;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Copyright(c) 2011-2015 Intel Corporation All rights reserved. ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions ; are met: ; * Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; * Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in ; the documentation and/or other materials provided with the ; distribution. ; * Neither the name of Intel Corporation nor the names of its ; contributors may be used to endorse or promote products derived ; from this software without specific prior written permission. ; ; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; ; Function API: ; UINT32 crc32_ieee_by4( ; UINT32 init_crc, //initial CRC value, 32 bits ; const unsigned char *buf, //buffer pointer to calculate CRC on ; UINT64 len //buffer length in bytes (64-bit data) ; ); ; ; Authors: ; Erdinc Ozturk ; Vinodh Gopal ; James Guilford ; ; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction" ; URL: http://download.intel.com/design/intarch/papers/323102.pdf ; %include "reg_sizes.asm" %define fetch_dist 1024 [bits 64] default rel section .text %ifidn __OUTPUT_FORMAT__, win64 %xdefine arg1 rcx %xdefine arg2 rdx %xdefine arg3 r8 %xdefine arg1_low32 ecx %else %xdefine arg1 rdi %xdefine arg2 rsi %xdefine arg3 rdx %xdefine arg1_low32 edi %endif %ifidn __OUTPUT_FORMAT__, win64 %define XMM_SAVE 16*2 %define VARIABLE_OFFSET 16*4+8 %else %define VARIABLE_OFFSET 16*2+8 %endif align 16 mk_global crc32_ieee_by4, function crc32_ieee_by4: endbranch not arg1_low32 sub rsp,VARIABLE_OFFSET %ifidn __OUTPUT_FORMAT__, win64 ; push the xmm registers into the stack to maintain movdqa [rsp + XMM_SAVE + 16*0],xmm6 movdqa [rsp + XMM_SAVE + 16*1],xmm7 %endif ; check if smaller than 128B cmp arg3, 128 jl _less_than_128 ; load the initial crc value movd xmm6, arg1_low32 ; initial crc ; crc value does not need to be byte-reflected, but it needs to be ; moved to the high part of the register. ; because data will be byte-reflected and will align with initial ; crc at correct place. pslldq xmm6, 12 movdqa xmm7, [SHUF_MASK] ; receive the initial 64B data, xor the initial crc value movdqu xmm0, [arg2] movdqu xmm1, [arg2+16] movdqu xmm2, [arg2+32] movdqu xmm3, [arg2+48] pshufb xmm0, xmm7 ; XOR the initial_crc value pxor xmm0, xmm6 pshufb xmm1, xmm7 pshufb xmm2, xmm7 pshufb xmm3, xmm7 movdqa xmm6, [rk3] ; k3=2^480 mod POLY << 32 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;we subtract 128 instead of 64 to save one instruction from the loop sub arg3, 128 ; at this section of the code, there is 64*x+y (0<=y<64) bytes of ; buffer. The _fold_64_B_loop loop will fold 64B at a time until we ; have 64+y Bytes of buffer ; fold 64B at a time. This section of the code folds 4 xmm registers in parallel _fold_64_B_loop: ;update the buffer pointer add arg2, 64 prefetchnta [arg2+fetch_dist+0] movdqa xmm4, xmm0 movdqa xmm5, xmm1 pclmulqdq xmm0, xmm6 , 0x11 pclmulqdq xmm1, xmm6 , 0x11 pclmulqdq xmm4, xmm6, 0x0 pclmulqdq xmm5, xmm6, 0x0 pxor xmm0, xmm4 pxor xmm1, xmm5 prefetchnta [arg2+fetch_dist+32] movdqa xmm4, xmm2 movdqa xmm5, xmm3 pclmulqdq xmm2, xmm6, 0x11 pclmulqdq xmm3, xmm6, 0x11 pclmulqdq xmm4, xmm6, 0x0 pclmulqdq xmm5, xmm6, 0x0 pxor xmm2, xmm4 pxor xmm3, xmm5 movdqu xmm4, [arg2] movdqu xmm5, [arg2+16] pshufb xmm4, xmm7 pshufb xmm5, xmm7 pxor xmm0, xmm4 pxor xmm1, xmm5 movdqu