isa-l/examples/ec/ec_piggyback_example.c

519 lines
14 KiB
C
Raw Normal View History

/**********************************************************************
Copyright(c) 2011-2018 Intel Corporation All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include "erasure_code.h" // use <isa-l.h> instead when linking against installed
#include "test.h"
#define MMAX 255
#define KMAX 255
typedef unsigned char u8;
int verbose = 0;
int usage(void)
{
fprintf(stderr,
"Usage: ec_piggyback_example [options]\n"
" -h Help\n"
" -k <val> Number of source fragments\n"
" -p <val> Number of parity fragments\n"
" -l <val> Length of fragments\n"
" -e <val> Simulate erasure on frag index val. Zero based. Can be repeated.\n"
" -v Verbose\n"
" -b Run timed benchmark\n"
" -s Toggle use of sparse matrix opt\n"
" -r <seed> Pick random (k, p) with seed\n");
exit(0);
}
// Cauchy-based matrix
void gf_gen_full_pb_cauchy_matrix(u8 * a, int m, int k)
{
int i, j, p = m - k;
// Identity matrix in top k x k to indicate a symetric code
memset(a, 0, k * m);
for (i = 0; i < k; i++)
a[k * i + i] = 1;
for (i = k; i < (k + p / 2); i++) {
for (j = 0; j < k / 2; j++)
a[k * i + j] = gf_inv(i ^ j);
for (; j < k; j++)
a[k * i + j] = 0;
}
for (; i < m; i++) {
for (j = 0; j < k / 2; j++)
a[k * i + j] = 0;
for (; j < k; j++)
a[k * i + j] = gf_inv((i - p / 2) ^ (j - k / 2));
}
// Fill in mixture of B parity depending on a few localized A sources
int r = 0, c = 0;
int repeat_len = k / (p - 2);
int parity_rows = p / 2;
for (i = 1 + k + parity_rows; i < m; i++, r++) {
if (r == (parity_rows - 1) - ((k / 2 % (parity_rows - 1))))
repeat_len++;
for (j = 0; j < repeat_len; j++, c++)
a[k * i + c] = gf_inv((k + 1) ^ c);
}
}
// Vandermonde based matrix - not recommended due to limits when invertable
void gf_gen_full_pb_vand_matrix(u8 * a, int m, int k)
{
int i, j, p = m - k;
unsigned char q, gen = 1;
// Identity matrix in top k x k to indicate a symetric code
memset(a, 0, k * m);
for (i = 0; i < k; i++)
a[k * i + i] = 1;
for (i = k; i < (k + (p / 2)); i++) {
q = 1;
for (j = 0; j < k / 2; j++) {
a[k * i + j] = q;
q = gf_mul(q, gen);
}
for (; j < k; j++)
a[k * i + j] = 0;
gen = gf_mul(gen, 2);
}
gen = 1;
for (; i < m; i++) {
q = 1;
for (j = 0; j < k / 2; j++) {
a[k * i + j] = 0;
}
for (; j < k; j++) {
a[k * i + j] = q;
q = gf_mul(q, gen);
}
gen = gf_mul(gen, 2);
}
// Fill in mixture of B parity depending on a few localized A sources
int r = 0, c = 0;
int repeat_len = k / (p - 2);
int parity_rows = p / 2;
for (i = 1 + k + parity_rows; i < m; i++, r++) {
if (r == (parity_rows - 1) - ((k / 2 % (parity_rows - 1))))
repeat_len++;
for (j = 0; j < repeat_len; j++)
a[k * i + c++] = 1;
}
}
void print_matrix(int m, int k, unsigned char *s, const char *msg)
{
int i, j;
printf("%s:\n", msg);
for (i = 0; i < m; i++) {
printf("%3d- ", i);
for (j = 0; j < k; j++) {
printf(" %2x", 0xff & s[j + (i * k)]);
}
printf("\n");
}
printf("\n");
}
void print_list(int n, unsigned char *s, const char *msg)
{
int i;
if (!verbose)
return;
printf("%s: ", msg);
for (i = 0; i < n; i++)
printf(" %d", s[i]);
printf("\n");
}
static int gf_gen_decode_matrix(u8 * encode_matrix,
