;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Copyright(c) 2011-2020 Intel Corporation All rights reserved. ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions ; are met: ; * Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; * Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in ; the documentation and/or other materials provided with the ; distribution. ; * Neither the name of Intel Corporation nor the names of its ; contributors may be used to endorse or promote products derived ; from this software without specific prior written permission. ; ; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Function API: ; UINT32 crc32_iscsi_by16_10( ; UINT32 init_crc, //initial CRC value, 32 bits ; const unsigned char *buf, //buffer pointer to calculate CRC on ; UINT64 len //buffer length in bytes (64-bit data) ; ); ; ; Authors: ; Erdinc Ozturk ; Vinodh Gopal ; James Guilford ; ; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction" ; URL: http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf ; ; %include "reg_sizes.asm" %ifndef FUNCTION_NAME %define FUNCTION_NAME crc32_iscsi_by16_10 %endif %if (AS_FEATURE_LEVEL) >= 10 [bits 64] default rel section .text %ifidn __OUTPUT_FORMAT__, win64 %xdefine arg1 r8 %xdefine arg2 rcx %xdefine arg3 rdx %xdefine arg1_low32 r8d %else %xdefine arg1 rdx %xdefine arg2 rdi %xdefine arg3 rsi %xdefine arg1_low32 edx %endif align 16 mk_global FUNCTION_NAME, function FUNCTION_NAME: endbranch %ifidn __OUTPUT_FORMAT__, win64 sub rsp, (16*10 + 8) ; push the xmm registers into the stack to maintain vmovdqa [rsp + 16*0], xmm6 vmovdqa [rsp + 16*1], xmm7 vmovdqa [rsp + 16*2], xmm8 vmovdqa [rsp + 16*3], xmm9 vmovdqa [rsp + 16*4], xmm10 vmovdqa [rsp + 16*5], xmm11 vmovdqa [rsp + 16*6], xmm12 vmovdqa [rsp + 16*7], xmm13 vmovdqa [rsp + 16*8], xmm14 vmovdqa [rsp + 16*9], xmm15 %endif ; check if smaller than 256B cmp arg3, 256 jl .less_than_256 ; load the initial crc value vmovd xmm10, arg1_low32 ; initial crc ; receive the initial 64B data, xor the initial crc value vmovdqu8 zmm0, [arg2+16*0] vmovdqu8 zmm4, [arg2+16*4] vpxorq zmm0, zmm10 vbroadcasti32x4 zmm10, [rk3] ;xmm10 has rk3 and rk4 ;imm value of pclmulqdq instruction will determine which constant to use sub arg3, 256 cmp arg3, 256 jl .fold_128_B_loop vmovdqu8 zmm7, [arg2+16*8] vmovdqu8 zmm8, [arg2+16*12] vbroadcasti32x4 zmm16, [rk_1] ;zmm16 has rk-1 and rk-2 sub arg3, 256 align 16 .fold_256_B_loop: add arg2, 256 vpclmulqdq zmm1, zmm0, zmm16, 0x10 vpclmulqdq zmm0, zmm0, zmm16, 0x01 vpternlogq zmm0, zmm1, [arg2+16*0], 0x96 vpclmulqdq zmm2, zmm4, zmm16, 0x10 vpclmulqdq zmm4, zmm4, zmm16, 0x01 vpternlogq zmm4, zmm2, [arg2+16*4], 0x96 vpclmulqdq zmm3, zmm7, zmm16, 0x10 vpclmulqdq zmm7, zmm7, zmm16, 0x01 vpternlogq zmm7, zmm3, [arg2+16*8], 0x96 vpclmulqdq zmm5, zmm8, zmm16, 0x10 vpclmulqdq zmm8, zmm8, zmm16, 0x01 vpternlogq zmm8, zmm5, [arg2+16*12], 0x96 sub arg3, 256 jge .fold_256_B_loop ;; Fold 256 into 128 add arg2, 256 vpclmulqdq zmm1, zmm0, zmm10, 0x01 