2018-01-26 19:16:54 -07:00
|
|
|
/**********************************************************************
|
|
|
|
Copyright(c) 2011-2018 Intel Corporation All rights reserved.
|
|
|
|
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
|
|
modification, are permitted provided that the following conditions
|
|
|
|
are met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer in
|
|
|
|
the documentation and/or other materials provided with the
|
|
|
|
distribution.
|
|
|
|
* Neither the name of Intel Corporation nor the names of its
|
|
|
|
contributors may be used to endorse or promote products derived
|
|
|
|
from this software without specific prior written permission.
|
|
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
**********************************************************************/
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <getopt.h>
|
|
|
|
#include "erasure_code.h" // use <isa-l.h> instead when linking against installed
|
|
|
|
#include "test.h"
|
|
|
|
|
|
|
|
#define MMAX 255
|
|
|
|
#define KMAX 255
|
|
|
|
|
|
|
|
typedef unsigned char u8;
|
|
|
|
int verbose = 0;
|
|
|
|
|
|
|
|
int usage(void)
|
|
|
|
{
|
|
|
|
fprintf(stderr,
|
|
|
|
"Usage: ec_piggyback_example [options]\n"
|
|
|
|
" -h Help\n"
|
|
|
|
" -k <val> Number of source fragments\n"
|
|
|
|
" -p <val> Number of parity fragments\n"
|
|
|
|
" -l <val> Length of fragments\n"
|
|
|
|
" -e <val> Simulate erasure on frag index val. Zero based. Can be repeated.\n"
|
|
|
|
" -v Verbose\n"
|
|
|
|
" -b Run timed benchmark\n"
|
|
|
|
" -s Toggle use of sparse matrix opt\n"
|
|
|
|
" -r <seed> Pick random (k, p) with seed\n");
|
|
|
|
exit(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Cauchy-based matrix
|
|
|
|
void gf_gen_full_pb_cauchy_matrix(u8 * a, int m, int k)
|
|
|
|
{
|
|
|
|
int i, j, p = m - k;
|
|
|
|
|
|
|
|
// Identity matrix in top k x k to indicate a symetric code
|
|
|
|
memset(a, 0, k * m);
|
|
|
|
for (i = 0; i < k; i++)
|
|
|
|
a[k * i + i] = 1;
|
|
|
|
|
|
|
|
for (i = k; i < (k + p / 2); i++) {
|
|
|
|
for (j = 0; j < k / 2; j++)
|
|
|
|
a[k * i + j] = gf_inv(i ^ j);
|
|
|
|
for (; j < k; j++)
|
|
|
|
a[k * i + j] = 0;
|
|
|
|
}
|
|
|
|
for (; i < m; i++) {
|
|
|
|
for (j = 0; j < k / 2; j++)
|
|
|
|
a[k * i + j] = 0;
|
|
|
|
for (; j < k; j++)
|
|
|
|
a[k * i + j] = gf_inv((i - p / 2) ^ (j - k / 2));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Fill in mixture of B parity depending on a few localized A sources
|
|
|
|
int r = 0, c = 0;
|
|
|
|
int repeat_len = k / (p - 2);
|
|
|
|
int parity_rows = p / 2;
|
|
|
|
|
|
|
|
for (i = 1 + k + parity_rows; i < m; i++, r++) {
|
|
|
|
if (r == (parity_rows - 1) - ((k / 2 % (parity_rows - 1))))
|
|
|
|
repeat_len++;
|
|
|
|
|
|
|
|
for (j = 0; j < repeat_len; j++, c++)
|
|
|
|
a[k * i + c] = gf_inv((k + 1) ^ c);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Vandermonde based matrix - not recommended due to limits when invertable
|
|
|
|
void gf_gen_full_pb_vand_matrix(u8 * a, int m, int k)
|
|
|
|
{
|
|
|
|
int i, j, p = m - k;
|
|
|
|
unsigned char q, gen = 1;
|
|