u8 * decode_matrix,
u8 * invert_matrix,
u8 * temp_matrix,
u8 * decode_index,
u8 * frag_err_list, int nerrs, int k, int m);
int main(int argc, char *argv[])
{
int i, j, m, c, e, ret;
int k = 10, p = 4, len = 8 * 1024; // Default params
int nerrs = 0;
int benchmark = 0;
int sparse_matrix_opt = 1;
// Fragment buffer pointers
u8 *frag_ptrs[MMAX];
u8 *parity_ptrs[KMAX];
u8 *recover_srcs[KMAX];
u8 *recover_outp[KMAX];
u8 frag_err_list[MMAX];
// Coefficient matrices
u8 *encode_matrix, *decode_matrix;
u8 *invert_matrix, *temp_matrix;
u8 *g_tbls;
u8 decode_index[MMAX];
if (argc == 1)
for (i = 0; i < p; i++)
frag_err_list[nerrs++] = rand() % (k + p);
while ((c = getopt(argc, argv, "k:p:l:e:r:hvbs")) != -1) {
switch (c) {
case 'k':
k = atoi(optarg);
break;
case 'p':
p = atoi(optarg);
break;
case 'l':
len = atoi(optarg);
if (len < 0)
usage();
break;
case 'e':
e = atoi(optarg);
frag_err_list[nerrs++] = e;
break;
case 'r':
srand(atoi(optarg));
k = (rand() % MMAX) / 4;
k = (k < 2) ? 2 : k;
p = (rand() % (MMAX - k)) / 4;
p = (p < 2) ? 2 : p;
for (i = 0; i < k && nerrs < p; i++)
if (rand() & 1)
frag_err_list[nerrs++] = i;
break;
case 'v':
verbose++;
break;
case 'b':
benchmark = 1;
break;
case 's':
sparse_matrix_opt = !sparse_matrix_opt;
break;
case 'h':
default:
usage();
break;
}
}
m = k + p;
// Check for valid parameters
if (m > (MMAX / 2) || k > (KMAX / 2) || m < 0 || p < 2 || k < 1) {
printf(" Input test parameter error m=%d, k=%d, p=%d, erasures=%d\n",
m, k, p, nerrs);
usage();
}
if (nerrs > p) {
printf(" Number of erasures chosen exceeds power of code erasures=%d p=%d\n",
nerrs, p);
}
for (i = 0; i < nerrs; i++) {
if (frag_err_list[i] >= m)
printf(" fragment %d not in range\n", frag_err_list[i]);
}
printf("ec_piggyback_example:\n");
/*
* One simple way to implement piggyback codes is to keep a 2x wide matrix
* that covers the how each parity is related to both A and B sources. This
* keeps it easy to generalize in parameters m,k and the resulting sparse
* matrix multiplication can be optimized by pre-removal of zero items.
*/
int k2 = 2 * k;
int p2 = 2 * p;
int m2 = k2 + p2;
int nerrs2 = nerrs;
encode_matrix = malloc(m2 * k2);
decode_matrix = malloc(m2 * k2);
invert_matrix = malloc(m2 * k2);
temp_matrix = malloc(m2 * k2);
g_tbls = malloc(k2 * p2 * 32);
if (encode_matrix == NULL || decode_matrix == NULL
|| invert_matrix == NULL || temp_matrix == NULL || g_tbls == NULL) {
printf("Test failure! Error with malloc\n");
return -1;
}
// Allocate the src fragments
for (i = 0; i < k; i++) {
if (NULL == (frag_ptrs[i] = malloc(len))) {
printf("alloc error: Fail\n");
return -1;
}
}
// Allocate the parity fragments
for (i = 0; i < p2; i++) {
if (NULL == (parity_ptrs[i] = malloc(len / 2))) {
printf("alloc error: Fail\n");
return -1;
}
}
// Allocate buffers for recovered data
for (i = 0; i < p2; i++) {
if (NULL == (recover_outp[i] = malloc(len / 2))) {
printf("alloc error: Fail\n");
return -1;
}
}
// Fill sources with random data
for (i = 0; i < k; i++)
for (j = 0; j < len; j++)
frag_ptrs[i][j] = rand();
printf(" encode (m,k,p)=(%d,%d,%d) len=%d\n", m, k, p, len);
// Pick an encode matrix.