xmm4, [arg2+32] movdqu xmm5, [arg2+48] pshufb xmm4, xmm7 pshufb xmm5, xmm7 pxor xmm2, xmm4 pxor xmm3, xmm5 sub arg3, 64 ; check if there is another 64B in the buffer to be able to fold jge _fold_64_B_loop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; add arg2, 64 ;at this point, the arg2 is pointing at the last y Bytes of the buffer ; the 64B of data is in 4 of the xmm registers: xmm0, xmm1, xmm2, xmm3 movdqa xmm6, [rk1] ;k1 ; fold the 4 xmm registers to 1 xmm register with different constants movdqa xmm4, xmm0 pclmulqdq xmm0, xmm6, 0x11 pclmulqdq xmm4, xmm6, 0x0 pxor xmm1, xmm4 xorps xmm1, xmm0 movdqa xmm4, xmm1 pclmulqdq xmm1, xmm6, 0x11 pclmulqdq xmm4, xmm6, 0x0 pxor xmm2, xmm4 xorps xmm2, xmm1 movdqa xmm4, xmm2 pclmulqdq xmm2, xmm6, 0x11 pclmulqdq xmm4, xmm6, 0x0 pxor xmm3, xmm4 pxor xmm3, xmm2 ;instead of 64, we add 48 to the loop counter to save 1 instruction from the loop ; instead of a cmp instruction, we use the negative flag with the jl instruction add arg3, 64-16 jl _final_reduction_for_128 ; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm3 and the rest is in memory ; we can fold 16 bytes at a time if y>=16 ; continue folding 16B at a time _16B_reduction_loop: movdqa xmm4, xmm3 pclmulqdq xmm3, xmm6, 0x11 pclmulqdq xmm4, xmm6, 0x0 pxor xmm3, xmm4 movdqu xmm0, [arg2] pshufb xmm0, xmm7 pxor xmm3, xmm0 add arg2, 16 sub arg3, 16 ; instead of a cmp instruction, we utilize the flags with the jge instruction ; equivalent of: cmp arg3, 16-16 ; check if there is any more 16B in the buffer to be able to fold jge _16B_reduction_loop ;now we have 16+z bytes left to reduce, where 0<= z < 16. ;first, we reduce the data in the xmm3 register _final_reduction_for_128: ; check if any more data to fold. If not, compute the CRC of the final 128 bits add arg3, 16 je _128_done ; here we are getting data that is less than 16 bytes. ; since we know that there was data before the pointer, we can offset ; the input pointer before the actual point, to receive exactly 16 bytes. ; after that the registers need to be adjusted. _get_last_two_xmms: movdqa xmm2, xmm3 movdqu xmm1, [arg2 - 16 + arg3] pshufb xmm1, xmm7 shl arg3, 4 lea rax, [pshufb_shf_table + 15*16] sub rax, arg3 movdqu xmm0, [rax] pshufb xmm2, xmm0 pxor xmm0, [mask3] pshufb xmm3, xmm0 pblendvb xmm1, xmm2 ;xmm0 is implicit movdqa xmm2, xmm1 movdqa xmm4, xmm3 pclmulqdq xmm3, xmm6, 0x11 pclmulqdq xmm4, xmm6, 0x0 pxor xmm3, xmm4 pxor xmm3, xmm2 _128_done: movdqa xmm6, [rk5] movdqa xmm0, xmm3 ;64b fold pclmulqdq xmm3, xmm6, 0x1 pslldq xmm0, 8 pxor xmm3, xmm0 ;32b fold movdqa xmm0, xmm3 pand xmm0, [mask4] psrldq xmm3, 12 pclmulqdq xmm3, xmm6, 0x10 pxor xmm3, xmm0 ;barrett reduction _barrett: movdqa xmm6, [rk7] movdqa xmm0, xmm3 pclmulqdq xmm3, xmm6, 0x01 pslldq xmm3, 4 pclmulqdq xmm3, xmm6, 0x11 pslldq xmm3, 4 pxor xmm3, xmm0 pextrd eax, xmm3,1 _cleanup: not eax %ifidn __OUTPUT_FORMAT__, win64 movdqa xmm6, [rsp + XMM_SAVE + 16*0] movdqa xmm7, [rsp + XMM_SAVE + 16*1] %endif add rsp,VARIABLE_OFFSET ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; align 16 _less_than_128: ;check if there is enough buffer to be able to fold 16B at a time cmp arg3, 32 jl _less_than_32 movdqa xmm7, [SHUF_MASK] ;if there is, load the constants movdqa xmm6, [rk1] ;k1 movd xmm0, arg1_low32 pslldq xmm0, 12 movdqu xmm3, [arg2] pshufb xmm3, xmm7 pxor xmm3, xmm0 ;update the buffer pointer