vpclmulqdq zmm2, zmm0, zmm10, 0x10 vpternlogq zmm7, zmm1, zmm2, 0x96 ; xor ABC vpclmulqdq zmm5, zmm4, zmm10, 0x01 vpclmulqdq zmm6, zmm4, zmm10, 0x10 vpternlogq zmm8, zmm5, zmm6, 0x96 ; xor ABC vmovdqa32 zmm0, zmm7 vmovdqa32 zmm4, zmm8 add arg3, 128 jmp .less_than_128_B ; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The fold_128_B_loop ; loop will fold 128B at a time until we have 128+y Bytes of buffer ; fold 128B at a time. This section of the code folds 8 xmm registers in parallel align 16 .fold_128_B_loop: add arg2, 128 vpclmulqdq zmm2, zmm0, zmm10, 0x10 vpclmulqdq zmm0, zmm0, zmm10, 0x01 vpternlogq zmm0, zmm2, [arg2+16*0], 0x96 vpclmulqdq zmm5, zmm4, zmm10, 0x10 vpclmulqdq zmm4, zmm4, zmm10, 0x01 vpternlogq zmm4, zmm5, [arg2+16*4], 0x96 sub arg3, 128 jge .fold_128_B_loop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; add arg2, 128 align 16 .less_than_128_B: ;; At this point, the buffer pointer is pointing at the last ;; y bytes of the buffer, where 0 <= y < 128. ;; The 128 bytes of folded data is in 2 of the zmm registers: ;; zmm0 and zmm4 cmp arg3, -64 jl .fold_128_B_register vbroadcasti32x4 zmm10, [rk15] ;; If there are still 64 bytes left, folds from 128 bytes to 64 bytes ;; and handles the next 64 bytes vpclmulqdq zmm2, zmm0, zmm10, 0x10 vpclmulqdq zmm0, zmm0, zmm10, 0x01 vpternlogq zmm0, zmm2, zmm4, 0x96 add arg3, 128 jmp .fold_64B_loop align 16 .fold_128_B_register: ; fold the 8 128b parts into 1 xmm register with different constants vmovdqu8 zmm16, [rk9] ; multiply by rk9-rk16 vmovdqu8 zmm11, [rk17] ; multiply by rk17-rk20, rk1,rk2, 0,0 vpclmulqdq zmm1, zmm0, zmm16, 0x01 vpclmulqdq zmm2, zmm0, zmm16, 0x10 vextracti64x2 xmm7, zmm4, 3 ; save last that has no multiplicand vpclmulqdq zmm5, zmm4, zmm11, 0x01 vpclmulqdq zmm6, zmm4, zmm11, 0x10 vmovdqa xmm10, [rk1] ; Needed later in reduction loop vpternlogq zmm1, zmm2, zmm5, 0x96 ; xor ABC vpternlogq zmm1, zmm6, zmm7, 0x96 ; xor ABC vshufi64x2 zmm8, zmm1, zmm1, 0x4e ; Swap 1,0,3,2 - 01 00 11 10 vpxorq ymm8, ymm8, ymm1 vextracti64x2 xmm5, ymm8, 1 vpxorq xmm7, xmm5, xmm8 ; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop ; instead of a cmp instruction, we use the negative flag with the jl instruction add arg3, 128-16 jl .final_reduction_for_128 ; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory ; we can fold 16 bytes at a time if y>=16 ; continue folding 16B at a time align 16 .16B_reduction_loop: vpclmulqdq xmm8, xmm7, xmm10, 0x1 vpclmulqdq xmm7, xmm7, xmm10, 0x10 vpternlogq xmm7, xmm8, [arg2], 0x96 add arg2, 16 sub arg3, 16 ; instead of a cmp instruction, we utilize the flags with the jge instruction ; equivalent of: cmp arg3, 16-16 ; check if there is any more 16B in the buffer to be able to fold jge .16B_reduction_loop ;now we have 16+z bytes left to reduce, where 0<= z < 16. ;first, we reduce the data in the xmm7 register align 16 .final_reduction_for_128: add arg3, 16 je .128_done ; here we are getting data that is less than 16 bytes. ; since we know that there