isa-l/erasure_code/gf_2vect_dot_prod_avx2.asm

357 lines
8.4 KiB
NASM
Raw Normal View History

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright(c) 2011-2015 Intel Corporation All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in
; the documentation and/or other materials provided with the
; distribution.
; * Neither the name of Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived
; from this software without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; gf_2vect_dot_prod_avx2(len, vec, *g_tbls, **buffs, **dests);
;;;
%include "reg_sizes.asm"
%ifidn __OUTPUT_FORMAT__, elf64
%define arg0 rdi
%define arg1 rsi
%define arg2 rdx
%define arg3 rcx
%define arg4 r8
%define arg5 r9
%define tmp r11
%define tmp.w r11d
%define tmp.b r11b
%define tmp2 r10
%define tmp3 r9
%define tmp4 r12 ; must be saved and restored
%define return rax
%macro SLDR 2
%endmacro
%define SSTR SLDR
%define PS 8
%define LOG_PS 3
%define func(x) x:
%macro FUNC_SAVE 0
push r12
%endmacro
%macro FUNC_RESTORE 0
pop r12
%endmacro
%endif
%ifidn __OUTPUT_FORMAT__, win64
%define arg0 rcx
%define arg1 rdx
%define arg2 r8
%define arg3 r9
%define arg4 r12 ; must be saved, loaded and restored
%define tmp r11
%define tmp.w r11d
%define tmp.b r11b
%define tmp2 r10
%define tmp3 r13 ; must be saved and restored
%define tmp4 r14 ; must be saved and restored
%define return rax
%macro SLDR 2
%endmacro
%define SSTR SLDR
%define PS 8
%define LOG_PS 3
%define stack_size 3*16 + 3*8 ; must be an odd multiple of 8
%define arg(x) [rsp + stack_size + PS + PS*x]
%define func(x) proc_frame x
%macro FUNC_SAVE 0
alloc_stack stack_size
vmovdqa [rsp + 0*16], xmm6
vmovdqa [rsp + 1*16], xmm7
vmovdqa [rsp + 2*16], xmm8
save_reg r12, 3*16 + 0*8
save_reg r13, 3*16 + 1*8
save_reg r14, 3*16 + 2*8
end_prolog
mov arg4, arg(4)
%endmacro
%macro FUNC_RESTORE 0
vmovdqa xmm6, [rsp + 0*16]
vmovdqa xmm7, [rsp + 1*16]
vmovdqa xmm8, [rsp + 2*16]
mov r12, [rsp + 3*16 + 0*8]
mov r13, [rsp + 3*16 + 1*8]
mov r14, [rsp + 3*16 + 2*8]
add rsp, stack_size
%endmacro
%endif
%ifidn __OUTPUT_FORMAT__, elf32
;;;================== High Address;
;;; arg4
;;; arg3
;;; arg2
;;; arg1
;;; arg0
;;; return
;;;<================= esp of caller
;;; ebp
;;;<================= ebp = esp
;;; var0
;;; esi
;;; edi
;;; ebx
;;;<================= esp of callee
;;;
;;;================== Low Address;
%define PS 4
%define LOG_PS 2
%define func(x) x:
%define arg(x) [ebp + PS*2 + PS*x]
%define var(x) [ebp - PS - PS*x]
%define trans ecx
%define trans2 esi
%define arg0 trans ;trans and trans2 are for the variables in stack
%define arg0_m arg(0)
%define arg1 ebx
%define arg2 arg2_m
%define arg2_m arg(2)
%define arg3 trans
%define arg3_m arg(3)
%define arg4 trans
%define arg4_m arg(4)
%define tmp edx
%define tmp.w edx
%define tmp.b dl
%define tmp2 edi
%define tmp3 trans2
%define tmp4 trans2
%define tmp4_m var(0)
%define return eax
%macro SLDR 2 ;stack load/restore
mov %1, %2
%endmacro
%define SSTR SLDR
%macro FUNC_SAVE 0
push ebp
mov ebp, esp
sub esp, PS*1 ;1 local variable
push esi
push edi
push ebx
mov arg1, arg(1)
%endmacro
%macro FUNC_RESTORE 0
pop ebx
pop edi
pop esi
add esp, PS*1 ;1 local variable
pop ebp
%endmacro
%endif ; output formats
%define len arg0
%define vec arg1
%define mul_array arg2
%define src arg3
%define dest1 arg4
%define vec_i tmp2
%define ptr tmp3
%define dest2 tmp4
%define pos return
%ifidn PS,4 ;32-bit code
%define len_m arg0_m
%define src_m arg3_m
%define dest1_m arg4_m
%define dest2_m tmp4_m
%endif
%ifndef EC_ALIGNED_ADDR
;;; Use Un-aligned load/store
%define XLDR vmovdqu
%define XSTR vmovdqu
%else
;;; Use Non-temporal load/stor
%ifdef NO_NT_LDST
%define XLDR vmovdqa
%define XSTR vmovdqa
%else
%define XLDR vmovntdqa
%define XSTR vmovntdq
%endif
%endif
%ifidn PS,8 ;64-bit code
default rel
[bits 64]
%endif
section .text
%ifidn PS,8 ;64-bit code
%define xmask0f ymm8
%define xmask0fx xmm8
%define xgft1_lo ymm7
%define xgft1_hi ymm6
%define xgft2_lo ymm5
%define xgft2_hi ymm4
%define x0 ymm0
%define xtmpa ymm1
%define xp1 ymm2
%define xp2 ymm3
%else ;32-bit code
%define xmask0f ymm7
%define xmask0fx xmm7
%define xgft1_lo ymm5
%define xgft1_hi ymm4
%define xgft2_lo xgft1_lo
%define xgft2_hi xgft1_hi
%define x0 ymm0
%define xtmpa ymm1
%define xp1 ymm2
%define xp2 ymm3
%endif
align 16
global gf_2vect_dot_prod_avx2:ISAL_SYM_TYPE_FUNCTION
func(gf_2vect_dot_prod_avx2)
FUNC_SAVE
SLDR len, len_m
sub len, 32
SSTR len_m, len
jl .return_fail
xor pos, pos
mov tmp.b, 0x0f
vpinsrb xmask0fx, xmask0fx, tmp.w, 0
vpbroadcastb xmask0f, xmask0fx ;Construct mask 0x0f0f0f...
