isa-l/crc/crc32_iscsi_by16_10.asm

514 lines
15 KiB
NASM
Raw Normal View History

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright(c) 2011-2020 Intel Corporation All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in
; the documentation and/or other materials provided with the
; distribution.
; * Neither the name of Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived
; from this software without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Function API:
; UINT32 crc32_iscsi_by16_10(
; UINT32 init_crc, //initial CRC value, 32 bits
; const unsigned char *buf, //buffer pointer to calculate CRC on
; UINT64 len //buffer length in bytes (64-bit data)
; );
;
; Authors:
; Erdinc Ozturk
; Vinodh Gopal
; James Guilford
;
; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
; URL: http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
;
;
%include "reg_sizes.asm"
%ifndef FUNCTION_NAME
%define FUNCTION_NAME crc32_iscsi_by16_10
%endif
%if (AS_FEATURE_LEVEL) >= 10
[bits 64]
default rel
section .text
%ifidn __OUTPUT_FORMAT__, win64
%xdefine arg1 r8
%xdefine arg2 rcx
%xdefine arg3 rdx
%xdefine arg1_low32 r8d
%else
%xdefine arg1 rdx
%xdefine arg2 rdi
%xdefine arg3 rsi
%xdefine arg1_low32 edx
%endif
align 16
mk_global FUNCTION_NAME, function
FUNCTION_NAME:
endbranch
%ifidn __OUTPUT_FORMAT__, win64
sub rsp, (16*10 + 8)
; push the xmm registers into the stack to maintain
vmovdqa [rsp + 16*0], xmm6
vmovdqa [rsp + 16*1], xmm7
vmovdqa [rsp + 16*2], xmm8
vmovdqa [rsp + 16*3], xmm9
vmovdqa [rsp + 16*4], xmm10
vmovdqa [rsp + 16*5], xmm11
vmovdqa [rsp + 16*6], xmm12
vmovdqa [rsp + 16*7], xmm13
vmovdqa [rsp + 16*8], xmm14
vmovdqa [rsp + 16*9], xmm15
%endif
; check if smaller than 256B
cmp arg3, 256
jl .less_than_256
; load the initial crc value
vmovd xmm10, arg1_low32 ; initial crc
; receive the initial 64B data, xor the initial crc value
vmovdqu8 zmm0, [arg2+16*0]
vmovdqu8 zmm4, [arg2+16*4]
vpxorq zmm0, zmm10
vbroadcasti32x4 zmm10, [rk3] ;xmm10 has rk3 and rk4
;imm value of pclmulqdq instruction will determine which constant to use
sub arg3, 256
cmp arg3, 256
jl .fold_128_B_loop
vmovdqu8 zmm7, [arg2+16*8]
vmovdqu8 zmm8, [arg2+16*12]
vbroadcasti32x4 zmm16, [rk_1] ;zmm16 has rk-1 and rk-2
sub arg3, 256
align 16
.fold_256_B_loop:
add arg2, 256
vpclmulqdq zmm1, zmm0, zmm16, 0x10
vpclmulqdq zmm0, zmm0, zmm16, 0x01
vpternlogq zmm0, zmm1, [arg2+16*0], 0x96
vpclmulqdq zmm2, zmm4, zmm16, 0x10
vpclmulqdq zmm4, zmm4, zmm16, 0x01
vpternlogq zmm4, zmm2, [arg2+16*4], 0x96
vpclmulqdq zmm3, zmm7, zmm16, 0x10
vpclmulqdq zmm7, zmm7, zmm16, 0x01
vpternlogq zmm7, zmm3, [arg2+16*8], 0x96
vpclmulqdq zmm5, zmm8, zmm16, 0x10
vpclmulqdq zmm8, zmm8, zmm16, 0x01
vpternlogq zmm8, zmm5, [arg2+16*12], 0x96
sub arg3, 256
jge .fold_256_B_loop
;; Fold 256 into 128
add arg2, 256
vpclmulqdq zmm1, zmm0, zmm10, 0x01