was data before the pointer, we can offset ; the input pointer before the actual point, to receive exactly 16 bytes. ; after that the registers need to be adjusted. align 16 .get_last_two_xmms: vmovdqa xmm2, xmm7 vmovdqu xmm1, [arg2 - 16 + arg3] ; get rid of the extra data that was loaded before ; load the shift constant lea rax, [rel pshufb_shf_table] add rax, arg3 vmovdqu xmm0, [rax] vpshufb xmm7, xmm0 vpxor xmm0, [mask3] vpshufb xmm2, xmm0 vpblendvb xmm2, xmm2, xmm1, xmm0 ;;;;;;;;;; vpclmulqdq xmm8, xmm7, xmm10, 0x1 vpclmulqdq xmm7, xmm7, xmm10, 0x10 vpternlogq xmm7, xmm8, xmm2, 0x96 align 16 .128_done: ; compute crc of a 128-bit value xor rax, rax vmovq r11, xmm7 crc32 rax, r11 vpextrq r11, xmm7, 1 crc32 rax, r11 align 16 .cleanup: %ifidn __OUTPUT_FORMAT__, win64 vmovdqa xmm6, [rsp + 16*0] vmovdqa xmm7, [rsp + 16*1] vmovdqa xmm8, [rsp + 16*2] vmovdqa xmm9, [rsp + 16*3] vmovdqa xmm10, [rsp + 16*4] vmovdqa xmm11, [rsp + 16*5] vmovdqa xmm12, [rsp + 16*6] vmovdqa xmm13, [rsp + 16*7] vmovdqa xmm14, [rsp + 16*8] vmovdqa xmm15, [rsp + 16*9] add rsp, (16*10 + 8) %endif ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; align 16 .less_than_256: ; check if there is enough buffer to be able to fold 16B at a time cmp arg3, 32 jl .less_than_32 vmovd xmm1, arg1_low32 ; get the initial crc value cmp arg3, 64 jl .less_than_64 ;; receive the initial 64B data, xor the initial crc value vmovdqu8 zmm0, [arg2] vpxorq zmm0, zmm1 add arg2, 64 sub arg3, 64 cmp arg3, 64 jb .reduce_64B vbroadcasti32x4 zmm10, [rk15] align 16 .fold_64B_loop: vmovdqu8 zmm4, [arg2] vpclmulqdq zmm2, zmm0, zmm10, 0x10 vpclmulqdq zmm0, zmm0, zmm10, 0x01 vpternlogq zmm0, zmm2, zmm4, 0x96 add arg2, 64 sub arg3, 64 cmp arg3, 64 jge .fold_64B_loop align 16 .reduce_64B: ; Reduce from 64 bytes to 16 bytes vmovdqu8 zmm11, [rk17] vpclmulqdq zmm1, zmm0, zmm11, 0x01 vpclmulqdq zmm2, zmm0, zmm11, 0x10 vextracti64x2 xmm7, zmm0, 3 ; save last that has no multiplicand vpternlogq zmm1, zmm2, zmm7, 0x96 vmovdqa xmm10, [rk_1b] ; Needed later in reduction loop vshufi64x2 zmm8, zmm1, zmm1, 0x4e ; Swap 1,0,3,2 - 01 00 11 10 vpxorq ymm8, ymm8, ymm1 vextracti64x2 xmm5, ymm8, 1 vpxorq xmm7, xmm5, xmm8 sub arg3, 16 jns .16B_reduction_loop ; At least 16 bytes of data to digest jmp .final_reduction_for_128 align 16 .less_than_64: ;; if there is, load the constants vmovdqa xmm10, [rk_1b] vmovdqu xmm7, [arg2] ; load the plaintext vpxor xmm7, xmm1 ; xmm1 already has initial crc value ;; update the buffer pointer add arg2, 16 ;; update the counter ;; - subtract 32 instead of 16 to save one instruction from the loop sub arg3, 32 jmp .16B_reduction_loop align 16 .less_than_32: ; mov initial crc to the return value. this is necessary for zero-length buffers. mov eax, arg1_low32 test arg3, arg3 je .cleanup vmovd xmm0, arg1_low32 ; get the initial crc value cmp arg3, 16 je .exact_16_left jl .less_than_16_left vmovdqu xmm7, [arg2] ; load the plaintext vpxor xmm7, xmm0 ; xor the initial crc value add arg2, 16 sub arg3, 16 vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10 jmp .get_last_two_xmms align 16 .less_than_16_left: cmp arg3, 4 jl .only_less_than_4 xor r10, r10 bts r10, arg3 dec r10 kmovw k2, r10d vmovdqu8 xmm7{k2}{z}, [arg2] vpxor xmm7, xmm0 ; xor the initial crc value lea rax, [rel pshufb_shf_table] vmovdqu xmm0, [rax + arg3] vpshufb xmm7,xmm0 jmp .128_done align 16 .exact_16_left: vmovdqu xmm7, [arg2] vpxor xmm7, xmm0 ; xor the initial crc value jmp .128_done align 16 .only_less_than_4: mov eax, arg1_low32 cmp arg3, 2 jb .only_1_left je .only_2_left ; 3 bytes left crc32 eax, word [arg2] crc32 eax, byte [arg2 + 2] jmp .cleanup align 16 .only_2_left: crc32 eax, word [arg2] jmp .cleanup align 16 .only_1_left: crc32 eax, byte [arg2] jmp .cleanup section .data align 32 %ifndef USE_CONSTS ; precomputed constants rk_1: dq 0x00000000b9e02b86 rk_2: dq 0x00000000dcb17aa4 rk1: dq 0x00000000493c7d27 rk2: dq 0x0000000ec1068c50 rk3: dq 0x0000000206e38d70 rk4: dq 0x000000006992cea2 rk5: dq 0x00000000493c7d27 rk6: dq 0x00000000dd45aab8 rk7: dq 0x00000000dea713f0 rk8: dq 0x0000000105ec76f0 rk9: dq 0x0000000047db8317 rk10: dq 0x000000002ad91c30 rk11: dq 0x000000000715ce53 rk12: dq 0x00000000c49f4f67 rk13: dq 0x0000000039d3b296 rk14: dq 0x00000000083a6eec rk15: dq 0x000000009e4addf8 rk16: dq 0x00000000740eef02 rk17: dq 0x00000000ddc0152b rk18: dq 0x000000001c291d04 rk19: dq 0x00000000ba4fc28e rk20: dq 0x000000003da6d0cb rk_1b: dq 0x00000000493c7d27 rk_2b: dq 0x0000000ec1068c50 dq 0x0000000000000000 dq 0x0000000000000000 %else INCLUDE_CONSTS %endif pshufb_shf_table: ; use these values for shift constants for the pshufb instruction ; different alignments result in values as shown: ; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1 ; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2 ; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3 ; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4 ; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5 ; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6 ; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7 ; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8 ; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9 ; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10 ; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11 ; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12 ; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13 ; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14 ; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15 dq 0x8786858483828100, 0x8f8e8d8c8b8a8988 dq 0x0706050403020100, 0x000e0d0c0b0a0908 mask: dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000 mask2: dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF mask3: dq 0x8080808080808080, 0x8080808080808080 %else ; Assembler doesn't understand these opcodes. Add empty symbol for windows. %ifidn __OUTPUT_FORMAT__, win64 global no_ %+ FUNCTION_NAME no_ %+ FUNCTION_NAME %+ : %endif %endif ; (AS_FEATURE_LEVEL) >= 10