isa-l/crc/crc32_gzip_refl_by16_10.asm

544 lines
16 KiB
NASM
Raw Normal View History

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright(c) 2011-2020 Intel Corporation All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in
; the documentation and/or other materials provided with the
; distribution.
; * Neither the name of Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived
; from this software without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Function API:
; UINT32 crc32_gzip_refl_by16_10(
; UINT32 init_crc, //initial CRC value, 32 bits
; const unsigned char *buf, //buffer pointer to calculate CRC on
; UINT64 len //buffer length in bytes (64-bit data)
; );
;
; Authors:
; Erdinc Ozturk
; Vinodh Gopal
; James Guilford
;
; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
; URL: http://download.intel.com/design/intarch/papers/323102.pdf
;
;
; sample yasm command line:
; yasm -f x64 -f elf64 -X gnu -g dwarf2 crc32_gzip_refl_by8
;
; As explained here:
; http://docs.oracle.com/javase/7/docs/api/java/util/zip/package-summary.html
; CRC-32 checksum is described in RFC 1952
; Implementing RFC 1952 CRC:
; http://www.ietf.org/rfc/rfc1952.txt
%include "reg_sizes.asm"
%ifndef FUNCTION_NAME
%define FUNCTION_NAME crc32_gzip_refl_by16_10
%endif
%if (AS_FEATURE_LEVEL) >= 10
%define fetch_dist 1024
[bits 64]
default rel
section .text
%ifidn __OUTPUT_FORMAT__, win64
%xdefine arg1 rcx
%xdefine arg2 rdx
%xdefine arg3 r8
%xdefine arg1_low32 ecx
%else
%xdefine arg1 rdi
%xdefine arg2 rsi
%xdefine arg3 rdx
%xdefine arg1_low32 edi
%endif
align 16
mk_global FUNCTION_NAME, function
FUNCTION_NAME:
endbranch
not arg1_low32
%ifidn __OUTPUT_FORMAT__, win64
sub rsp, (16*10 + 8)
; push the xmm registers into the stack to maintain
vmovdqa [rsp + 16*0], xmm6
vmovdqa [rsp + 16*1], xmm7
vmovdqa [rsp + 16*2], xmm8
vmovdqa [rsp + 16*3], xmm9
vmovdqa [rsp + 16*4], xmm10
vmovdqa [rsp + 16*5], xmm11
vmovdqa [rsp + 16*6], xmm12
vmovdqa [rsp + 16*7], xmm13
vmovdqa [rsp + 16*8], xmm14
vmovdqa [rsp + 16*9], xmm15
%endif
; check if smaller than 256B
cmp arg3, 256
jl .less_than_256
; load the initial crc value
vmovd xmm10, arg1_low32 ; initial crc
; receive the initial 64B data, xor the initial crc value
vmovdqu8 zmm0, [arg2+16*0]
vmovdqu8 zmm4, [arg2+16*4]
vpxorq zmm0, zmm10
vbroadcasti32x4 zmm10, [rk3] ;xmm10 has rk3 and rk4
;imm value of pclmulqdq instruction will determine which constant to use
sub arg3, 256
cmp arg3, 256
jl .fold_128_B_loop
vmovdqu8 zmm7, [arg2+16*8]
vmovdqu8 zmm8, [arg2+16*12]
vbroadcasti32x4 zmm16, [rk_1] ;zmm16 has rk-1 and rk-2
sub arg3, 256
align 16
.fold_256_B_loop:
add arg2, 256
vpclmulqdq zmm1, zmm0, zmm16, 0x10
vpclmulqdq zmm0, zmm0, zmm16, 0x01
vpternlogq zmm0, zmm1, [arg2+16*0], 0x96
vpclmulqdq zmm2, zmm4, zmm16, 0x10
vpclmulqdq zmm4, zmm4, zmm16, 0x01
vpternlogq zmm4, zmm2, [arg2+16*4], 0x96
vpclmulqdq zmm3, zmm7, zmm16, 0x10
vpclmulqdq zmm7, zmm7, zmm16, 0x01
vpternlogq zmm7, zmm3, [arg2+16*8], 0x96
vpclmulqdq zmm5, zmm8, zmm16, 0x10
