isa-l/crc/crc32_ieee_02.asm

652 lines
16 KiB
NASM
Raw Normal View History

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright(c) 2011-2020 Intel Corporation All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in
; the documentation and/or other materials provided with the
; distribution.
; * Neither the name of Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived
; from this software without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Function API:
; UINT32 crc32_ieee_02(
; UINT32 init_crc, //initial CRC value, 32 bits
; const unsigned char *buf, //buffer pointer to calculate CRC on
; UINT64 len //buffer length in bytes (64-bit data)
; );
;
; Authors:
; Erdinc Ozturk
; Vinodh Gopal
; James Guilford
;
; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
; URL: http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
%include "reg_sizes.asm"
%define fetch_dist 1024
[bits 64]
default rel
section .text
%ifidn __OUTPUT_FORMAT__, win64
%xdefine arg1 rcx
%xdefine arg2 rdx
%xdefine arg3 r8
%xdefine arg1_low32 ecx
%else
%xdefine arg1 rdi
%xdefine arg2 rsi
%xdefine arg3 rdx
%xdefine arg1_low32 edi
%endif
%define TMP 16*0
%ifidn __OUTPUT_FORMAT__, win64
%define XMM_SAVE 16*2
%define VARIABLE_OFFSET 16*10+8
%else
%define VARIABLE_OFFSET 16*2+8
%endif
align 16
global crc32_ieee_02:ISAL_SYM_TYPE_FUNCTION
crc32_ieee_02:
not arg1_low32 ;~init_crc
sub rsp,VARIABLE_OFFSET
%ifidn __OUTPUT_FORMAT__, win64
; push the xmm registers into the stack to maintain
vmovdqa [rsp + XMM_SAVE + 16*0], xmm6
vmovdqa [rsp + XMM_SAVE + 16*1], xmm7
vmovdqa [rsp + XMM_SAVE + 16*2], xmm8
vmovdqa [rsp + XMM_SAVE + 16*3], xmm9
vmovdqa [rsp + XMM_SAVE + 16*4], xmm10
vmovdqa [rsp + XMM_SAVE + 16*5], xmm11
vmovdqa [rsp + XMM_SAVE + 16*6], xmm12
vmovdqa [rsp + XMM_SAVE + 16*7], xmm13
%endif
; check if smaller than 256
cmp arg3, 256
; for sizes less than 256, we can't fold 128B at a time...
jl _less_than_256
; load the initial crc value
vmovd xmm10, arg1_low32 ; initial crc
; crc value does not need to be byte-reflected, but it needs to be moved to the high part of the register.
; because data will be byte-reflected and will align with initial crc at correct place.
vpslldq xmm10, 12
vmovdqa xmm11, [SHUF_MASK]
; receive the initial 128B data, xor the initial crc value
vmovdqu xmm0, [arg2+16*0]
vmovdqu xmm1, [arg2+16*1]
vmovdqu xmm2, [arg2+16*2]
vmovdqu xmm3, [arg2+16*3]
vmovdqu xmm4, [arg2+16*4]
vmovdqu xmm5, [arg2+16*5]
vmovdqu xmm6, [arg2+16*6]
vmovdqu xmm7, [arg2+16*7]
vpshufb xmm0, xmm11
; XOR the initial_crc value
vpxor xmm0, xmm10
vpshufb xmm1, xmm11
vpshufb xmm2, xmm11
vpshufb xmm3, xmm11
vpshufb xmm4, xmm11
vpshufb xmm5, xmm11
vpshufb xmm6, xmm11
vpshufb xmm7, xmm11
vmovdqa xmm10, [rk3] ;xmm10 has rk3 and rk4
;imm value of pclmulqdq instruction will determine which constant to use
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; we subtract 256 instead of 128 to save one instruction from the loop
sub arg3, 256
; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The _fold_128_B_loop
; loop will fold 128B at a time until we have 128+y Bytes of buffer
; fold 128B at a time. This section of the code folds 8 xmm registers in parallel
_fold_128_B_loop:
; update the buffer pointer
add arg2, 128 ; buf += 128;
prefetchnta [arg2+fetch_dist+0]
vmovdqu xmm9, [arg2+16*0]
vmovdqu xmm12, [arg2+16*1]
vpshufb xmm9, xmm11
vpshufb xmm12, xmm11
vmovdqa xmm8, xmm0
vmovdqa xmm13, xmm1
vpclmulqdq xmm0, xmm10, 0x0