add arg2, 16 ;update the counter. subtract 32 instead of 16 to save one instruction from the loop sub arg3, 32 jmp _16B_reduction_loop align 16 _less_than_32: mov eax, arg1_low32 test arg3, arg3 je _cleanup movdqa xmm7, [SHUF_MASK] movd xmm0, arg1_low32 pslldq xmm0, 12 cmp arg3, 16 je _exact_16_left jl _less_than_16_left movd xmm0, arg1_low32 pslldq xmm0, 12 movdqu xmm3, [arg2] pshufb xmm3, xmm7 pxor xmm3, xmm0 add arg2, 16 sub arg3, 16 movdqa xmm6, [rk1] ;k1 jmp _get_last_two_xmms align 16 _less_than_16_left: ; use stack space to load data less than 16 bytes, zero-out the 16B in memory first. pxor xmm1, xmm1 mov r11, rsp movdqa [r11], xmm1 cmp arg3, 4 jl _only_less_than_4 mov r9, arg3 cmp arg3, 8 jl _less_than_8_left mov rax, [arg2] mov [r11], rax add r11, 8 sub arg3, 8 add arg2, 8 _less_than_8_left: cmp arg3, 4 jl _less_than_4_left mov eax, [arg2] mov [r11], eax add r11, 4 sub arg3, 4 add arg2, 4 _less_than_4_left: cmp arg3, 2 jl _less_than_2_left mov ax, [arg2] mov [r11], ax add r11, 2 sub arg3, 2 add arg2, 2 _less_than_2_left: cmp arg3, 1 jl _zero_left mov al, [arg2] mov [r11], al _zero_left: movdqa xmm3, [rsp] pshufb xmm3, xmm7 pxor xmm3, xmm0 shl r9, 4 lea rax, [pshufb_shf_table + 15*16] sub rax, r9 movdqu xmm0, [rax] pxor xmm0, [mask3] pshufb xmm3, xmm0 jmp _128_done align 16 _exact_16_left: movdqu xmm3, [arg2] pshufb xmm3, xmm7 pxor xmm3, xmm0 jmp _128_done _only_less_than_4: cmp arg3, 3 jl _only_less_than_3 mov al, [arg2] mov [r11], al mov al, [arg2+1] mov [r11+1], al mov al, [arg2+2] mov [r11+2], al movdqa xmm3, [rsp] pshufb xmm3, xmm7 pxor xmm3, xmm0 psrldq xmm3, 5 jmp _barrett _only_less_than_3: cmp arg3, 2 jl _only_less_than_2 mov al, [arg2] mov [r11], al mov al, [arg2+1] mov [r11+1], al movdqa xmm3, [rsp] pshufb xmm3, xmm7 pxor xmm3, xmm0 psrldq xmm3, 6 jmp _barrett _only_less_than_2: mov al, [arg2] mov [r11], al movdqa xmm3, [rsp] pshufb xmm3, xmm7 pxor xmm3, xmm0 psrldq xmm3, 7 jmp _barrett ; precomputed constants section .data align 16 rk1: DQ 0xf200aa6600000000 rk2: DQ 0x17d3315d00000000 rk3: DQ 0xd3504ec700000000 rk4: DQ 0x57a8445500000000 rk5: DQ 0xf200aa6600000000 rk6: DQ 0x490d678d00000000 rk7: DQ 0x0000000104d101df rk8: DQ 0x0000000104c11db7 mask: dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000 mask2: dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF mask3: dq 0x8080808080808080, 0x8080808080808080 mask4: dq 0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFF align 32 pshufb_shf_table: dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1 dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2 dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3 dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4 dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5 dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6 dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7 dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8 dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9 dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10 dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11 dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12 dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13 dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14 dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15 SHUF_MASK dq 0x08090A0B0C0D0E0F, 0x0001020304050607