vpclmulqdq zmm8, zmm8, zmm16, 0x01
vpternlogq zmm8, zmm5, [arg2+16*12], 0x96
sub arg3, 256
jge .fold_256_B_loop
;; Fold 256 into 128
add arg2, 256
vpclmulqdq zmm1, zmm0, zmm10, 0x01
vpclmulqdq zmm2, zmm0, zmm10, 0x10
vpternlogq zmm7, zmm1, zmm2, 0x96 ; xor ABC
vpclmulqdq zmm5, zmm4, zmm10, 0x01
vpclmulqdq zmm6, zmm4, zmm10, 0x10
vpternlogq zmm8, zmm5, zmm6, 0x96 ; xor ABC
vmovdqa32 zmm0, zmm7
vmovdqa32 zmm4, zmm8
add arg3, 128
jmp .less_than_128_B
; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The fold_128_B_loop
; loop will fold 128B at a time until we have 128+y Bytes of buffer
; fold 128B at a time. This section of the code folds 8 xmm registers in parallel
align 16
.fold_128_B_loop:
add arg2, 128
vpclmulqdq zmm2, zmm0, zmm10, 0x10
vpclmulqdq zmm0, zmm0, zmm10, 0x01
vpternlogq zmm0, zmm2, [arg2+16*0], 0x96
vpclmulqdq zmm5, zmm4, zmm10, 0x10
vpclmulqdq zmm4, zmm4, zmm10, 0x01
vpternlogq zmm4, zmm5, [arg2+16*4], 0x96
sub arg3, 128
jge .fold_128_B_loop
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
add arg2, 128
align 16
.less_than_128_B:
;; At this point, the buffer pointer is pointing at the last
;; y bytes of the buffer, where 0 <= y < 128.
;; The 128 bytes of folded data is in 2 of the zmm registers:
;; zmm0 and zmm4
cmp arg3, -64
jl .fold_128_B_register
vbroadcasti32x4 zmm10, [rk15]
;; If there are still 64 bytes left, folds from 128 bytes to 64 bytes
;; and handles the next 64 bytes
vpclmulqdq zmm2, zmm0, zmm10, 0x10
vpclmulqdq zmm0, zmm0, zmm10, 0x01
vpternlogq zmm0, zmm2, zmm4, 0x96
add arg3, 128
jmp .fold_64B_loop
align 16
.fold_128_B_register:
; fold the 8 128b parts into 1 xmm register with different constants
vmovdqu8 zmm16, [rk9] ; multiply by rk9-rk16
vmovdqu8 zmm11, [rk17] ; multiply by rk17-rk20, rk1,rk2, 0,0
vpclmulqdq zmm1, zmm0, zmm16, 0x01
vpclmulqdq zmm2, zmm0, zmm16, 0x10
vextracti64x2 xmm7, zmm4, 3 ; save last that has no multiplicand
vpclmulqdq zmm5, zmm4, zmm11, 0x01
vpclmulqdq zmm6, zmm4, zmm11, 0x10
vmovdqa xmm10, [rk1] ; Needed later in reduction loop
vpternlogq zmm1, zmm2, zmm5, 0x96 ; xor ABC
vpternlogq zmm1, zmm6, zmm7, 0x96 ; xor ABC
vshufi64x2 zmm8, zmm1, zmm1, 0x4e ; Swap 1,0,3,2 - 01 00 11 10
vpxorq ymm8, ymm8, ymm1
vextracti64x2 xmm5, ymm8, 1
vpxorq xmm7, xmm5, xmm8
; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop
; instead of a cmp instruction, we use the negative flag with the jl instruction
add arg3, 128-16
jl .final_reduction_for_128
; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
; we can fold 16 bytes at a time if y>=16
; continue folding 16B at a time
align 16
.16B_reduction_loop:
vpclmulqdq xmm8, xmm7, xmm10, 0x1
vpclmulqdq xmm7, xmm7, xmm10, 0x10
vpternlogq xmm7, xmm8, [arg2], 0x96
add arg2, 16
sub arg3, 16
; instead of a cmp instruction, we utilize the flags with the jge instruction
; equivalent of: cmp arg3, 16-16
; check if there is any more 16B in the buffer to be able to fold
jge .16B_reduction_loop
;now we have 16+z bytes left to reduce, where 0<= z < 16.