vpclmulqdq zmm2, zmm0, zmm10, 0x10
vpternlogq zmm7, zmm1, zmm2, 0x96 ; xor ABC
vpclmulqdq zmm5, zmm4, zmm10, 0x01
vpclmulqdq zmm6, zmm4, zmm10, 0x10
vpternlogq zmm8, zmm5, zmm6, 0x96 ; xor ABC
vmovdqa32 zmm0, zmm7
vmovdqa32 zmm4, zmm8
add arg3, 128
jmp .less_than_128_B
; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The fold_128_B_loop
; loop will fold 128B at a time until we have 128+y Bytes of buffer
; fold 128B at a time. This section of the code folds 8 xmm registers in parallel
align 16
.fold_128_B_loop:
add arg2, 128
vpclmulqdq zmm2, zmm0, zmm10, 0x10
vpclmulqdq zmm0, zmm0, zmm10, 0x01
vpternlogq zmm0, zmm2, [arg2+16*0], 0x96
vpclmulqdq zmm5, zmm4, zmm10, 0x10
vpclmulqdq zmm4, zmm4, zmm10, 0x01
vpternlogq zmm4, zmm5, [arg2+16*4], 0x96
sub arg3, 128
jge .fold_128_B_loop
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
add arg2, 128
align 16
.less_than_128_B:
;; At this point, the buffer pointer is pointing at the last
;; y bytes of the buffer, where 0 <= y < 128.
;; The 128 bytes of folded data is in 2 of the zmm registers:
;; zmm0 and zmm4
cmp arg3, -64
jl .fold_128_B_register
vbroadcasti32x4 zmm10, [rk15]
;; If there are still 64 bytes left, folds from 128 bytes to 64 bytes
;; and handles the next 64 bytes
vpclmulqdq zmm2, zmm0, zmm10, 0x10
vpclmulqdq zmm0, zmm0, zmm10, 0x01
vpternlogq zmm0, zmm2, zmm4, 0x96
add arg3, 128
jmp .fold_64B_loop
align 16
.fold_128_B_register:
; fold the 8 128b parts into 1 xmm register with different constants
vmovdqu8 zmm16, [rk9] ; multiply by rk9-rk16
vmovdqu8 zmm11, [rk17] ; multiply by rk17-rk20, rk1,rk2, 0,0
vpclmulqdq zmm1, zmm0, zmm16, 0x01
vpclmulqdq zmm2, zmm0, zmm16, 0x10
vextracti64x2 xmm7, zmm4, 3 ; save last that has no multiplicand
vpclmulqdq zmm5, zmm4, zmm11, 0x01
vpclmulqdq zmm6, zmm4, zmm11, 0x10
vmovdqa xmm10, [rk1] ; Needed later in reduction loop
vpternlogq zmm1, zmm2, zmm5, 0x96 ; xor ABC
vpternlogq zmm1, zmm6, zmm7, 0x96 ; xor ABC
vshufi64x2 zmm8, zmm1, zmm1, 0x4e ; Swap 1,0,3,2 - 01 00 11 10
vpxorq ymm8, ymm8, ymm1
vextracti64x2 xmm5, ymm8, 1
vpxorq xmm7, xmm5, xmm8
; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop
; instead of a cmp instruction, we use the negative flag with the jl instruction
add arg3, 128-16
jl .final_reduction_for_128
; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
; we can fold 16 bytes at a time if y>=16
; continue folding 16B at a time
align 16
.16B_reduction_loop:
vpclmulqdq xmm8, xmm7, xmm10, 0x1
vpclmulqdq xmm7, xmm7, xmm10, 0x10
vpternlogq xmm7, xmm8, [arg2], 0x96
add arg2, 16
sub arg3, 16
; instead of a cmp instruction, we utilize the flags with the jge instruction
; equivalent of: cmp arg3, 16-16
; check if there is any more 16B in the buffer to be able to fold
jge .16B_reduction_loop
;now we have 16+z bytes left to reduce, where 0<= z < 16.