gf_gen_full_pb_cauchy_matrix(encode_matrix, m2, k2);
if (verbose)
print_matrix(m2, k2, encode_matrix, "encode matrix");
// Initialize g_tbls from encode matrix
ec_init_tables(k2, p2, &encode_matrix[k2 * k2], g_tbls);
// Fold A and B into single list of fragments
for (i = 0; i < k; i++)
frag_ptrs[i + k] = &frag_ptrs[i][len / 2];
if (!sparse_matrix_opt) {
// Standard encode using no assumptions on the encode matrix
// Generate EC parity blocks from sources
ec_encode_data(len / 2, k2, p2, g_tbls, frag_ptrs, parity_ptrs);
if (benchmark) {
struct perf start, stop;
unsigned long long iterations = (1ull << 32) / (m * len);
perf_start(&start);
for (i = 0; i < iterations; i++) {
ec_encode_data(len / 2, k2, p2, g_tbls, frag_ptrs,
parity_ptrs);
}
perf_stop(&stop);
printf("ec_piggyback_encode_std: ");
perf_print(stop, start, iterations * m2 * len / 2);
}
} else {
// Sparse matrix optimization - use fact that input matrix is sparse
// Keep an encode matrix with some zero elements removed
u8 *encode_matrix_faster, *g_tbls_faster;
encode_matrix_faster = malloc(m * k);
g_tbls_faster = malloc(k * p * 32);
if (encode_matrix_faster == NULL || g_tbls_faster == NULL) {
printf("Test failure! Error with malloc\n");
return -1;
}
/*
* Pack with only the part that we know are non-zero. Alternatively
* we could search and keep track of non-zero elements but for
* simplicity we just skip the lower quadrant.
*/
for (i = k, j = k2; i < m; i++, j++)
memcpy(&encode_matrix_faster[k * i], &encode_matrix[k2 * j], k);
if (verbose) {
print_matrix(p, k, &encode_matrix_faster[k * k],
"encode via sparse-opt");
print_matrix(p2 / 2, k2, &encode_matrix[(k2 + p2 / 2) * k2],
"encode via sparse-opt");
}
// Initialize g_tbls from encode matrix
ec_init_tables(k, p, &encode_matrix_faster[k * k], g_tbls_faster);
// Generate EC parity blocks from sources
ec_encode_data(len / 2, k, p, g_tbls_faster, frag_ptrs, parity_ptrs);
ec_encode_data(len / 2, k2, p, &g_tbls[k2 * p * 32], frag_ptrs,
&parity_ptrs[p]);
if (benchmark) {
struct perf start, stop;
unsigned long long iterations = (1ull << 32) / (m * len);
perf_start(&start);
for (i = 0; i < iterations; i++) {
ec_encode_data(len / 2, k, p, g_tbls_faster, frag_ptrs,
parity_ptrs);
ec_encode_data(len / 2, k2, p, &g_tbls[k2 * p * 32], frag_ptrs,
&parity_ptrs[p]);
}
perf_stop(&stop);
printf("ec_piggyback_encode_sparse: ");
perf_print(stop, start, iterations * m2 * len / 2);
}
}
if (nerrs <= 0)
return 0;
printf(" recover %d fragments\n", nerrs);
// Set frag pointers to correspond to parity
for (i = k2; i < m2; i++)
frag_ptrs[i] = parity_ptrs[i - k2];
print_list(nerrs2, frag_err_list, " frag err list");
// Find a decode matrix to regenerate all erasures from remaining frags
ret = gf_gen_decode_matrix(encode_matrix, decode_matrix,