vpclmulqdq xmm8, xmm10 , 0x11
vpclmulqdq xmm1, xmm10, 0x0
vpclmulqdq xmm13, xmm10 , 0x11
vpxor xmm0, xmm9
vxorps xmm0, xmm8
vpxor xmm1, xmm12
vxorps xmm1, xmm13
prefetchnta [arg2+fetch_dist+32]
vmovdqu xmm9, [arg2+16*2]
vmovdqu xmm12, [arg2+16*3]
vpshufb xmm9, xmm11
vpshufb xmm12, xmm11
vmovdqa xmm8, xmm2
vmovdqa xmm13, xmm3
vpclmulqdq xmm2, xmm10, 0x0
vpclmulqdq xmm8, xmm10 , 0x11
vpclmulqdq xmm3, xmm10, 0x0
vpclmulqdq xmm13, xmm10 , 0x11
vpxor xmm2, xmm9
vxorps xmm2, xmm8
vpxor xmm3, xmm12
vxorps xmm3, xmm13
prefetchnta [arg2+fetch_dist+64]
vmovdqu xmm9, [arg2+16*4]
vmovdqu xmm12, [arg2+16*5]
vpshufb xmm9, xmm11
vpshufb xmm12, xmm11
vmovdqa xmm8, xmm4
vmovdqa xmm13, xmm5
vpclmulqdq xmm4, xmm10, 0x0
vpclmulqdq xmm8, xmm10 , 0x11
vpclmulqdq xmm5, xmm10, 0x0
vpclmulqdq xmm13, xmm10 , 0x11
vpxor xmm4, xmm9
vxorps xmm4, xmm8
vpxor xmm5, xmm12
vxorps xmm5, xmm13
prefetchnta [arg2+fetch_dist+96]
vmovdqu xmm9, [arg2+16*6]
vmovdqu xmm12, [arg2+16*7]
vpshufb xmm9, xmm11
vpshufb xmm12, xmm11
vmovdqa xmm8, xmm6
vmovdqa xmm13, xmm7
vpclmulqdq xmm6, xmm10, 0x0
vpclmulqdq xmm8, xmm10 , 0x11
vpclmulqdq xmm7, xmm10, 0x0
vpclmulqdq xmm13, xmm10 , 0x11
vpxor xmm6, xmm9
vxorps xmm6, xmm8
vpxor xmm7, xmm12
vxorps xmm7, xmm13
sub arg3, 128
; check if there is another 128B in the buffer to be able to fold
jge _fold_128_B_loop
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
add arg2, 128
; at this point, the buffer pointer is pointing at the last y Bytes of the buffer
; the 128 of folded data is in 4 of the xmm registers: xmm0, xmm1, xmm2, xmm3
; fold the 8 xmm registers to 1 xmm register with different constants
vmovdqa xmm10, [rk9]
vmovdqa xmm8, xmm0
vpclmulqdq xmm0, xmm10, 0x11
vpclmulqdq xmm8, xmm10, 0x0
vpxor xmm7, xmm8
vxorps xmm7, xmm0
vmovdqa xmm10, [rk11]
vmovdqa xmm8, xmm1
vpclmulqdq xmm1, xmm10, 0x11
vpclmulqdq xmm8, xmm10, 0x0
vpxor xmm7, xmm8
vxorps xmm7, xmm1
vmovdqa xmm10, [rk13]
vmovdqa xmm8, xmm2
vpclmulqdq xmm2, xmm10, 0x11
vpclmulqdq xmm8, xmm10, 0x0
vpxor xmm7, xmm8
vpxor xmm7, xmm2
vmovdqa xmm10, [rk15]
vmovdqa xmm8, xmm3
vpclmulqdq xmm3, xmm10, 0x11
vpclmulqdq xmm8, xmm10, 0x0
vpxor xmm7, xmm8
vxorps xmm7, xmm3
vmovdqa xmm10, [rk17]
vmovdqa xmm8, xmm4
vpclmulqdq xmm4, xmm10, 0x11
vpclmulqdq xmm8, xmm10, 0x0
vpxor xmm7, xmm8
vpxor xmm7, xmm4
vmovdqa xmm10, [rk19]
vmovdqa xmm8, xmm5
vpclmulqdq xmm5, xmm10, 0x11
vpclmulqdq xmm8, xmm10, 0x0
vpxor xmm7, xmm8
vxorps xmm7, xmm5
vmovdqa xmm10, [rk1] ;xmm10 has rk1 and rk2
;imm value of pclmulqdq instruction will determine which constant to use
vmovdqa xmm8, xmm6
vpclmulqdq xmm6, xmm10, 0x11
vpclmulqdq xmm8, xmm10, 0x0
vpxor xmm7, xmm8
vpxor xmm7, xmm6
; instead of 128, we add 112 to the loop counter to save 1 instruction from the loop
; instead of a cmp instruction, we use the negative flag with the jl instruction
add arg3, 128-16
jl _final_reduction_for_128
; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
; we can fold 16 bytes at a time if y>=16
; continue folding 16B at a time
_16B_reduction_loop:
vmovdqa xmm8, xmm7
vpclmulqdq xmm7, xmm10, 0x11
vpclmulqdq xmm8, xmm10, 0x0
vpxor xmm7, xmm8
vmovdqu xmm0, [arg2]
vpshufb xmm0, xmm11
vpxor xmm7, xmm0
add arg2, 16
sub arg3, 16
; instead of a cmp instruction, we utilize the flags with the jge instruction
; equivalent of: cmp arg3, 16-16
; check if there is any more 16B in the buffer to be able to fold
jge _16B_reduction_loop
;now we have 16+z bytes left to reduce, where 0<= z < 16.
