isa-l/erasure_code/erasure_code_update_test.c

958 lines
27 KiB
C
Raw Normal View History

/**********************************************************************
Copyright(c) 2011-2015 Intel Corporation All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h> // for memset, memcmp
#include "erasure_code.h"
#include "types.h"
#ifndef ALIGN_SIZE
# define ALIGN_SIZE 16
#endif
//By default, test multibinary version
#ifndef FUNCTION_UNDER_TEST
# define FUNCTION_UNDER_TEST ec_encode_data_update
# define REF_FUNCTION ec_encode_data
#endif
#define TEST_LEN 8192
#define TEST_SIZE (TEST_LEN/2)
#ifndef TEST_SOURCES
# define TEST_SOURCES 127
#endif
#ifndef RANDOMS
# define RANDOMS 200
#endif
#define MMAX TEST_SOURCES
#define KMAX TEST_SOURCES
#ifdef EC_ALIGNED_ADDR
// Define power of 2 range to check ptr, len alignment
# define PTR_ALIGN_CHK_B 0
# define LEN_ALIGN_CHK_B 0 // 0 for aligned only
#else
// Define power of 2 range to check ptr, len alignment
# define PTR_ALIGN_CHK_B ALIGN_SIZE
# define LEN_ALIGN_CHK_B ALIGN_SIZE // 0 for aligned only
#endif
#ifndef TEST_SEED
#define TEST_SEED 11
#endif
#define str(s) #s
#define xstr(s) str(s)
typedef unsigned char u8;
void dump(unsigned char *buf, int len)
{
int i;
for (i = 0; i < len;) {
printf(" %2x", 0xff & buf[i++]);
if (i % 32 == 0)
printf("\n");
}
printf("\n");
}
void dump_matrix(unsigned char **s, int k, int m)
{
int i, j;
for (i = 0; i < k; i++) {
for (j = 0; j < m; j++) {
printf(" %2x", s[i][j]);
}
printf("\n");
}
printf("\n");
}
void dump_u8xu8(unsigned char *s, int k, int m)
{
int i, j;
for (i = 0; i < k; i++) {
for (j = 0; j < m; j++) {
printf(" %2x", 0xff & s[j + (i * m)]);
}
printf("\n");
}
printf("\n");
}
// Generate Random errors
static void gen_err_list(unsigned char *src_err_list,
unsigned char *src_in_err, int *pnerrs, int *pnsrcerrs, int k, int m)
{
int i, err;
int nerrs = 0, nsrcerrs = 0;
for (i = 0, nerrs = 0, nsrcerrs = 0; i < m && nerrs < m - k; i++) {
err = 1 & rand();
src_in_err[i] = err;
if (err) {
src_err_list[nerrs++] = i;
if (i < k) {
nsrcerrs++;
}
}
}
if (nerrs == 0) { // should have at least one error
while ((err = (rand() % KMAX)) >= m) ;
src_err_list[nerrs++] = err;
src_in_err[err] = 1;
if (err < k)
nsrcerrs = 1;
}
*pnerrs = nerrs;
*pnsrcerrs = nsrcerrs;
return;
}
#define NO_INVERT_MATRIX -2
// Generate decode matrix from encode matrix
static int gf_gen_decode_matrix(unsigned char *encode_matrix,
unsigned char *decode_matrix,
unsigned char *invert_matrix,
unsigned int *decode_index,
unsigned char *src_err_list,
unsigned char *src_in_err,
int nerrs, int nsrcerrs, int k, int m)
{
int i, j, p;
int r;
unsigned char *backup, *b, s;
int incr = 0;
b = malloc(MMAX * KMAX);
backup = malloc(MMAX * KMAX);
if (b == NULL || backup == NULL) {
printf("Test failure! Error with malloc\n");
free(b);
free(backup);
return -1;
}
// Construct matrix b by removing error rows
for (i = 0, r = 0; i < k; i++, r++) {
while (src_in_err[r])
r++;
for (j = 0; j < k; j++) {
b[k * i + j] = encode_matrix[k * r + j];
backup[k * i + j] = encode_matrix[k * r + j];
}
decode_index[i] = r;
}
incr = 0;
