xmm7, xmm0 ; xor the initial crc value vpslldq xmm7, 7 jmp .barrett section .data ; precomputed constants align 16 rk1: dq 0x00000000ccaa009e rk2: dq 0x00000001751997d0 rk3: dq 0x000000014a7fe880 rk4: dq 0x00000001e88ef372 rk5: dq 0x00000000ccaa009e rk6: dq 0x0000000163cd6124 rk7: dq 0x00000001f7011640 rk8: dq 0x00000001db710640 rk9: dq 0x00000001d7cfc6ac rk10: dq 0x00000001ea89367e rk11: dq 0x000000018cb44e58 rk12: dq 0x00000000df068dc2 rk13: dq 0x00000000ae0b5394 rk14: dq 0x00000001c7569e54 rk15: dq 0x00000001c6e41596 rk16: dq 0x0000000154442bd4 rk17: dq 0x0000000174359406 rk18: dq 0x000000003db1ecdc rk19: dq 0x000000015a546366 rk20: dq 0x00000000f1da05aa mask: dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000 mask2: dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF mask3: dq 0x8080808080808080, 0x8080808080808080 pshufb_shf_table: ; use these values for shift constants for the pshufb instruction ; different alignments result in values as shown: ; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1 ; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2 ; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3 ; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4 ; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5 ; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6 ; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7 ; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8 ; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9 ; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10 ; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11 ; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12 ; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13 ; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14 ; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15 dq 0x8786858483828100, 0x8f8e8d8c8b8a8988 dq 0x0706050403020100, 0x000e0d0c0b0a0908