;first, we reduce the data in the xmm7 register
_final_reduction_for_128:
; check if any more data to fold. If not, compute the CRC of the final 128 bits
add arg3, 16
je _128_done
; here we are getting data that is less than 16 bytes.
; since we know that there was data before the pointer, we can offset the input pointer before the actual point, to receive exactly 16 bytes.
; after that the registers need to be adjusted.
_get_last_two_xmms:
vmovdqa xmm2, xmm7
vmovdqu xmm1, [arg2 - 16 + arg3]
vpshufb xmm1, xmm11
; get rid of the extra data that was loaded before
; load the shift constant
lea rax, [pshufb_shf_table + 16]
sub rax, arg3
vmovdqu xmm0, [rax]
; shift xmm2 to the left by arg3 bytes
vpshufb xmm2, xmm0
; shift xmm7 to the right by 16-arg3 bytes
vpxor xmm0, [mask1]
vpshufb xmm7, xmm0
vpblendvb xmm1, xmm1, xmm2, xmm0
; fold 16 Bytes
vmovdqa xmm2, xmm1
vmovdqa xmm8, xmm7
vpclmulqdq xmm7, xmm10, 0x11
vpclmulqdq xmm8, xmm10, 0x0
vpxor xmm7, xmm8
vpxor xmm7, xmm2
_128_done:
; compute crc of a 128-bit value
vmovdqa xmm10, [rk5] ; rk5 and rk6 in xmm10
vmovdqa xmm0, xmm7
;64b fold
vpclmulqdq xmm7, xmm10, 0x1
vpslldq xmm0, 8
vpxor xmm7, xmm0
;32b fold
vmovdqa xmm0, xmm7
vpand xmm0, [mask2]
vpsrldq xmm7, 12
vpclmulqdq xmm7, xmm10, 0x10
vpxor xmm7, xmm0
;barrett reduction
_barrett:
vmovdqa xmm10, [rk7] ; rk7 and rk8 in xmm10
vmovdqa xmm0, xmm7
vpclmulqdq xmm7, xmm10, 0x01
vpslldq xmm7, 4
vpclmulqdq xmm7, xmm10, 0x11
vpslldq xmm7, 4
vpxor xmm7, xmm0
vpextrd eax, xmm7,1
_cleanup:
not eax
%ifidn __OUTPUT_FORMAT__, win64
vmovdqa xmm6, [rsp + XMM_SAVE + 16*0]
vmovdqa xmm7, [rsp + XMM_SAVE + 16*1]
vmovdqa xmm8, [rsp + XMM_SAVE + 16*2]
vmovdqa xmm9, [rsp + XMM_SAVE + 16*3]
vmovdqa xmm10, [rsp + XMM_SAVE + 16*4]
vmovdqa xmm11, [rsp + XMM_SAVE + 16*5]
vmovdqa xmm12, [rsp + XMM_SAVE + 16*6]
vmovdqa xmm13, [rsp + XMM_SAVE + 16*7]
%endif
add rsp,VARIABLE_OFFSET
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 16
_less_than_256:
; check if there is enough buffer to be able to fold 16B at a time
cmp arg3, 32
jl _less_than_32
vmovdqa xmm11, [SHUF_MASK]
; if there is, load the constants
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
vmovd xmm0, arg1_low32 ; get the initial crc value
vpslldq xmm0, 12 ; align it to its correct place
vmovdqu xmm7, [arg2] ; load the plaintext
vpshufb xmm7, xmm11 ; byte-reflect the plaintext
vpxor xmm7, xmm0
; update the buffer pointer
add arg2, 16
; update the counter. subtract 32 instead of 16 to save one instruction from the loop
sub arg3, 32
jmp _16B_reduction_loop
align 16
_less_than_32:
; mov initial crc to the return value. this is necessary for zero-length buffers.