while (gf_invert_matrix(b, invert_matrix, k) < 0) {
if (nerrs == (m - k)) {
free(b);
free(backup);
printf("BAD MATRIX\n");
return NO_INVERT_MATRIX;
}
incr++;
memcpy(b, backup, MMAX * KMAX);
for (i = nsrcerrs; i < nerrs - nsrcerrs; i++) {
if (src_err_list[i] == (decode_index[k - 1] + incr)) {
// skip the erased parity line
incr++;
continue;
}
}
if (decode_index[k - 1] + incr >= m) {
free(b);
free(backup);
printf("BAD MATRIX\n");
return NO_INVERT_MATRIX;
}
decode_index[k - 1] += incr;
for (j = 0; j < k; j++)
b[k * (k - 1) + j] = encode_matrix[k * decode_index[k - 1] + j];
};
for (i = 0; i < nsrcerrs; i++) {
for (j = 0; j < k; j++) {
decode_matrix[k * i + j] = invert_matrix[k * src_err_list[i] + j];
}
}
/* src_err_list from encode_matrix * invert of b for parity decoding */
for (p = nsrcerrs; p < nerrs; p++) {
for (i = 0; i < k; i++) {
s = 0;
for (j = 0; j < k; j++)
s ^= gf_mul(invert_matrix[j * k + i],
encode_matrix[k * src_err_list[p] + j]);
decode_matrix[k * p + i] = s;
}
}
free(b);
free(backup);
return 0;
}
int main(int argc, char *argv[])
{
int re = 0;
int i, j, p, rtest, m, k;
int nerrs, nsrcerrs;
void *buf;
unsigned int decode_index[MMAX];
unsigned char *temp_buffs[TEST_SOURCES], *buffs[TEST_SOURCES];
unsigned char *update_buffs[TEST_SOURCES];
unsigned char *encode_matrix, *decode_matrix, *invert_matrix, *g_tbls;
unsigned char src_in_err[TEST_SOURCES], src_err_list[TEST_SOURCES];
unsigned char *recov[TEST_SOURCES];
int rows, align, size;
unsigned char *efence_buffs[TEST_SOURCES];
unsigned char *efence_update_buffs[TEST_SOURCES];
unsigned int offset;
u8 *ubuffs[TEST_SOURCES];
u8 *update_ubuffs[TEST_SOURCES];
u8 *temp_ubuffs[TEST_SOURCES];
printf("test " xstr(FUNCTION_UNDER_TEST) ": %dx%d ", TEST_SOURCES, TEST_LEN);
srand(TEST_SEED);
// Allocate the arrays
for (i = 0; i < TEST_SOURCES; i++) {
if (posix_memalign(&buf, 64, TEST_LEN)) {
printf("alloc error: Fail");
return -1;
}
buffs[i] = buf;
}
for (i = 0; i < TEST_SOURCES; i++) {
if (posix_memalign(&buf, 64, TEST_LEN)) {
printf("alloc error: Fail");
return -1;
}
temp_buffs[i] = buf;
memset(temp_buffs[i], 0, TEST_LEN); // initialize the destination buffer to be zero for update function
}
for (i = 0; i < TEST_SOURCES; i++) {
if (posix_memalign(&buf, 64, TEST_LEN)) {
printf("alloc error: Fail");
return -1;
}
update_buffs[i] = buf;
memset(update_buffs[i], 0, TEST_LEN); // initialize the destination buffer to be zero for update function
}
// Test erasure code by encode and recovery
encode_matrix = malloc(MMAX * KMAX);
decode_matrix = malloc(MMAX * KMAX);
invert_matrix = malloc(MMAX * KMAX);
g_tbls = malloc(KMAX * TEST_SOURCES * 32);
if (encode_matrix == NULL || decode_matrix == NULL
|| invert_matrix == NULL || g_tbls == NULL) {
printf("Test failure! Error with malloc\n");
return -1;
}
// Pick a first test
m = 15;
k = 10;
if (m > MMAX || k > KMAX)
return -1;
// Make random data
for (i = 0; i < k; i++) {
for (j = 0; j < TEST_LEN; j++) {
buffs[i][j] = rand();
update_buffs[i][j] = buffs[i][j];
}
}
// Generate encode matrix encode_matrix
// The matrix generated by gf_gen_rs_matrix
// is not always invertable.