invert_matrix, temp_matrix, decode_index, frag_err_list,
nerrs2, k2, m2);
if (ret != 0) {
printf("Fail on generate decode matrix\n");
return -1;
}
// Pack recovery array pointers as list of valid fragments
for (i = 0; i < k2; i++)
if (decode_index[i] < k2)
recover_srcs[i] = frag_ptrs[decode_index[i]];
else
recover_srcs[i] = parity_ptrs[decode_index[i] - k2];
print_list(k2, decode_index, " decode index");
// Recover data
ec_init_tables(k2, nerrs2, decode_matrix, g_tbls);
ec_encode_data(len / 2, k2, nerrs2, g_tbls, recover_srcs, recover_outp);
if (benchmark) {
struct perf start, stop;
unsigned long long iterations = (1ull << 32) / (k * len);
perf_start(&start);
for (i = 0; i < iterations; i++) {
ec_encode_data(len / 2, k2, nerrs2, g_tbls, recover_srcs,
recover_outp);
}
perf_stop(&stop);
printf("ec_piggyback_decode: ");
perf_print(stop, start, iterations * (k2 + nerrs2) * len / 2);
}
// Check that recovered buffers are the same as original
printf(" check recovery of block {");
for (i = 0; i < nerrs2; i++) {
printf(" %d", frag_err_list[i]);
if (memcmp(recover_outp[i], frag_ptrs[frag_err_list[i]], len / 2)) {
printf(" Fail erasure recovery %d, frag %d\n", i, frag_err_list[i]);
return -1;
}
}
printf(" } done all: Pass\n");
return 0;
}
// Generate decode matrix from encode matrix and erasure list
static int gf_gen_decode_matrix(u8 * encode_matrix,
u8 * decode_matrix,
u8 * invert_matrix,
u8 * temp_matrix,
u8 * decode_index, u8 * frag_err_list, int nerrs, int k, int m)
{
int i, j, p, r;
int nsrcerrs = 0;
u8 s, *b = temp_matrix;
u8 frag_in_err[MMAX];
memset(frag_in_err, 0, sizeof(frag_in_err));
// Order the fragments in erasure for easier sorting
for (i = 0; i < nerrs; i++) {
if (frag_err_list[i] < k)
nsrcerrs++;
frag_in_err[frag_err_list[i]] = 1;
}
// Construct b (matrix that encoded remaining frags) by removing erased rows
for (i = 0, r = 0; i < k; i++, r++) {
while (frag_in_err[r])
r++;
for (j = 0; j < k; j++)
b[k * i + j] = encode_matrix[k * r + j];
decode_index[i] = r;
}
if (verbose > 1)
print_matrix(k, k, b, "matrix to invert");
// Invert matrix to get recovery matrix
if (gf_invert_matrix(b, invert_matrix, k) < 0)
return -1;
if (verbose > 2)
print_matrix(k, k, invert_matrix, "matrix inverted");
// Get decode matrix with only wanted recovery rows
for (i = 0; i < nsrcerrs; i++) {
for (j = 0; j < k; j++) {
decode_matrix[k * i + j] = invert_matrix[k * frag_err_list[i] + j];
}
}
// For non-src (parity) erasures need to multiply encode matrix * invert
for (p = nsrcerrs; p < nerrs; p++) {
for (i = 0; i < k; i++) {
s = 0;
for (j = 0; j < k; j++)
s ^= gf_mul(invert_matrix[j * k + i],
encode_matrix[k * frag_err_list[p] + j]);
decode_matrix[k * p + i] = s;
}
}
if (verbose > 1)
print_matrix(nerrs, k, decode_matrix, "decode matrix");
return 0;
}