;first, we reduce the data in the xmm7 register
align 16
.final_reduction_for_128:
add arg3, 16
je .128_done
; here we are getting data that is less than 16 bytes.
; since we know that there was data before the pointer, we can offset
; the input pointer before the actual point, to receive exactly 16 bytes.
; after that the registers need to be adjusted.
align 16
.get_last_two_xmms:
vmovdqa xmm2, xmm7
vmovdqu xmm1, [arg2 - 16 + arg3]
; get rid of the extra data that was loaded before
; load the shift constant
lea rax, [rel pshufb_shf_table]
add rax, arg3
vmovdqu xmm0, [rax]
vpshufb xmm7, xmm0
vpxor xmm0, [mask3]
vpshufb xmm2, xmm0
vpblendvb xmm2, xmm2, xmm1, xmm0
;;;;;;;;;;
vpclmulqdq xmm8, xmm7, xmm10, 0x1
vpclmulqdq xmm7, xmm7, xmm10, 0x10
vpternlogq xmm7, xmm8, xmm2, 0x96
align 16
.128_done:
; compute crc of a 128-bit value
vmovdqa xmm10, [rk5]
vmovdqa xmm0, xmm7
;64b fold
vpclmulqdq xmm7, xmm10, 0
vpsrldq xmm0, 8
vpxor xmm7, xmm0
;32b fold
vmovdqa xmm0, xmm7
vpslldq xmm7, 4
vpclmulqdq xmm7, xmm10, 0x10
vpxor xmm7, xmm0
;barrett reduction
align 16
.barrett:
vpand xmm7, [mask2]
vmovdqa xmm1, xmm7
vmovdqa xmm2, xmm7
vmovdqa xmm10, [rk7]
vpclmulqdq xmm7, xmm10, 0
vpternlogq xmm7, xmm2, [mask], 0x28
vmovdqa xmm2, xmm7
vpclmulqdq xmm7, xmm10, 0x10
vpternlogq xmm7, xmm2, xmm1, 0x96
vpextrd eax, xmm7, 2
align 16
.cleanup:
not eax
%ifidn __OUTPUT_FORMAT__, win64
vmovdqa xmm6, [rsp + 16*0]
vmovdqa xmm7, [rsp + 16*1]
vmovdqa xmm8, [rsp + 16*2]
vmovdqa xmm9, [rsp + 16*3]
vmovdqa xmm10, [rsp + 16*4]
vmovdqa xmm11, [rsp + 16*5]
vmovdqa xmm12, [rsp + 16*6]
vmovdqa xmm13, [rsp + 16*7]
vmovdqa xmm14, [rsp + 16*8]
vmovdqa xmm15, [rsp + 16*9]
add rsp, (16*10 + 8)
%endif
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 16
.less_than_256:
; check if there is enough buffer to be able to fold 16B at a time
cmp arg3, 32
jl .less_than_32
vmovd xmm1, arg1_low32 ; get the initial crc value ; if there is, load the constants
cmp arg3, 64
jl .less_than_64
;; receive the initial 64B data, xor the initial crc value
vmovdqu8 zmm0, [arg2]
vpxorq zmm0, zmm1
add arg2, 64
sub arg3, 64
cmp arg3, 64
jb .reduce_64B
vbroadcasti32x4 zmm10, [rk15]
align 16
.fold_64B_loop:
vmovdqu8 zmm4, [arg2]
vpclmulqdq zmm2, zmm0, zmm10, 0x10
vpclmulqdq zmm0, zmm0, zmm10, 0x01
vpternlogq zmm0, zmm2, zmm4, 0x96
add arg2, 64
sub arg3, 64
cmp arg3, 64
jge .fold_64B_loop
align 16
.reduce_64B:
; Reduce from 64 bytes to 16 bytes
vmovdqu8 zmm11, [rk17]
vpclmulqdq zmm1, zmm0, zmm11, 0x01
vpclmulqdq zmm2, zmm0, zmm11, 0x10
vextracti64x2 xmm7, zmm0, 3 ; save last that has no multiplicand
vpternlogq zmm1, zmm2, zmm7, 0x96
vmovdqa xmm10, [rk_1b] ; Needed later in reduction loop
vshufi64x2 zmm8, zmm1, zmm1, 0x4e ; Swap 1,0,3,2 - 01 00 11 10
vpxorq ymm8, ymm8, ymm1
vextracti64x2 xmm5, ymm8, 1
vpxorq xmm7, xmm5, xmm8
sub arg3, 16
jns .16B_reduction_loop ; At least 16 bytes of data to digest
jmp .final_reduction_for_128
align 16
.less_than_64:
;; if there is, load the constants
vmovdqa xmm10, [rk_1b]
vmovdqu xmm7, [arg2] ; load the plaintext
vpxor xmm7, xmm1 ; xmm1 already has initial crc value
;; update the buffer pointer
add arg2, 16
;; update the counter
;; - subtract 32 instead of 16 to save one instruction from the loop
sub arg3, 32
jmp .16B_reduction_loop
align 16
.less_than_32:
; mov initial crc to the return value. this is necessary for zero-length buffers.
