all: Revamp performance testing to be time based

Change-Id: I6260d28e4adc974d8db0a1c770e3eb922d87f8e4
Signed-off-by: Roy Oursler <roy.j.oursler@intel.com>
This commit is contained in:
Roy Oursler
2019-01-22 15:38:26 -07:00
parent bde3fc5ff1
commit 699bb5bd3f
23 changed files with 735 additions and 785 deletions

View File

@@ -34,70 +34,245 @@
extern "C" {
#endif
// Use sys/time.h functions for time
#if defined (__unix__) || (__APPLE__) || (__MINGW32__)
# include <sys/time.h>
#endif
#ifdef _MSC_VER
# define inline __inline
# include <time.h>
# include <Windows.h>
#endif
#include <stdio.h>
#include <stdint.h>
struct perf{
struct timeval tv;
#ifdef _MSC_VER
# define inline __inline
#endif
/* Decide wether to use benchmark time as an approximation or a minimum. Fewer
* calls to the timer are required for the approximation case.*/
#define BENCHMARK_MIN_TIME 0
#define BENCHMARK_APPROX_TIME 1
#ifndef BENCHMARK_TYPE
#define BENCHMARK_TYPE BENCHMARK_MIN_TIME
#endif
#ifdef USE_RDTSC
/* The use of rtdsc is nuanced. On many processors it corresponds to a
* standardized clock source. To obtain a meaningful result it may be
* necessary to fix the CPU clock to match the rtdsc tick rate.
*/
# include <inttypes.h>
# include <x86intrin.h>
# define USE_CYCLES
#else
# include <time.h>
#define USE_SECONDS
#endif
#ifdef USE_RDTSC
#ifndef BENCHMARK_TIME
# define BENCHMARK_TIME 6
#endif
# define GHZ 1000000000
# define UNIT_SCALE (GHZ)
# define CALLIBRATE_TIME (UNIT_SCALE / 2)
static inline long long get_time(void) {
unsigned int dummy;
return __rdtscp(&dummy);
}
static inline long long get_res(void) {
return 1;
}
#else
#ifndef BENCHMARK_TIME
# define BENCHMARK_TIME 3
#endif
#ifdef _MSC_VER
#define UNIT_SCALE get_res()
#define CALLIBRATE_TIME (UNIT_SCALE / 4)
static inline long long get_time(void) {
long long ret = 0;
QueryPerformanceCounter(&ret);
return ret;
}
static inline long long get_res(void) {
long long ret = 0;
QueryPerformanceFrequency(&ret);
return ret;
}
#else
# define NANO_SCALE 1000000000
# define UNIT_SCALE NANO_SCALE
# define CALLIBRATE_TIME (UNIT_SCALE / 4)
#ifdef __FreeBSD__
# define CLOCK_ID CLOCK_MONOTONIC_PRECISE
#else
# define CLOCK_ID CLOCK_MONOTONIC
#endif
static inline long long get_time(void) {
struct timespec time;
long long nano_total;
clock_gettime(CLOCK_ID, &time);
nano_total = time.tv_sec;
nano_total *= NANO_SCALE;
nano_total += time.tv_nsec;
return nano_total;
}
static inline long long get_res(void) {
struct timespec time;
long long nano_total;
clock_getres(CLOCK_ID, &time);
nano_total = time.tv_sec;
nano_total *= NANO_SCALE;
nano_total += time.tv_nsec;
return nano_total;
}
#endif
#endif
struct perf {
long long start;
long long stop;
long long run_total;
long long iterations;
};
#if defined (__unix__) || (__APPLE__) || (__MINGW32__)
static inline int perf_start(struct perf *p)
{
return gettimeofday(&(p->tv), 0);
}
static inline int perf_stop(struct perf *p)
{
return gettimeofday(&(p->tv), 0);
static inline void perf_init(struct perf *p) {
p->start = 0;
p->stop = 0;
p->run_total = 0;
}
static inline void perf_print(struct perf stop, struct perf start, long long dsize)
{
long long secs = stop.tv.tv_sec - start.tv.tv_sec;
long long usecs = secs * 1000000 + stop.tv.tv_usec - start.tv.tv_usec;
static inline void perf_continue(struct perf *p) {
p->start = get_time();
}
static inline void perf_pause(struct perf *p) {
p->stop = get_time();
p->run_total = p->run_total + p->stop - p->start;
p->start = p->stop;
}
static inline void perf_start(struct perf *p) {
perf_init(p);
perf_continue(p);
}
static inline void perf_stop(struct perf *p) {