gf_gen_rs_matrix(encode_matrix, m, k);
// Generate g_tbls from encode matrix encode_matrix
ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
// Perform matrix dot_prod for EC encoding
// using g_tbls from encode matrix encode_matrix
REF_FUNCTION(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(TEST_LEN, k, m - k, i, g_tbls, update_buffs[i],
&update_buffs[k]);
}
for (i = 0; i < m - k; i++) {
if (0 != memcmp(update_buffs[k + i], buffs[k + i], TEST_LEN)) {
printf("\nupdate_buffs%d :", i);
dump(update_buffs[k + i], 25);
printf("buffs%d :", i);
dump(buffs[k + i], 25);
return -1;
}
}
// Choose random buffers to be in erasure
memset(src_in_err, 0, TEST_SOURCES);
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
// Generate decode matrix
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
invert_matrix, decode_index, src_err_list, src_in_err,
nerrs, nsrcerrs, k, m);
if (re != 0) {
printf("Fail to gf_gen_decode_matrix\n");
return -1;
}
// Pack recovery array as list of valid sources
// Its order must be the same as the order
// to generate matrix b in gf_gen_decode_matrix
for (i = 0; i < k; i++) {
recov[i] = update_buffs[decode_index[i]];
}
// Recover data
ec_init_tables(k, nerrs, decode_matrix, g_tbls);
REF_FUNCTION(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]);
for (i = 0; i < nerrs; i++) {
if (0 != memcmp(temp_buffs[k + i], update_buffs[src_err_list[i]], TEST_LEN)) {
printf("Fail error recovery (%d, %d, %d)\n", m, k, nerrs);
printf(" - erase list = ");
for (j = 0; j < nerrs; j++)
printf(" %d", src_err_list[j]);
printf(" - Index = ");
for (p = 0; p < k; p++)
printf(" %d", decode_index[p]);
printf("\nencode_matrix:\n");
dump_u8xu8((u8 *) encode_matrix, m, k);
printf("inv b:\n");
dump_u8xu8((u8 *) invert_matrix, k, k);
printf("\ndecode_matrix:\n");
dump_u8xu8((u8 *) decode_matrix, m, k);
printf("recov %d:", src_err_list[i]);
dump(temp_buffs[k + i], 25);
printf("orig :");
dump(update_buffs[src_err_list[i]], 25);
return -1;
}
}
putchar('.');
// Pick a first test
m = 7;
k = 5;
if (m > MMAX || k > KMAX)
return -1;
// Zero the destination buffer for update function
for (i = k; i < TEST_SOURCES; i++) {
memset(buffs[i], 0, TEST_LEN);
memset(update_buffs[i], 0, TEST_LEN);
}
// Make random data
for (i = 0; i < k; i++) {
for (j = 0; j < TEST_LEN; j++) {
buffs[i][j] = rand();
update_buffs[i][j] = buffs[i][j];
}
}
// The matrix generated by gf_gen_cauchy1_matrix
// is always invertable.
gf_gen_cauchy1_matrix(encode_matrix, m, k);
// Generate g_tbls from encode matrix encode_matrix
ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
// Perform matrix dot_prod for EC encoding
// using g_tbls from encode matrix encode_matrix
REF_FUNCTION(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(TEST_LEN, k, m - k, i, g_tbls, update_buffs[i],
&update_buffs[k]);
}
for (i = 0; i < m - k; i++) {
if (0 != memcmp(update_buffs[k + i], buffs[k + i], TEST_LEN)) {
printf("\nupdate_buffs%d :", i);
dump(update_buffs[k + i], 25);
printf("buffs%d :", i);
dump(buffs[k + i], 25);
return -1;
}
}
// Choose random buffers to be in erasure
memset(src_in_err, 0, TEST_SOURCES);
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
// Generate decode matrix
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
invert_matrix, decode_index, src_err_list, src_in_err,
nerrs, nsrcerrs, k, m);
if (re != 0) {
printf("Fail to gf_gen_decode_matrix\n");
return -1;
}
// Pack recovery array as list of valid sources
// Its order must be the same as the order
