/********************************************************************** Copyright(c) 2011-2018 Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **********************************************************************/ #include #include #include #include #include "erasure_code.h" // use instead when linking against installed #define MMAX 255 #define KMAX 255 typedef unsigned char u8; int usage(void) { fprintf(stderr, "Usage: ec_simple_example [options]\n" " -h Help\n" " -k Number of source fragments\n" " -p Number of parity fragments\n" " -l Length of fragments\n" " -e Simulate erasure on frag index val. Zero based. Can be repeated.\n" " -r Pick random (k, p) with seed\n"); exit(0); } static int gf_gen_decode_matrix_simple(u8 *encode_matrix, u8 *decode_matrix, u8 *invert_matrix, u8 *temp_matrix, u8 *decode_index, u8 *frag_err_list, int nerrs, int k, int m); int main(int argc, char *argv[]) { int i, j, m, c, e, ret; int k = 10, p = 4, len = 8 * 1024; // Default params int nerrs = 0; // Fragment buffer pointers u8 *frag_ptrs[MMAX]; u8 *recover_srcs[KMAX]; u8 *recover_outp[KMAX]; u8 frag_err_list[MMAX]; // Coefficient matrices u8 *encode_matrix, *decode_matrix; u8 *invert_matrix, *temp_matrix; u8 *g_tbls; u8 decode_index[MMAX]; if (argc == 1) for (i = 0; i < p; i++) frag_err_list[nerrs++] = rand() % (k + p); while ((c = getopt(argc, argv, "k:p:l:e:r:h")) != -1) { switch (c) { case 'k': k = atoi(optarg); break; case 'p': p = atoi(optarg); break; case 'l': len = atoi(optarg); if (len < 0) usage(); break; case 'e': e = atoi(optarg); frag_err_list[nerrs++] = e; break; case 'r': srand(atoi(optarg)); k = (rand() % (MMAX - 1)) + 1; // Pick k {1 to MMAX - 1} p = (rand() % (MMAX - k)) + 1; // Pick p {1 to MMAX - k} for (i = 0; i < k + p && nerrs < p; i++) if (rand() & 1) frag_err_list[nerrs++] = i; break; case 'h': default: usage(); break; } } m = k + p; // Check for valid parameters if (m > MMAX || k > KMAX || m < 0 || p < 1 || k < 1) { printf(" Input test parameter error m=%d, k=%d, p=%d, erasures=%d\n", m, k, p, nerrs); usage(); } if (nerrs > p) { printf(" Number of erasures chosen exceeds power of code erasures=%d p=%d\n", nerrs, p); usage(); } for (i = 0; i < nerrs; i++) { if (frag_err_list[i] >= m) { printf(" fragment %d not in range\n", frag_err_list[i]); usage(); } } printf("ec_simple_example:\n"); // Allocate coding matrices encode_matrix = malloc(m * k); decode_matrix = malloc(m * k); invert_matrix = malloc(m * k); temp_matrix = malloc(m * k); g_tbls = malloc(k * p * 32); if (encode_matrix == NULL || decode_matrix == NULL || invert_matrix == NULL || temp_matrix == NULL || g_tbls == NULL) { printf("Test failure! Error with malloc\n"); return -1; } // Allocate the src & parity buffers for (i = 0; i < m; i++) { if (NULL == (frag_ptrs[i] = malloc(len))) { printf("alloc error: Fail\n"); return -1; } } // Allocate buffers for recovered data for (i = 0; i < p; i++) { if (NULL == (recover_outp[i] = malloc(len))) { printf("alloc error: Fail\n"); return -1; } } // Fill sources with random data for (i = 0; i < k; i++) for (j = 0; j < len; j++) frag_ptrs[i][j] = rand(); printf(" encode (m,k,p)=(%d,%d,%d) len=%d\n", m, k, p, len); // Pick an encode matrix. A Cauchy matrix is a good choice as even // large k are always invertable keeping the recovery rule simple. gf_gen_cauchy1_matrix(encode_matrix, m, k); // Initialize g_tbls from encode matrix ec_init_tables(k, p, &encode_matrix[k * k], g_tbls); // Generate EC parity blocks from sources ec_encode_data(len, k, p, g_tbls, frag_ptrs, &frag_ptrs[k]); if (nerrs <= 0) return 0; printf(" recover %d fragments\n", nerrs); // Find a decode matrix to regenerate all erasures from remaining frags ret = gf_gen_decode_matrix_simple(encode_matrix, decode_matrix, invert_matrix, temp_matrix, decode_index, frag_err_list, nerrs, k, m); if (ret != 0) { printf("Fail on generate decode matrix\n"); return -1; } // Pack recovery array pointers as list of valid fragments for (i = 0; i < k; i++) recover_srcs[i] = frag_ptrs[decode_index[i]]; // Recover data ec_init_tables(k, nerrs, decode_matrix, g_tbls); ec_encode_data(len, k, nerrs, g_tbls, recover_srcs, recover_outp); // Check that recovered buffers are the same as original printf(" check recovery of block {"); for (i = 0; i < nerrs; i++) { printf(" %d", frag_err_list[i]); if (memcmp(recover_outp[i], frag_ptrs[frag_err_list[i]], len)) { printf(" Fail erasure recovery %d, frag %d\n", i, frag_err_list[i]); return -1; } } printf(" } done all: Pass\n"); return 0; } /* * Generate decode matrix from encode matrix and erasure list * */ static int gf_gen_decode_matrix_simple(u8 *encode_matrix, u8 *decode_matrix, u8 *invert_matrix, u8 *temp_matrix, u8 *decode_index, u8 *frag_err_list, int nerrs, int k, int m) { int i, j, p, r; int nsrcerrs = 0; u8 s, *b = temp_matrix; u8 frag_in_err[MMAX]; memset(frag_in_err, 0, sizeof(frag_in_err)); // Order the fragments in erasure for easier sorting for (i = 0; i < nerrs; i++) { if (frag_err_list[i] < k) nsrcerrs++; frag_in_err[frag_err_list[i]] = 1; } // Construct b (matrix that encoded remaining frags) by removing erased rows for (i = 0, r = 0; i < k; i++, r++) { while (frag_in_err[r]) r++; for (j = 0; j < k; j++) b[k * i + j] = encode_matrix[k * r + j]; decode_index[i] = r; } // Invert matrix to get recovery matrix if (gf_invert_matrix(b, invert_matrix, k) < 0) return -1; // Get decode matrix with only wanted recovery rows for (i = 0; i < nerrs; i++) { if (frag_err_list[i] < k) // A src err for (j = 0; j < k; j++) decode_matrix[k * i + j] = invert_matrix[k * frag_err_list[i] + j]; } // For non-src (parity) erasures need to multiply encode matrix * invert for (p = 0; p < nerrs; p++) { if (frag_err_list[p] >= k) { // A parity err for (i = 0; i < k; i++) { s = 0; for (j = 0; j < k; j++) s ^= gf_mul(invert_matrix[j * k + i], encode_matrix[k * frag_err_list[p] + j]); decode_matrix[k * p + i] = s; } } } return 0; }