|
|
|
|
|
|
// Identity matrix in top k x k to indicate a symetric code
|
|
|
|
memset(a, 0, k * m);
|
|
|
|
for (i = 0; i < k; i++)
|
|
|
|
a[k * i + i] = 1;
|
|
|
|
|
|
|
|
for (i = k; i < (k + (p / 2)); i++) {
|
|
|
|
q = 1;
|
|
|
|
for (j = 0; j < k / 2; j++) {
|
|
|
|
a[k * i + j] = q;
|
|
|
|
q = gf_mul(q, gen);
|
|
|
|
}
|
|
|
|
for (; j < k; j++)
|
|
|
|
a[k * i + j] = 0;
|
|
|
|
gen = gf_mul(gen, 2);
|
|
|
|
}
|
|
|
|
gen = 1;
|
|
|
|
for (; i < m; i++) {
|
|
|
|
q = 1;
|
|
|
|
for (j = 0; j < k / 2; j++) {
|
|
|
|
a[k * i + j] = 0;
|
|
|
|
}
|
|
|
|
for (; j < k; j++) {
|
|
|
|
a[k * i + j] = q;
|
|
|
|
q = gf_mul(q, gen);
|
|
|
|
}
|
|
|
|
gen = gf_mul(gen, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Fill in mixture of B parity depending on a few localized A sources
|
|
|
|
int r = 0, c = 0;
|
|
|
|
int repeat_len = k / (p - 2);
|
|
|
|
int parity_rows = p / 2;
|
|
|
|
|
|
|
|
for (i = 1 + k + parity_rows; i < m; i++, r++) {
|
|
|
|
if (r == (parity_rows - 1) - ((k / 2 % (parity_rows - 1))))
|
|
|
|
repeat_len++;
|
|
|
|
|
|
|
|
for (j = 0; j < repeat_len; j++)
|
|
|
|
a[k * i + c++] = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_matrix(int m, int k, unsigned char *s, const char *msg)
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
printf("%s:\n", msg);
|
|
|
|
for (i = 0; i < m; i++) {
|
|
|
|
printf("%3d- ", i);
|
|
|
|
for (j = 0; j < k; j++) {
|
|
|
|
printf(" %2x", 0xff & s[j + (i * k)]);
|
|
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_list(int n, unsigned char *s, const char *msg)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
if (!verbose)
|
|
|
|
return;
|
|
|
|
|
|
|
|
printf("%s: ", msg);
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
printf(" %d", s[i]);
|
|
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
static int gf_gen_decode_matrix(u8 * encode_matrix,
|
|
|
|
u8 * decode_matrix,
|
|
|
|
u8 * invert_matrix,
|
|
|
|
u8 * temp_matrix,
|
|
|
|
u8 * decode_index,
|
|
|
|
u8 * frag_err_list, int nerrs, int k, int m);
|
|
|
|
|
|
|
|
int main(int argc, char *argv[])
|
|
|
|
{
|
|
|
|
int i, j, m, c, e, ret;
|
|
|
|
int k = 10, p = 4, len = 8 * 1024; // Default params
|
|
|
|
int nerrs = 0;
|
|
|
|
int benchmark = 0;
|
|
|
|
int sparse_matrix_opt = 1;
|
|
|
|
|
|
|
|
// Fragment buffer pointers
|
|
|
|
u8 *frag_ptrs[MMAX];
|
|
|
|
u8 *parity_ptrs[KMAX];
|
|
|
|
u8 *recover_srcs[KMAX];
|
|
|
|
u8 *recover_outp[KMAX];
|
|
|
|
u8 frag_err_list[MMAX];
|
|
|
|
|
|
|
|
// Coefficient matrices
|
|
|
|
u8 *encode_matrix, *decode_matrix;
|
|
|
|
u8 *invert_matrix, *temp_matrix;
|
|
|
|
u8 *g_tbls;
|
|
|
|
u8 decode_index[MMAX];
|
|
|
|
|
|
|
|
if (argc == 1)
|
|
|
|
for (i = 0; i < p; i++)
|
|
|
|
frag_err_list[nerrs++] = rand() % (k + p);
|
|
|
|
|
|
|
|
while ((c = getopt(argc, argv, "k:p:l:e:r:hvbs")) != -1) {
|
|
|
|
switch (c) {
|
|
|
|
case 'k':
|
|
|
|
k = atoi(optarg);
|
|
|
|
break;
|
|
|
|
case 'p':
|
|
|
|
p = atoi(optarg);
|
|
|
|
break;
|
|
|
|
case 'l':
|
|
|
|
len = atoi(optarg);
|
|
|
|
if (len < 0)
|
|
|
|
usage();
|
|
|
|
break;
|
|
|
|
case 'e':
|
|
|
|