// to generate matrix b in gf_gen_decode_matrix
for (i = 0; i < k; i++) {
recov[i] = update_buffs[decode_index[i]];
}
// Recover data
for (i = 0; i < TEST_SOURCES; i++) {
memset(temp_buffs[i], 0, TEST_LEN);
}
ec_init_tables(k, nerrs, decode_matrix, g_tbls);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(TEST_LEN, k, nerrs, i, g_tbls, recov[i], &temp_buffs[k]);
}
for (i = 0; i < nerrs; i++) {
if (0 != memcmp(temp_buffs[k + i], update_buffs[src_err_list[i]], TEST_LEN)) {
printf("Fail error recovery (%d, %d, %d)\n", m, k, nerrs);
printf(" - erase list = ");
for (j = 0; j < nerrs; j++)
printf(" %d", src_err_list[j]);
printf(" - Index = ");
for (p = 0; p < k; p++)
printf(" %d", decode_index[p]);
printf("\nencode_matrix:\n");
dump_u8xu8((u8 *) encode_matrix, m, k);
printf("inv b:\n");
dump_u8xu8((u8 *) invert_matrix, k, k);
printf("\ndecode_matrix:\n");
dump_u8xu8((u8 *) decode_matrix, m, k);
printf("recov %d:", src_err_list[i]);
dump(temp_buffs[k + i], 25);
printf("orig :");
dump(update_buffs[src_err_list[i]], 25);
return -1;
}
}
putchar('.');
// Do more random tests
for (rtest = 0; rtest < RANDOMS; rtest++) {
while ((m = (rand() % MMAX)) < 2) ;
while ((k = (rand() % KMAX)) >= m || k < 1) ;
if (m > MMAX || k > KMAX)
continue;
// Zero the destination buffer for update function
for (i = k; i < TEST_SOURCES; i++) {
memset(buffs[i], 0, TEST_LEN);
memset(update_buffs[i], 0, TEST_LEN);
}
// Make random data
for (i = 0; i < k; i++) {
for (j = 0; j < TEST_LEN; j++) {
buffs[i][j] = rand();
update_buffs[i][j] = buffs[i][j];
}
}
// The matrix generated by gf_gen_cauchy1_matrix
// is always invertable.
gf_gen_cauchy1_matrix(encode_matrix, m, k);
// Make parity vects
// Generate g_tbls from encode matrix a
ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
// Perform matrix dot_prod for EC encoding
// using g_tbls from encode matrix a
REF_FUNCTION(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(TEST_LEN, k, m - k, i, g_tbls, update_buffs[i],
&update_buffs[k]);
}
for (i = 0; i < m - k; i++) {
if (0 != memcmp(update_buffs[k + i], buffs[k + i], TEST_LEN)) {
printf("\nupdate_buffs%d :", i);
dump(update_buffs[k + i], 25);
printf("buffs%d :", i);
dump(buffs[k + i], 25);
return -1;
}
}
// Random errors
memset(src_in_err, 0, TEST_SOURCES);
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
// Generate decode matrix
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
invert_matrix, decode_index, src_err_list,
src_in_err, nerrs, nsrcerrs, k, m);
if (re != 0) {
printf("Fail to gf_gen_decode_matrix\n");
return -1;
}
// Pack recovery array as list of valid sources
// Its order must be the same as the order
// to generate matrix b in gf_gen_decode_matrix
for (i = 0; i < k; i++) {
recov[i] = update_buffs[decode_index[i]];
}
// Recover data
for (i = 0; i < TEST_SOURCES; i++) {
memset(temp_buffs[i], 0, TEST_LEN);
}
ec_init_tables(k, nerrs, decode_matrix, g_tbls);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(TEST_LEN, k, nerrs, i, g_tbls, recov[i],
&temp_buffs[k]);
}
for (i = 0; i < nerrs; i++) {
if (0 !=
memcmp(temp_buffs[k + i], update_buffs[src_err_list[i]],
TEST_LEN)) {
printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
printf(" - erase list = ");
for (j = 0; j < nerrs; j++)
printf(" %d", src_err_list[j]);
printf(" - Index = ");
for (p = 0; p < k; p++)
printf(" %d", decode_index[p]);
printf("\nencode_matrix:\n");
dump_u8xu8((u8 *) encode_matrix, m, k);
printf("inv b:\n");
dump_u8xu8((u8 *) invert_matrix, k, k);