sal vec, LOG_PS ;vec *= PS. Make vec_i count by PS
SLDR dest1, dest1_m
mov dest2, [dest1+PS]
SSTR dest2_m, dest2
mov dest1, [dest1]
SSTR dest1_m, dest1
.loop32:
vpxor xp1, xp1
vpxor xp2, xp2
mov tmp, mul_array
xor vec_i, vec_i
.next_vect:
SLDR src, src_m
mov ptr, [src+vec_i]
vmovdqu xgft1_lo, [tmp] ;Load array Ax{00}, Ax{01}, ..., Ax{0f}
; " Ax{00}, Ax{10}, ..., Ax{f0}
vperm2i128 xgft1_hi, xgft1_lo, xgft1_lo, 0x11 ; swapped to hi | hi
vperm2i128 xgft1_lo, xgft1_lo, xgft1_lo, 0x00 ; swapped to lo | lo
%ifidn PS,8 ; 64-bit code
vmovdqu xgft2_lo, [tmp+vec*(32/PS)] ;Load array Bx{00}, Bx{01}, ..., Bx{0f}
; " Bx{00}, Bx{10}, ..., Bx{f0}
vperm2i128 xgft2_hi, xgft2_lo, xgft2_lo, 0x11 ; swapped to hi | hi
vperm2i128 xgft2_lo, xgft2_lo, xgft2_lo, 0x00 ; swapped to lo | lo
XLDR x0, [ptr+pos] ;Get next source vector
add tmp, 32
add vec_i, PS
%else
XLDR x0, [ptr+pos] ;Get next source vector
%endif
vpand xtmpa, x0, xmask0f ;Mask low src nibble in bits 4-0
vpsraw x0, x0, 4 ;Shift to put high nibble into bits 4-0
vpand x0, x0, xmask0f ;Mask high src nibble in bits 4-0
vpshufb xgft1_hi, x0 ;Lookup mul table of high nibble
vpshufb xgft1_lo, xtmpa ;Lookup mul table of low nibble
vpxor xgft1_hi, xgft1_lo ;GF add high and low partials
vpxor xp1, xgft1_hi ;xp1 += partial
%ifidn PS,4 ; 32-bit code
vmovdqu xgft2_lo, [tmp+vec*(32/PS)] ;Load array Bx{00}, Bx{01}, ..., Bx{0f}
; " Bx{00}, Bx{10}, ..., Bx{f0}
vperm2i128 xgft2_hi, xgft2_lo, xgft2_lo, 0x11 ; swapped to hi | hi
vperm2i128 xgft2_lo, xgft2_lo, xgft2_lo, 0x00 ; swapped to lo | lo
add tmp, 32
add vec_i, PS
%endif
vpshufb xgft2_hi, x0 ;Lookup mul table of high nibble
vpshufb xgft2_lo, xtmpa ;Lookup mul table of low nibble
vpxor xgft2_hi, xgft2_lo ;GF add high and low partials
vpxor xp2, xgft2_hi ;xp2 += partial
cmp vec_i, vec
jl .next_vect
SLDR dest1, dest1_m
SLDR dest2, dest2_m
XSTR [dest1+pos], xp1
XSTR [dest2+pos], xp2
SLDR len, len_m
add pos, 32 ;Loop on 32 bytes at a time
cmp pos, len
jle .loop32
lea tmp, [len + 32]
cmp pos, tmp
je .return_pass
;; Tail len
mov pos, len ;Overlapped offset length-16
jmp .loop32 ;Do one more overlap pass
.return_pass:
mov return, 0
FUNC_RESTORE
ret
.return_fail:
mov return, 1
FUNC_RESTORE
ret
endproc_frame
section .data
;;; func core, ver, snum
slversion gf_2vect_dot_prod_avx2, 04, 05, 0196