isa-l/erasure_code/gf_vect_dot_prod_sse.asm

269 lines
5.9 KiB
NASM
Raw Normal View History

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright(c) 2011-2015 Intel Corporation All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in
; the documentation and/or other materials provided with the
; distribution.
; * Neither the name of Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived
; from this software without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; gf_vect_dot_prod_sse(len, vec, *g_tbls, **buffs, *dest);
;;;
%include "reg_sizes.asm"
%ifidn __OUTPUT_FORMAT__, elf64
%define arg0 rdi
%define arg1 rsi
%define arg2 rdx
%define arg3 rcx
%define arg4 r8
%define tmp r11
%define tmp2 r10
%define tmp3 r9
%define return rax
%macro SLDR 2
%endmacro
%define SSTR SLDR
%define PS 8
%define func(x) x: endbranch
%define FUNC_SAVE
%define FUNC_RESTORE
%endif
%ifidn __OUTPUT_FORMAT__, win64
%define arg0 rcx
%define arg1 rdx
%define arg2 r8
%define arg3 r9
%define arg4 r12 ; must be saved and loaded
%define tmp r11
%define tmp2 r10
%define tmp3 rdi ; must be saved and loaded
%define return rax
%macro SLDR 2
%endmacro
%define SSTR SLDR
%define PS 8
%define frame_size 2*8
%define arg(x) [rsp + frame_size + PS + PS*x]
%define func(x) proc_frame x
%macro FUNC_SAVE 0
rex_push_reg r12
push_reg rdi
end_prolog
mov arg4, arg(4)
%endmacro
%macro FUNC_RESTORE 0
pop rdi
pop r12
%endmacro
%endif
%ifidn __OUTPUT_FORMAT__, elf32
;;;================== High Address;
;;; arg4
;;; arg3
;;; arg2
;;; arg1
;;; arg0
;;; return
;;;<================= esp of caller
;;; ebp
;;;<================= ebp = esp
;;; esi
;;; edi
;;; ebx
;;;<================= esp of callee
;;;
;;;================== Low Address;
%define PS 4
%define LOG_PS 2
%define func(x) x: endbranch
%define arg(x) [ebp + PS*2 + PS*x]
%define trans ecx ;trans is for the variables in stack
%define arg0 trans
%define arg0_m arg(0)
%define arg1 trans
%define arg1_m arg(1)
%define arg2 arg2_m
%define arg2_m arg(2)
%define arg3 ebx
%define arg4 trans
%define arg4_m arg(4)
%define tmp edx
%define tmp2 edi
%define tmp3 esi
%define return eax
%macro SLDR 2 ;; stack load/restore
mov %1, %2
%endmacro
%define SSTR SLDR
%macro FUNC_SAVE 0
push ebp
mov ebp, esp
push esi
push edi
push ebx
mov arg3, arg(3)
%endmacro
%macro FUNC_RESTORE 0
pop ebx
pop edi
pop esi
mov esp, ebp
pop ebp
%endmacro
%endif ; output formats
%define len arg0
%define vec arg1
%define mul_array arg2
%define src arg3
%define dest arg4
%define vec_i tmp2
%define ptr tmp3
%define pos return
%ifidn PS,4 ;32-bit code
%define vec_m arg1_m
%define len_m arg0_m
%define dest_m arg4_m
%endif
%ifndef EC_ALIGNED_ADDR
;;; Use Un-aligned load/store
%define XLDR movdqu
%define XSTR movdqu
%else
;;; Use Non-temporal load/stor
%ifdef NO_NT_LDST
%define XLDR movdqa
%define XSTR movdqa
%else
%define XLDR movntdqa
%define XSTR movntdq
%endif
%endif
%ifidn PS,8 ;64-bit code
default rel
[bits 64]
%endif
section .text
%define xmask0f xmm5
%define xgft_lo xmm4
%define xgft_hi xmm3
%define x0 xmm0
%define xtmpa xmm1
%define xp xmm2
align 16
mk_global gf_vect_dot_prod_sse, function
func(gf_vect_dot_prod_sse)
FUNC_SAVE
SLDR len, len_m
sub len, 16
SSTR len_m, len
jl .return_fail
xor pos, pos
movdqa xmask0f, [mask0f] ;Load mask of lower nibble in each byte
.loop16:
pxor xp, xp
mov tmp, mul_array
xor vec_i, vec_i
.next_vect:
mov ptr, [src+vec_i*PS]
movdqu xgft_lo, [tmp] ;Load array Cx{00}, Cx{01}, ..., Cx{0f}
movdqu xgft_hi, [tmp+16] ; " Cx{00}, Cx{10}, ..., Cx{f0}
XLDR x0, [ptr+pos] ;Get next source vector
add tmp, 32
add vec_i, 1
movdqa xtmpa, x0 ;Keep unshifted copy of src
psraw x0, 4 ;Shift to put high nibble into bits 4-0
pand x0, xmask0f ;Mask high src nibble in bits 4-0
pand xtmpa, xmask0f ;Mask low src nibble in bits 4-0
pshufb xgft_hi, x0 ;Lookup mul table of high nibble
pshufb xgft_lo, xtmpa ;Lookup mul table of low nibble
pxor xgft_hi, xgft_lo ;GF add high and low partials
pxor xp, xgft_hi ;xp += partial
SLDR vec, vec_m
cmp vec_i, vec
jl .next_vect
SLDR dest, dest_m
XSTR [dest+pos], xp
add pos, 16 ;Loop on 16 bytes at a time
SLDR len, len_m
cmp pos, len
jle .loop16
lea tmp, [len + 16]
cmp pos, tmp
je .return_pass
;; Tail len
mov pos, len ;Overlapped offset length-16
jmp .loop16 ;Do one more overlap pass
.return_pass:
mov return, 0
FUNC_RESTORE
ret
.return_fail:
mov return, 1
FUNC_RESTORE
ret
endproc_frame
section .data
align 16
mask0f: dq 0x0f0f0f0f0f0f0f0f, 0x0f0f0f0f0f0f0f0f