printf("\ndecode_matrix:\n");
dump_u8xu8((u8 *) decode_matrix, m, k);
printf("orig data:\n");
dump_matrix(update_buffs, m, 25);
printf("orig :");
dump(update_buffs[src_err_list[i]], 25);
printf("recov %d:", src_err_list[i]);
dump(temp_buffs[k + i], 25);
return -1;
}
}
putchar('.');
}
// Run tests at end of buffer for Electric Fence
k = 16;
align = (LEN_ALIGN_CHK_B != 0) ? 1 : ALIGN_SIZE;
if (k > KMAX)
return -1;
for (rows = 1; rows <= 16; rows++) {
m = k + rows;
if (m > MMAX)
return -1;
for (i = k; i < TEST_SOURCES; i++) {
memset(buffs[i], 0, TEST_LEN);
memset(update_buffs[i], 0, TEST_LEN);
}
// Make random data
for (i = 0; i < k; i++) {
for (j = 0; j < TEST_LEN; j++) {
buffs[i][j] = rand();
update_buffs[i][j] = buffs[i][j];
}
}
for (size = 0; size <= TEST_SIZE; size += align) {
for (i = 0; i < m; i++) { // Line up TEST_SIZE from end
efence_buffs[i] = buffs[i] + TEST_LEN - size;
efence_update_buffs[i] = update_buffs[i] + TEST_LEN - size;
}
// Zero the destination buffer for update function
for (i = k; i < m; i++) {
memset(efence_buffs[i], 0, size);
memset(efence_update_buffs[i], 0, size);
}
// The matrix generated by gf_gen_cauchy1_matrix
// is always invertable.
gf_gen_cauchy1_matrix(encode_matrix, m, k);
// Make parity vects
// Generate g_tbls from encode matrix a
ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
// Perform matrix dot_prod for EC encoding
// using g_tbls from encode matrix a
REF_FUNCTION(size, k, m - k, g_tbls, efence_buffs, &efence_buffs[k]);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(size, k, m - k, i, g_tbls,
efence_update_buffs[i],
&efence_update_buffs[k]);
}
for (i = 0; i < m - k; i++) {
if (0 !=
memcmp(efence_update_buffs[k + i], efence_buffs[k + i],
size)) {
printf("\nefence_update_buffs%d :", i);
dump(efence_update_buffs[k + i], 25);
printf("efence_buffs%d :", i);
dump(efence_buffs[k + i], 25);
return -1;
}
}
// Random errors
memset(src_in_err, 0, TEST_SOURCES);
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
// Generate decode matrix
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
invert_matrix, decode_index, src_err_list,
src_in_err, nerrs, nsrcerrs, k, m);
if (re != 0) {
printf("Fail to gf_gen_decode_matrix\n");
return -1;
}
// Pack recovery array as list of valid sources
// Its order must be the same as the order
// to generate matrix b in gf_gen_decode_matrix
for (i = 0; i < k; i++) {
recov[i] = efence_update_buffs[decode_index[i]];
}
// Recover data
for (i = 0; i < TEST_SOURCES; i++) {
memset(temp_buffs[i], 0, TEST_LEN);
}
ec_init_tables(k, nerrs, decode_matrix, g_tbls);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(size, k, nerrs, i, g_tbls, recov[i],
&temp_buffs[k]);
}
for (i = 0; i < nerrs; i++) {
if (0 !=
memcmp(temp_buffs[k + i],
efence_update_buffs[src_err_list[i]], size)) {
printf("Efence: Fail error recovery (%d, %d, %d)\n", m,
k, nerrs);
printf("size = %d\n", size);
printf("Test erase list = ");
for (j = 0; j < nerrs; j++)
printf(" %d", src_err_list[j]);
printf(" - Index = ");
for (p = 0; p < k; p++)
printf(" %d", decode_index[p]);
printf("\nencode_matrix:\n");
dump_u8xu8((u8 *) encode_matrix, m, k);
printf("inv b:\n");
dump_u8xu8((u8 *) invert_matrix, k, k);
printf("\ndecode_matrix:\n");
dump_u8xu8((u8 *) decode_matrix, m, k);
printf("recov %d:", src_err_list[i]);
dump(temp_buffs[k + i], align);
printf("orig :");
dump(efence_update_buffs[src_err_list[i]], align);
return -1;
}
}
}
putchar('.');
}
// Test rand ptr alignment if available
