mirror of
https://github.com/intel/isa-l.git
synced 2024-12-12 09:23:50 +01:00
ec: Determine exact conditions where gf_gen_rs_matrix works
Add a program calculating some of the exact conditions where gf_gen_rs_matrix works, add comments stating these bounds to gf_gen_rs_matrix, and fix erasure code test that violates the bounds. Change-Id: I1d0010b09fea97731bfd24f4f76e24609538b24f Signed-off-by: Roy Oursler <roy.j.oursler@intel.com>
This commit is contained in:
parent
1a7c640ef9
commit
82a6ac65dc
@ -172,5 +172,7 @@ perf_tests += erasure_code/gf_vect_mul_perf \
|
||||
erasure_code/erasure_code_sse_perf \
|
||||
erasure_code/erasure_code_update_perf
|
||||
|
||||
other_tests += erasure_code/gen_rs_matrix_limits
|
||||
|
||||
other_src += include/test.h \
|
||||
include/types.h
|
||||
|
@ -287,7 +287,7 @@ int main(int argc, char *argv[])
|
||||
return -1;
|
||||
}
|
||||
// Pick a first test
|
||||
m = 15;
|
||||
m = 14;
|
||||
k = 10;
|
||||
if (m > MMAX || k > KMAX)
|
||||
return -1;
|
||||
|
115
erasure_code/gen_rs_matrix_limits.c
Normal file
115
erasure_code/gen_rs_matrix_limits.c
Normal file
@ -0,0 +1,115 @@
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include "erasure_code.h"
|
||||
|
||||
#define MAX_CHECK 63 /* Size is limited by using uint64_t to represent subsets */
|
||||
#define M_MAX 0x20
|
||||
#define K_MAX 0x10
|
||||
#define ROWS M_MAX
|
||||
#define COLS K_MAX
|
||||
|
||||
static inline int min(int a, int b)
|
||||
{
|
||||
if (a <= b)
|
||||
return a;
|
||||
else
|
||||
return b;
|
||||
}
|
||||
|
||||
void gen_sub_matrix(unsigned char *out_matrix, int dim, unsigned char *in_matrix, int rows,
|
||||
int cols, uint64_t row_indicator, uint64_t col_indicator)
|
||||
{
|
||||
int i, j, r, s;
|
||||
|
||||
for (i = 0, r = 0; i < rows; i++) {
|
||||
if (!(row_indicator & ((uint64_t) 1 << i)))
|
||||
continue;
|
||||
|
||||
for (j = 0, s = 0; j < cols; j++) {
|
||||
if (!(col_indicator & ((uint64_t) 1 << j)))
|
||||
continue;
|
||||
out_matrix[dim * r + s] = in_matrix[cols * i + j];
|
||||
s++;
|
||||
}
|
||||
r++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Gosper's Hack */
|
||||
uint64_t next_subset(uint64_t * subset, uint64_t element_count, uint64_t subsize)
|
||||
{
|
||||
uint64_t tmp1 = *subset & -*subset;
|
||||
uint64_t tmp2 = *subset + tmp1;
|
||||
*subset = (((*subset ^ tmp2) >> 2) / tmp1) | tmp2;
|
||||
if (*subset & (((uint64_t) 1 << element_count))) {
|
||||
/* Overflow on last subset */
|
||||
*subset = ((uint64_t) 1 << subsize) - 1;
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int are_submatrices_singular(unsigned char *vmatrix, int rows, int cols)
|
||||
{
|
||||
unsigned char matrix[COLS * COLS];
|
||||
unsigned char invert_matrix[COLS * COLS];
|
||||
uint64_t row_indicator, col_indicator, subset_init, subsize;
|
||||
|
||||
/* Check all square subsize x subsize submatrices of the rows x cols
|
||||
* vmatrix for singularity*/
|
||||
for (subsize = 1; subsize <= min(rows, cols); subsize++) {
|
||||
subset_init = (1 << subsize) - 1;
|
||||
col_indicator = subset_init;
|
||||
do {
|
||||
row_indicator = subset_init;
|
||||
do {
|
||||
gen_sub_matrix(matrix, subsize, vmatrix, rows,
|
||||
cols, row_indicator, col_indicator);
|
||||
if (gf_invert_matrix(matrix, invert_matrix, subsize))
|
||||
return 1;
|
||||
|
||||
} while (next_subset(&row_indicator, rows, subsize) == 0);
|
||||
} while (next_subset(&col_indicator, cols, subsize) == 0);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
unsigned char vmatrix[(ROWS + COLS) * COLS];
|
||||
int rows, cols;
|
||||
|
||||
if (K_MAX > MAX_CHECK) {
|
||||
printf("K_MAX too large for this test\n");
|
||||
return 0;
|
||||
}
|
||||
if (M_MAX > MAX_CHECK) {
|
||||
printf("M_MAX too large for this test\n");
|
||||
return 0;
|
||||
}
|
||||
if (M_MAX < K_MAX) {
|
||||
printf("M_MAX must be smaller than K_MAX");
|
||||
return 0;
|
||||
}
|
||||
|
||||
printf("Checking gen_rs_matrix for k <= %d and m <= %d.\n", K_MAX, M_MAX);
|
||||
printf("gen_rs_matrix creates erasure codes for:\n");
|
||||
|
||||
for (cols = 1; cols <= K_MAX; cols++) {
|
||||
for (rows = 1; rows <= M_MAX - cols; rows++) {
|
||||
gf_gen_rs_matrix(vmatrix, rows + cols, cols);
|
||||
|
||||
/* Verify the Vandermonde portion of vmatrix contains no
|
||||
* singular submatrix */
|
||||
if (are_submatrices_singular(&vmatrix[cols * cols], rows, cols))
|
||||
break;
|
||||
|
||||
}
|
||||
printf(" k = %2d, m <= %2d \n", cols, rows + cols - 1);
|
||||
|
||||
}
|
||||
return 0;
|
||||
}
|
@ -884,10 +884,17 @@ unsigned char gf_inv(unsigned char a);
|
||||
* Vandermonde matrix example of encoding coefficients where high portion of
|
||||
* matrix is identity matrix I and lower portion is constructed as 2^{i*(j-k+1)}
|
||||
* i:{0,k-1} j:{k,m-1}. Commonly used method for choosing coefficients in
|
||||
* erasure encoding but does not guarantee invertable for every sub matrix. For
|
||||
* large k it is possible to find cases where the decode matrix chosen from
|
||||
* sources and parity not in erasure are not invertable. Users may want to
|
||||
* adjust for k > 5.
|
||||
* erasure encoding but does not guarantee invertable for every sub matrix. For
|
||||
* large pairs of m and k it is possible to find cases where the decode matrix
|
||||
* chosen from sources and parity is not invertable. Users may want to adjust
|
||||
* for certain pairs m and k. If m and k satisfy one of the following
|
||||
* inequalities, no adjustment is required:
|
||||
*
|
||||
* k <= 3
|
||||
* k = 4, m <= 25
|
||||
* k = 5, m <= 10
|
||||
* k <= 21, m-k = 4
|
||||
* m - k <= 3.
|
||||
*
|
||||
* @param a [mxk] array to hold coefficients
|
||||
* @param m number of rows in matrix corresponding to srcs + parity.
|
||||
|
Loading…
Reference in New Issue
Block a user