e = atoi(optarg);
|
|
|
|
frag_err_list[nerrs++] = e;
|
|
|
|
break;
|
|
|
|
case 'r':
|
|
|
|
srand(atoi(optarg));
|
|
|
|
k = (rand() % MMAX) / 4;
|
|
|
|
k = (k < 2) ? 2 : k;
|
|
|
|
p = (rand() % (MMAX - k)) / 4;
|
|
|
|
p = (p < 2) ? 2 : p;
|
|
|
|
for (i = 0; i < k && nerrs < p; i++)
|
|
|
|
if (rand() & 1)
|
|
|
|
frag_err_list[nerrs++] = i;
|
|
|
|
break;
|
|
|
|
case 'v':
|
|
|
|
verbose++;
|
|
|
|
break;
|
|
|
|
case 'b':
|
|
|
|
benchmark = 1;
|
|
|
|
break;
|
|
|
|
case 's':
|
|
|
|
sparse_matrix_opt = !sparse_matrix_opt;
|
|
|
|
break;
|
|
|
|
case 'h':
|
|
|
|
default:
|
|
|
|
usage();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
m = k + p;
|
|
|
|
|
|
|
|
// Check for valid parameters
|
|
|
|
if (m > (MMAX / 2) || k > (KMAX / 2) || m < 0 || p < 2 || k < 1) {
|
|
|
|
printf(" Input test parameter error m=%d, k=%d, p=%d, erasures=%d\n",
|
|
|
|
m, k, p, nerrs);
|
|
|
|
usage();
|
|
|
|
}
|
|
|
|
if (nerrs > p) {
|
|
|
|
printf(" Number of erasures chosen exceeds power of code erasures=%d p=%d\n",
|
|
|
|
nerrs, p);
|
|
|
|
}
|
|
|
|
for (i = 0; i < nerrs; i++) {
|
|
|
|
if (frag_err_list[i] >= m)
|
|
|
|
printf(" fragment %d not in range\n", frag_err_list[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("ec_piggyback_example:\n");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* One simple way to implement piggyback codes is to keep a 2x wide matrix
|
|
|
|
* that covers the how each parity is related to both A and B sources. This
|
|
|
|
* keeps it easy to generalize in parameters m,k and the resulting sparse
|
|
|
|
* matrix multiplication can be optimized by pre-removal of zero items.
|
|
|
|
*/
|
|
|
|
|
|
|
|
int k2 = 2 * k;
|
|
|
|
int p2 = 2 * p;
|
|
|
|
int m2 = k2 + p2;
|
|
|
|
int nerrs2 = nerrs;
|
|
|
|
|
|
|
|
encode_matrix = malloc(m2 * k2);
|
|
|
|
decode_matrix = malloc(m2 * k2);
|
|
|
|
invert_matrix = malloc(m2 * k2);
|
|
|
|
temp_matrix = malloc(m2 * k2);
|
|
|
|
g_tbls = malloc(k2 * p2 * 32);
|
|
|
|
|
|
|
|
if (encode_matrix == NULL || decode_matrix == NULL
|
|
|
|
|| invert_matrix == NULL || temp_matrix == NULL || g_tbls == NULL) {
|
|
|
|
printf("Test failure! Error with malloc\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
// Allocate the src fragments
|
|
|
|
for (i = 0; i < k; i++) {
|
|
|
|
if (NULL == (frag_ptrs[i] = malloc(len))) {
|
|
|
|
printf("alloc error: Fail\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Allocate the parity fragments
|
|
|
|
for (i = 0; i < p2; i++) {
|
|
|
|
if (NULL == (parity_ptrs[i] = malloc(len / 2))) {
|
|
|
|
printf("alloc error: Fail\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Allocate buffers for recovered data
|
|
|
|
for (i = 0; i < p2; i++) {
|
|
|
|
if (NULL == (recover_outp[i] = malloc(len / 2))) {
|
|
|
|
printf("alloc error: Fail\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Fill sources with random data
|
|
|
|
for (i = 0; i < k; i++)
|
|
|
|
for (j = 0; j < len; j++)
|
|
|
|
frag_ptrs[i][j] = rand();
|
|
|
|
|
|
|
|
printf(" encode (m,k,p)=(%d,%d,%d) len=%d\n", m, k, p, len);
|
|
|
|
|
|
|
|
// Pick an encode matrix.