for (rtest = 0; rtest < RANDOMS; rtest++) {
while ((m = (rand() % MMAX)) < 2) ;
while ((k = (rand() % KMAX)) >= m || k < 1) ;
if (m > MMAX || k > KMAX)
continue;
size = (TEST_LEN - PTR_ALIGN_CHK_B) & ~15;
offset = (PTR_ALIGN_CHK_B != 0) ? 1 : PTR_ALIGN_CHK_B;
// Add random offsets
for (i = 0; i < m; i++) {
memset(buffs[i], 0, TEST_LEN); // zero pad to check write-over
memset(update_buffs[i], 0, TEST_LEN); // zero pad to check write-over
memset(temp_buffs[i], 0, TEST_LEN); // zero pad to check write-over
ubuffs[i] = buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
update_ubuffs[i] =
update_buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
temp_ubuffs[i] = temp_buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
}
// Zero the destination buffer for update function
for (i = k; i < m; i++) {
memset(ubuffs[i], 0, size);
memset(update_ubuffs[i], 0, size);
}
// Make random data
for (i = 0; i < k; i++) {
for (j = 0; j < size; j++) {
ubuffs[i][j] = rand();
update_ubuffs[i][j] = ubuffs[i][j];
}
}
// The matrix generated by gf_gen_cauchy1_matrix
// is always invertable.
gf_gen_cauchy1_matrix(encode_matrix, m, k);
// Make parity vects
// Generate g_tbls from encode matrix a
ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
// Perform matrix dot_prod for EC encoding
// using g_tbls from encode matrix a
REF_FUNCTION(size, k, m - k, g_tbls, ubuffs, &ubuffs[k]);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(size, k, m - k, i, g_tbls, update_ubuffs[i],
&update_ubuffs[k]);
}
for (i = 0; i < m - k; i++) {
if (0 != memcmp(update_ubuffs[k + i], ubuffs[k + i], size)) {
printf("\nupdate_ubuffs%d :", i);
dump(update_ubuffs[k + i], 25);
printf("ubuffs%d :", i);
dump(ubuffs[k + i], 25);
return -1;
}
}
// Random errors
memset(src_in_err, 0, TEST_SOURCES);
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
// Generate decode matrix
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
invert_matrix, decode_index, src_err_list,
src_in_err, nerrs, nsrcerrs, k, m);
if (re != 0) {
printf("Fail to gf_gen_decode_matrix\n");
return -1;
}
// Pack recovery array as list of valid sources
// Its order must be the same as the order
// to generate matrix b in gf_gen_decode_matrix
for (i = 0; i < k; i++) {
recov[i] = update_ubuffs[decode_index[i]];
}
// Recover data
for (i = 0; i < m; i++) {
memset(temp_ubuffs[i], 0, size);
}
ec_init_tables(k, nerrs, decode_matrix, g_tbls);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(size, k, nerrs, i, g_tbls, recov[i],
&temp_ubuffs[k]);
}
for (i = 0; i < nerrs; i++) {
if (0 !=
memcmp(temp_ubuffs[k + i], update_ubuffs[src_err_list[i]], size)) {
printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
printf(" - erase list = ");
for (j = 0; j < nerrs; j++)
printf(" %d", src_err_list[j]);
printf(" - Index = ");
for (p = 0; p < k; p++)
printf(" %d", decode_index[p]);
printf("\nencode_matrix:\n");
dump_u8xu8((unsigned char *)encode_matrix, m, k);
printf("inv b:\n");
dump_u8xu8((unsigned char *)invert_matrix, k, k);
printf("\ndecode_matrix:\n");
dump_u8xu8((unsigned char *)decode_matrix, m, k);
printf("orig data:\n");
dump_matrix(update_ubuffs, m, 25);
printf("orig :");
dump(update_ubuffs[src_err_list[i]], 25);
printf("recov %d:", src_err_list[i]);
dump(temp_ubuffs[k + i], 25);
return -1;
}
}
// Confirm that padding around dests is unchanged
memset(temp_buffs[0], 0, PTR_ALIGN_CHK_B); // Make reference zero buff
for (i = 0; i < m; i++) {
offset = update_ubuffs[i] - update_buffs[i];