mov eax, arg1_low32
test arg3, arg3
je .cleanup
vmovd xmm0, arg1_low32 ; get the initial crc value
cmp arg3, 16
je .exact_16_left
jl .less_than_16_left
vmovdqu xmm7, [arg2] ; load the plaintext
vpxor xmm7, xmm0 ; xor the initial crc value
add arg2, 16
sub arg3, 16
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
jmp .get_last_two_xmms
align 16
.less_than_16_left:
xor r10, r10
bts r10, arg3
dec r10
kmovw k2, r10d
vmovdqu8 xmm7{k2}{z}, [arg2]
vpxor xmm7, xmm0 ; xor the initial crc value
cmp arg3, 4
jb .only_less_than_4
lea rax, [rel pshufb_shf_table]
vmovdqu xmm0, [rax + arg3]
vpshufb xmm7,xmm0
jmp .128_done
align 16
.exact_16_left:
vmovdqu xmm7, [arg2]
vpxor xmm7, xmm0 ; xor the initial crc value
jmp .128_done
align 16
.only_less_than_4:
lea r11, [rel pshufb_shift_table]
vmovdqu xmm0, [r11 + arg3]
vpshufb xmm7, xmm0
jmp .barrett
section .data
align 32
%ifndef USE_CONSTS
; precomputed constants
rk_1: dq 0x00000000e95c1271
rk_2: dq 0x00000000ce3371cb
rk1: dq 0x00000000ccaa009e
rk2: dq 0x00000001751997d0
rk3: dq 0x000000014a7fe880
rk4: dq 0x00000001e88ef372
rk5: dq 0x00000000ccaa009e
rk6: dq 0x0000000163cd6124
rk7: dq 0x00000001f7011640
rk8: dq 0x00000001db710640
rk9: dq 0x00000001d7cfc6ac
rk10: dq 0x00000001ea89367e
rk11: dq 0x000000018cb44e58
rk12: dq 0x00000000df068dc2
rk13: dq 0x00000000ae0b5394
rk14: dq 0x00000001c7569e54
rk15: dq 0x00000001c6e41596
rk16: dq 0x0000000154442bd4
rk17: dq 0x0000000174359406
rk18: dq 0x000000003db1ecdc
rk19: dq 0x000000015a546366
rk20: dq 0x00000000f1da05aa
rk_1b: dq 0x00000000ccaa009e
rk_2b: dq 0x00000001751997d0
dq 0x0000000000000000
dq 0x0000000000000000
%else
INCLUDE_CONSTS
%endif
pshufb_shf_table:
; use these values for shift constants for the pshufb instruction
; different alignments result in values as shown:
; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7
; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8
; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9
; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10
; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11
; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12
; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13
; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14
; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
dq 0x0706050403020100, 0x000e0d0c0b0a0908
align 16
pshufb_shift_table:
;; use these values to shift data for the pshufb instruction
db 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
db 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
db 0x08, 0x09, 0x0A
mask: dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000
mask2: dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF
mask3: dq 0x8080808080808080, 0x8080808080808080
%else ; Assembler doesn't understand these opcodes. Add empty symbol for windows.
%ifidn __OUTPUT_FORMAT__, win64
global no_ %+ FUNCTION_NAME
no_ %+ FUNCTION_NAME %+ :
%endif
%endif ; (AS_FEATURE_LEVEL) >= 10