mov eax, arg1_low32
test arg3, arg3
je _cleanup
vmovdqa xmm11, [SHUF_MASK]
vmovd xmm0, arg1_low32 ; get the initial crc value
vpslldq xmm0, 12 ; align it to its correct place
cmp arg3, 16
je _exact_16_left
jl _less_than_16_left
vmovdqu xmm7, [arg2] ; load the plaintext
vpshufb xmm7, xmm11 ; byte-reflect the plaintext
vpxor xmm7, xmm0 ; xor the initial crc value
add arg2, 16
sub arg3, 16
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
jmp _get_last_two_xmms
align 16
_less_than_16_left:
; use stack space to load data less than 16 bytes, zero-out the 16B in memory first.
vpxor xmm1, xmm1
mov r11, rsp
vmovdqa [r11], xmm1
cmp arg3, 4
jl _only_less_than_4
; backup the counter value
mov r9, arg3
cmp arg3, 8
jl _less_than_8_left
; load 8 Bytes
mov rax, [arg2]
mov [r11], rax
add r11, 8
sub arg3, 8
add arg2, 8
_less_than_8_left:
cmp arg3, 4
jl _less_than_4_left
; load 4 Bytes
mov eax, [arg2]
mov [r11], eax
add r11, 4
sub arg3, 4
add arg2, 4
_less_than_4_left:
cmp arg3, 2
jl _less_than_2_left
; load 2 Bytes
mov ax, [arg2]
mov [r11], ax
add r11, 2
sub arg3, 2
add arg2, 2
_less_than_2_left:
cmp arg3, 1
jl _zero_left
; load 1 Byte
mov al, [arg2]
mov [r11], al
_zero_left:
vmovdqa xmm7, [rsp]
vpshufb xmm7, xmm11
vpxor xmm7, xmm0 ; xor the initial crc value
; shl r9, 4
lea rax, [pshufb_shf_table + 16]
sub rax, r9
vmovdqu xmm0, [rax]
vpxor xmm0, [mask1]
vpshufb xmm7, xmm0
jmp _128_done
align 16
_exact_16_left:
vmovdqu xmm7, [arg2]
vpshufb xmm7, xmm11
vpxor xmm7, xmm0 ; xor the initial crc value
jmp _128_done
_only_less_than_4:
cmp arg3, 3
jl _only_less_than_3
; load 3 Bytes
mov al, [arg2]
mov [r11], al
mov al, [arg2+1]
mov [r11+1], al
mov al, [arg2+2]
mov [r11+2], al
vmovdqa xmm7, [rsp]
vpshufb xmm7, xmm11
vpxor xmm7, xmm0 ; xor the initial crc value
vpsrldq xmm7, 5
jmp _barrett
_only_less_than_3:
cmp arg3, 2
jl _only_less_than_2
; load 2 Bytes
mov al, [arg2]
mov [r11], al
mov al, [arg2+1]
mov [r11+1], al
vmovdqa xmm7, [rsp]
vpshufb xmm7, xmm11
vpxor xmm7, xmm0 ; xor the initial crc value
vpsrldq xmm7, 6
jmp _barrett
_only_less_than_2:
; load 1 Byte
mov al, [arg2]
mov [r11], al
vmovdqa xmm7, [rsp]
vpshufb xmm7, xmm11
vpxor xmm7, xmm0 ; xor the initial crc value
vpsrldq xmm7, 7
jmp _barrett
section .data
; precomputed constants
align 16
rk1 :
DQ 0xf200aa6600000000
rk2 :
DQ 0x17d3315d00000000
rk3 :
DQ 0x022ffca500000000
rk4 :
DQ 0x9d9ee22f00000000
rk5 :
DQ 0xf200aa6600000000
rk6 :
DQ 0x490d678d00000000
rk7 :
DQ 0x0000000104d101df
rk8 :
DQ 0x0000000104c11db7
rk9 :
DQ 0x6ac7e7d700000000
rk10 :
DQ 0xfcd922af00000000
rk11 :
DQ 0x34e45a6300000000
rk12 :
DQ 0x8762c1f600000000
rk13 :
DQ 0x5395a0ea00000000
rk14 :
DQ 0x54f2d5c700000000
rk15 :
DQ 0xd3504ec700000000
rk16 :
DQ 0x57a8445500000000
rk17 :
DQ 0xc053585d00000000
rk18 :
DQ 0x766f1b7800000000
rk19 :
DQ 0xcd8c54b500000000
rk20 :
DQ 0xab40b71e00000000
mask1:
dq 0x8080808080808080, 0x8080808080808080
mask2:
dq 0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFF
SHUF_MASK:
dq 0x08090A0B0C0D0E0F, 0x0001020304050607
pshufb_shf_table:
; use these values for shift constants for the pshufb instruction
; different alignments result in values as shown:
; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7
; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8
; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9
; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10
; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11
; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12
; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13
; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14
; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
dq 0x0706050403020100, 0x000e0d0c0b0a0908