if (memcmp(update_buffs[i], temp_buffs[0], offset)) {
printf("Fail rand ualign encode pad start\n");
return -1;
}
if (memcmp
(update_buffs[i] + offset + size, temp_buffs[0],
PTR_ALIGN_CHK_B - offset)) {
printf("Fail rand ualign encode pad end\n");
return -1;
}
}
for (i = 0; i < nerrs; i++) {
offset = temp_ubuffs[k + i] - temp_buffs[k + i];
if (memcmp(temp_buffs[k + i], temp_buffs[0], offset)) {
printf("Fail rand ualign decode pad start\n");
return -1;
}
if (memcmp
(temp_buffs[k + i] + offset + size, temp_buffs[0],
PTR_ALIGN_CHK_B - offset)) {
printf("Fail rand ualign decode pad end\n");
return -1;
}
}
putchar('.');
}
// Test size alignment
align = (LEN_ALIGN_CHK_B != 0) ? 13 : ALIGN_SIZE;
for (size = TEST_LEN; size >= 0; size -= align) {
while ((m = (rand() % MMAX)) < 2) ;
while ((k = (rand() % KMAX)) >= m || k < 1) ;
if (m > MMAX || k > KMAX)
continue;
// Zero the destination buffer for update function
for (i = k; i < TEST_SOURCES; i++) {
memset(buffs[i], 0, size);
memset(update_buffs[i], 0, size);
}
// Make random data
for (i = 0; i < k; i++) {
for (j = 0; j < size; j++) {
buffs[i][j] = rand();
update_buffs[i][j] = buffs[i][j];
}
}
// The matrix generated by gf_gen_cauchy1_matrix
// is always invertable.
gf_gen_cauchy1_matrix(encode_matrix, m, k);
// Make parity vects
// Generate g_tbls from encode matrix a
ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
// Perform matrix dot_prod for EC encoding
// using g_tbls from encode matrix a
REF_FUNCTION(size, k, m - k, g_tbls, buffs, &buffs[k]);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(size, k, m - k, i, g_tbls, update_buffs[i],
&update_buffs[k]);
}
for (i = 0; i < m - k; i++) {
if (0 != memcmp(update_buffs[k + i], buffs[k + i], size)) {
printf("\nupdate_buffs%d (size=%d) :", i, size);
dump(update_buffs[k + i], 25);
printf("buffs%d (size=%d) :", i, size);
dump(buffs[k + i], 25);
return -1;
}
}
// Random errors
memset(src_in_err, 0, TEST_SOURCES);
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
// Generate decode matrix
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
invert_matrix, decode_index, src_err_list,
src_in_err, nerrs, nsrcerrs, k, m);
if (re != 0) {
printf("Fail to gf_gen_decode_matrix\n");
return -1;
}
// Pack recovery array as list of valid sources
// Its order must be the same as the order
// to generate matrix b in gf_gen_decode_matrix
for (i = 0; i < k; i++) {
recov[i] = update_buffs[decode_index[i]];
}
// Recover data
for (i = 0; i < TEST_SOURCES; i++) {
memset(temp_buffs[i], 0, TEST_LEN);
}
ec_init_tables(k, nerrs, decode_matrix, g_tbls);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(size, k, nerrs, i, g_tbls, recov[i],
&temp_buffs[k]);
}
for (i = 0; i < nerrs; i++) {
if (0 !=
memcmp(temp_buffs[k + i], update_buffs[src_err_list[i]], size)) {
printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
printf(" - erase list = ");
for (j = 0; j < nerrs; j++)
printf(" %d", src_err_list[j]);
printf(" - Index = ");
for (p = 0; p < k; p++)
printf(" %d", decode_index[p]);
printf("\nencode_matrix:\n");
dump_u8xu8((unsigned char *)encode_matrix, m, k);
printf("inv b:\n");
dump_u8xu8((unsigned char *)invert_matrix, k, k);
printf("\ndecode_matrix:\n");
dump_u8xu8((unsigned char *)decode_matrix, m, k);
printf("orig data:\n");
dump_matrix(update_buffs, m, 25);
printf("orig :");
dump(update_buffs[src_err_list[i]], 25);
printf("recov %d:", src_err_list[i]);
dump(temp_buffs[k + i], 25);
return -1;
}
}
putchar('.');
}
printf("done EC tests: Pass\n");
return 0;
}