;first, we reduce the data in the xmm7 register
align 16
.final_reduction_for_128:
add arg3, 16
je .128_done
; here we are getting data that is less than 16 bytes.
; since we know that there was data before the pointer, we can offset
; the input pointer before the actual point, to receive exactly 16 bytes.
; after that the registers need to be adjusted.
align 16
.get_last_two_xmms:
vmovdqa xmm2, xmm7
vmovdqu xmm1, [arg2 - 16 + arg3]
; get rid of the extra data that was loaded before
; load the shift constant
lea rax, [rel pshufb_shf_table]
add rax, arg3
vmovdqu xmm0, [rax]
vpshufb xmm7, xmm0
vpxor xmm0, [mask3]
vpshufb xmm2, xmm0
vpblendvb xmm2, xmm2, xmm1, xmm0
;;;;;;;;;;
vpclmulqdq xmm8, xmm7, xmm10, 0x1
vpclmulqdq xmm7, xmm7, xmm10, 0x10
vpternlogq xmm7, xmm8, xmm2, 0x96
align 16
.128_done:
; compute crc of a 128-bit value
xor rax, rax
vmovq r11, xmm7
crc32 rax, r11
vpextrq r11, xmm7, 1
crc32 rax, r11
align 16
.cleanup:
%ifidn __OUTPUT_FORMAT__, win64
vmovdqa xmm6, [rsp + 16*0]
vmovdqa xmm7, [rsp + 16*1]
vmovdqa xmm8, [rsp + 16*2]
vmovdqa xmm9, [rsp + 16*3]
vmovdqa xmm10, [rsp + 16*4]
vmovdqa xmm11, [rsp + 16*5]
vmovdqa xmm12, [rsp + 16*6]
vmovdqa xmm13, [rsp + 16*7]
vmovdqa xmm14, [rsp + 16*8]
vmovdqa xmm15, [rsp + 16*9]
add rsp, (16*10 + 8)
%endif
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 16
.less_than_256:
; check if there is enough buffer to be able to fold 16B at a time
cmp arg3, 32
jl .less_than_32
vmovd xmm1, arg1_low32 ; get the initial crc value
cmp arg3, 64
jl .less_than_64
;; receive the initial 64B data, xor the initial crc value
vmovdqu8 zmm0, [arg2]
vpxorq zmm0, zmm1
add arg2, 64
sub arg3, 64
cmp arg3, 64
jb .reduce_64B
vbroadcasti32x4 zmm10, [rk15]
align 16
.fold_64B_loop:
vmovdqu8 zmm4, [arg2]
vpclmulqdq zmm2, zmm0, zmm10, 0x10
vpclmulqdq zmm0, zmm0, zmm10, 0x01
vpternlogq zmm0, zmm2, zmm4, 0x96
add arg2, 64
sub arg3, 64
cmp arg3, 64
jge .fold_64B_loop
align 16
.reduce_64B:
; Reduce from 64 bytes to 16 bytes
vmovdqu8 zmm11, [rk17]
vpclmulqdq zmm1, zmm0, zmm11, 0x01
vpclmulqdq zmm2, zmm0, zmm11, 0x10
vextracti64x2 xmm7, zmm0, 3 ; save last that has no multiplicand
vpternlogq zmm1, zmm2, zmm7, 0x96
vmovdqa xmm10, [rk_1b] ; Needed later in reduction loop
vshufi64x2 zmm8, zmm1, zmm1, 0x4e ; Swap 1,0,3,2 - 01 00 11 10
vpxorq ymm8, ymm8, ymm1
vextracti64x2 xmm5, ymm8, 1
vpxorq xmm7, xmm5, xmm8
sub arg3, 16
jns .16B_reduction_loop ; At least 16 bytes of data to digest
jmp .final_reduction_for_128
align 16
.less_than_64:
;; if there is, load the constants
vmovdqa xmm10, [rk_1b]
vmovdqu xmm7, [arg2] ; load the plaintext
vpxor xmm7, xmm1 ; xmm1 already has initial crc value
;; update the buffer pointer
add arg2, 16
;; update the counter
;; - subtract 32 instead of 16 to save one instruction from the loop
sub arg3, 32
jmp .16B_reduction_loop
align 16
.less_than_32:
; mov initial crc to the return value. this is necessary for zero-length buffers.