perf_pause(p);
}
static inline double get_time_elapsed(struct perf *p) {
return 1.0 * p->run_total / UNIT_SCALE;
}
static inline long long get_base_elapsed(struct perf *p) {
return p->run_total;
}
static inline int estimate_perf_iterations(struct perf *p, unsigned long long runs,
unsigned long long total) {
total = total * runs;
if (get_base_elapsed(p) > 0)
return (total + get_base_elapsed(p) - 1) / get_base_elapsed(p);
else
return (total + get_res() - 1) / get_res();
}
#define CALLIBRATE(PERF, FUNC_CALL) { \
unsigned long long _iter = 1; \
perf_start(PERF); \
FUNC_CALL; \
perf_pause(PERF); \
\
while (get_base_elapsed(PERF) < CALLIBRATE_TIME) { \
_iter = estimate_perf_iterations(PERF, _iter, \
2 * CALLIBRATE_TIME); \
perf_start(PERF); \
for (int _i = 0; _i < _iter; _i++) { \
FUNC_CALL; \
} \
perf_stop(PERF); \
} \
(PERF)->iterations=_iter; \
}
#define PERFORMANCE_TEST(PERF, RUN_TIME, FUNC_CALL) { \
unsigned long long _iter = (PERF)->iterations; \
unsigned long long _run_total = RUN_TIME; \
_run_total *= UNIT_SCALE; \
_iter = estimate_perf_iterations(PERF, _iter, _run_total);\
(PERF)->iterations = 0; \
perf_start(PERF); \
for (int _i = 0; _i < _iter; _i++) { \
FUNC_CALL; \
} \
perf_pause(PERF); \
(PERF)->iterations += _iter; \
\
if(get_base_elapsed(PERF) < _run_total && \
BENCHMARK_TYPE == BENCHMARK_MIN_TIME) { \
_iter = estimate_perf_iterations(PERF, _iter, \
_run_total - get_base_elapsed(PERF) + \
(UNIT_SCALE / 16)); \
perf_continue(PERF); \
for (int _i = 0; _i < _iter; _i++) { \
FUNC_CALL; \
} \
perf_pause(PERF); \
(PERF)->iterations += _iter; \
} \
}
#define BENCHMARK(PERF, RUN_TIME, FUNC_CALL) { \
if((RUN_TIME) > 0) { \
CALLIBRATE(PERF, FUNC_CALL); \
PERFORMANCE_TEST(PERF, RUN_TIME, FUNC_CALL); \
\
} else { \
(PERF)->iterations = 1; \
perf_start(PERF); \
FUNC_CALL; \
perf_stop(PERF); \
} \
}
#ifdef USE_CYCLES
static inline void perf_print(struct perf p, long long unit_count) {
long long total_units = p.iterations * unit_count;
printf("runtime = %10lld ticks", get_base_elapsed(&p));
if (total_units != 0) {
printf(", bandwidth %lld MB in %.4f GC = %.2f ticks/byte",
total_units / (1000000), get_time_elapsed(&p),
get_base_elapsed(&p) / (double)total_units);
}
printf("\n");
}
#else
static inline void perf_print(struct perf p, double unit_count) {
long long total_units = p.iterations * unit_count;
long long usecs = (long long)(get_time_elapsed(&p) * 1000000);
printf("runtime = %10lld usecs", usecs);
if (dsize != 0) {
#if 1 // not bug in printf for 32-bit
printf(", bandwidth %lld MB in %.4f sec = %.2f MB/s\n", dsize/(1024*1024),
((double) usecs)/1000000, ((double) dsize) / (double)usecs);
#else
printf(", bandwidth %lld MB ", dsize/(1024*1024));
printf("in %.4f sec ",(double)usecs/1000000);
printf("= %.2f MB/s\n", (double)dsize/usecs);
#endif
if (total_units != 0) {
printf(", bandwidth %lld MB in %.4f sec = %.2f MB/s",
total_units / (1000000), get_time_elapsed(&p),
((double)total_units) / (1000000 * get_time_elapsed(&p)));
}
else
printf("\n");
printf("\n");
}
#endif
static inline uint64_t get_filesize(FILE *fp)
{
static inline uint64_t get_filesize(FILE * fp) {
uint64_t file_size;
fpos_t pos, pos_curr;
fgetpos(fp, &pos_curr); /* Save current position */
fgetpos(fp, &pos_curr); /* Save current position */
#if defined(_WIN32) || defined(_WIN64)
_fseeki64(fp, 0, SEEK_END);
#else
fseeko(fp, 0, SEEK_END);
#endif
fgetpos(fp, &pos);
file_size = *(uint64_t *)&pos;
fsetpos(fp, &pos_curr); /* Restore position */
file_size = *(uint64_t *) & pos;
fsetpos(fp, &pos_curr); /* Restore position */
return file_size;
}