ec: Determine exact conditions where gf_gen_rs_matrix works

Add a program calculating some of the exact conditions where gf_gen_rs_matrix
works, add comments stating these bounds to gf_gen_rs_matrix, and fix erasure
code test that violates the bounds.

Change-Id: I1d0010b09fea97731bfd24f4f76e24609538b24f
Signed-off-by: Roy Oursler <roy.j.oursler@intel.com>
This commit is contained in:
Roy Oursler 2017-06-06 11:04:28 -07:00 committed by Xiaodong Liu
parent 1a7c640ef9
commit 82a6ac65dc
4 changed files with 129 additions and 5 deletions

View File

@ -172,5 +172,7 @@ perf_tests += erasure_code/gf_vect_mul_perf \
erasure_code/erasure_code_sse_perf \
erasure_code/erasure_code_update_perf
other_tests += erasure_code/gen_rs_matrix_limits
other_src += include/test.h \
include/types.h

View File

@ -287,7 +287,7 @@ int main(int argc, char *argv[])
return -1;
}
// Pick a first test
m = 15;
m = 14;
k = 10;
if (m > MMAX || k > KMAX)
return -1;

View File

@ -0,0 +1,115 @@
#include <string.h>
#include <stdint.h>
#include <stdio.h>
#include "erasure_code.h"
#define MAX_CHECK 63 /* Size is limited by using uint64_t to represent subsets */
#define M_MAX 0x20
#define K_MAX 0x10
#define ROWS M_MAX
#define COLS K_MAX
static inline int min(int a, int b)
{
if (a <= b)
return a;
else
return b;
}
void gen_sub_matrix(unsigned char *out_matrix, int dim, unsigned char *in_matrix, int rows,
int cols, uint64_t row_indicator, uint64_t col_indicator)
{
int i, j, r, s;
for (i = 0, r = 0; i < rows; i++) {
if (!(row_indicator & ((uint64_t) 1 << i)))
continue;
for (j = 0, s = 0; j < cols; j++) {
if (!(col_indicator & ((uint64_t) 1 << j)))
continue;
out_matrix[dim * r + s] = in_matrix[cols * i + j];
s++;
}
r++;
}
}
/* Gosper's Hack */
uint64_t next_subset(uint64_t * subset, uint64_t element_count, uint64_t subsize)
{
uint64_t tmp1 = *subset & -*subset;
uint64_t tmp2 = *subset + tmp1;
*subset = (((*subset ^ tmp2) >> 2) / tmp1) | tmp2;
if (*subset & (((uint64_t) 1 << element_count))) {
/* Overflow on last subset */
*subset = ((uint64_t) 1 << subsize) - 1;
return 1;
}
return 0;
}
int are_submatrices_singular(unsigned char *vmatrix, int rows, int cols)
{
unsigned char matrix[COLS * COLS];
unsigned char invert_matrix[COLS * COLS];
uint64_t row_indicator, col_indicator, subset_init, subsize;
/* Check all square subsize x subsize submatrices of the rows x cols
* vmatrix for singularity*/
for (subsize = 1; subsize <= min(rows, cols); subsize++) {
subset_init = (1 << subsize) - 1;
col_indicator = subset_init;
do {
row_indicator = subset_init;
do {
gen_sub_matrix(matrix, subsize, vmatrix, rows,
cols, row_indicator, col_indicator);
if (gf_invert_matrix(matrix, invert_matrix, subsize))
return 1;
} while (next_subset(&row_indicator, rows, subsize) == 0);
} while (next_subset(&col_indicator, cols, subsize) == 0);
}
return 0;
}
int main(int argc, char **argv)
{
unsigned char vmatrix[(ROWS + COLS) * COLS];
int rows, cols;
if (K_MAX > MAX_CHECK) {
printf("K_MAX too large for this test\n");
return 0;
}
if (M_MAX > MAX_CHECK) {
printf("M_MAX too large for this test\n");
return 0;
}
if (M_MAX < K_MAX) {
printf("M_MAX must be smaller than K_MAX");
return 0;
}
printf("Checking gen_rs_matrix for k <= %d and m <= %d.\n", K_MAX, M_MAX);
printf("gen_rs_matrix creates erasure codes for:\n");
for (cols = 1; cols <= K_MAX; cols++) {
for (rows = 1; rows <= M_MAX - cols; rows++) {
gf_gen_rs_matrix(vmatrix, rows + cols, cols);
/* Verify the Vandermonde portion of vmatrix contains no
* singular submatrix */
if (are_submatrices_singular(&vmatrix[cols * cols], rows, cols))
break;
}
printf(" k = %2d, m <= %2d \n", cols, rows + cols - 1);
}
return 0;
}

View File

@ -885,9 +885,16 @@ unsigned char gf_inv(unsigned char a);
* matrix is identity matrix I and lower portion is constructed as 2^{i*(j-k+1)}
* i:{0,k-1} j:{k,m-1}. Commonly used method for choosing coefficients in
* erasure encoding but does not guarantee invertable for every sub matrix. For
* large k it is possible to find cases where the decode matrix chosen from
* sources and parity not in erasure are not invertable. Users may want to
* adjust for k > 5.
* large pairs of m and k it is possible to find cases where the decode matrix
* chosen from sources and parity is not invertable. Users may want to adjust
* for certain pairs m and k. If m and k satisfy one of the following
* inequalities, no adjustment is required:
*
* k <= 3
* k = 4, m <= 25
* k = 5, m <= 10
* k <= 21, m-k = 4
* m - k <= 3.
*
* @param a [mxk] array to hold coefficients
* @param m number of rows in matrix corresponding to srcs + parity.