mov eax, arg1_low32
test arg3, arg3
je .cleanup
vmovd xmm0, arg1_low32 ; get the initial crc value
cmp arg3, 16
je .exact_16_left
jl .less_than_16_left
vmovdqu xmm7, [arg2] ; load the plaintext
vpxor xmm7, xmm0 ; xor the initial crc value
add arg2, 16
sub arg3, 16
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
jmp .get_last_two_xmms
align 16
.less_than_16_left:
cmp arg3, 4
jl .only_less_than_4
xor r10, r10
bts r10, arg3
dec r10
kmovw k2, r10d
vmovdqu8 xmm7{k2}{z}, [arg2]
vpxor xmm7, xmm0 ; xor the initial crc value
lea rax, [rel pshufb_shf_table]
vmovdqu xmm0, [rax + arg3]
vpshufb xmm7,xmm0
jmp .128_done
align 16
.exact_16_left:
vmovdqu xmm7, [arg2]
vpxor xmm7, xmm0 ; xor the initial crc value
jmp .128_done
align 16
.only_less_than_4:
mov eax, arg1_low32
cmp arg3, 2
jb .only_1_left
je .only_2_left
; 3 bytes left
crc32 eax, word [arg2]
crc32 eax, byte [arg2 + 2]
jmp .cleanup
align 16
.only_2_left:
crc32 eax, word [arg2]
jmp .cleanup
align 16
.only_1_left:
crc32 eax, byte [arg2]
jmp .cleanup
section .data
align 32
%ifndef USE_CONSTS
; precomputed constants
rk_1: dq 0x00000000b9e02b86
rk_2: dq 0x00000000dcb17aa4
rk1: dq 0x00000000493c7d27
rk2: dq 0x0000000ec1068c50
rk3: dq 0x0000000206e38d70
rk4: dq 0x000000006992cea2
rk5: dq 0x00000000493c7d27
rk6: dq 0x00000000dd45aab8
rk7: dq 0x00000000dea713f0
rk8: dq 0x0000000105ec76f0
rk9: dq 0x0000000047db8317
rk10: dq 0x000000002ad91c30
rk11: dq 0x000000000715ce53
rk12: dq 0x00000000c49f4f67
rk13: dq 0x0000000039d3b296
rk14: dq 0x00000000083a6eec
rk15: dq 0x000000009e4addf8
rk16: dq 0x00000000740eef02
rk17: dq 0x00000000ddc0152b
rk18: dq 0x000000001c291d04
rk19: dq 0x00000000ba4fc28e
rk20: dq 0x000000003da6d0cb
rk_1b: dq 0x00000000493c7d27
rk_2b: dq 0x0000000ec1068c50
dq 0x0000000000000000
dq 0x0000000000000000
%else
INCLUDE_CONSTS
%endif
pshufb_shf_table:
; use these values for shift constants for the pshufb instruction
; different alignments result in values as shown:
; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7
; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8
; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9
; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10
; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11
; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12
; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13
; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14
; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
dq 0x0706050403020100, 0x000e0d0c0b0a0908
mask: dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000
mask2: dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF
mask3: dq 0x8080808080808080, 0x8080808080808080
%else ; Assembler doesn't understand these opcodes. Add empty symbol for windows.
%ifidn __OUTPUT_FORMAT__, win64
global no_ %+ FUNCTION_NAME
no_ %+ FUNCTION_NAME %+ :
%endif
%endif ; (AS_FEATURE_LEVEL) >= 10