|
|
|
|
gf_gen_full_pb_cauchy_matrix(encode_matrix, m2, k2);
|
|
|
|
|
|
|
|
if (verbose)
|
|
|
|
print_matrix(m2, k2, encode_matrix, "encode matrix");
|
|
|
|
|
|
|
|
// Initialize g_tbls from encode matrix
|
|
|
|
ec_init_tables(k2, p2, &encode_matrix[k2 * k2], g_tbls);
|
|
|
|
|
|
|
|
// Fold A and B into single list of fragments
|
|
|
|
for (i = 0; i < k; i++)
|
|
|
|
frag_ptrs[i + k] = &frag_ptrs[i][len / 2];
|
|
|
|
|
|
|
|
if (!sparse_matrix_opt) {
|
|
|
|
// Standard encode using no assumptions on the encode matrix
|
|
|
|
|
|
|
|
// Generate EC parity blocks from sources
|
|
|
|
ec_encode_data(len / 2, k2, p2, g_tbls, frag_ptrs, parity_ptrs);
|
|
|
|
|
|
|
|
if (benchmark) {
|
2019-01-22 15:38:26 -07:00
|
|
|
struct perf start;
|
|
|
|
BENCHMARK(&start, BENCHMARK_TIME,
|
|
|
|
ec_encode_data(len / 2, k2, p2, g_tbls, frag_ptrs,
|
|
|
|
parity_ptrs));
|
2018-01-26 19:16:54 -07:00
|
|
|
printf("ec_piggyback_encode_std: ");
|
2019-01-22 15:38:26 -07:00
|
|
|
perf_print(start, m2 * len / 2);
|
2018-01-26 19:16:54 -07:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Sparse matrix optimization - use fact that input matrix is sparse
|
|
|
|
|
|
|
|
// Keep an encode matrix with some zero elements removed
|
|
|
|
u8 *encode_matrix_faster, *g_tbls_faster;
|
|
|
|
encode_matrix_faster = malloc(m * k);
|
|
|
|
g_tbls_faster = malloc(k * p * 32);
|
|
|
|
if (encode_matrix_faster == NULL || g_tbls_faster == NULL) {
|
|
|
|
printf("Test failure! Error with malloc\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Pack with only the part that we know are non-zero. Alternatively
|
|
|
|
* we could search and keep track of non-zero elements but for
|
|
|
|
* simplicity we just skip the lower quadrant.
|
|
|
|
*/
|
|
|
|
for (i = k, j = k2; i < m; i++, j++)
|
|
|
|
memcpy(&encode_matrix_faster[k * i], &encode_matrix[k2 * j], k);
|
|
|
|
|
|
|
|
if (verbose) {
|
|
|
|
print_matrix(p, k, &encode_matrix_faster[k * k],
|
|
|
|
"encode via sparse-opt");
|
|
|
|
print_matrix(p2 / 2, k2, &encode_matrix[(k2 + p2 / 2) * k2],
|
|
|
|
"encode via sparse-opt");
|
|
|
|
}
|
|
|
|
// Initialize g_tbls from encode matrix
|
|
|
|
ec_init_tables(k, p, &encode_matrix_faster[k * k], g_tbls_faster);
|
|
|
|
|
|
|
|
// Generate EC parity blocks from sources
|
|
|
|
ec_encode_data(len / 2, k, p, g_tbls_faster, frag_ptrs, parity_ptrs);
|
|
|
|
ec_encode_data(len / 2, k2, p, &g_tbls[k2 * p * 32], frag_ptrs,
|
|
|
|
&parity_ptrs[p]);
|
|
|
|
|
|
|
|
if (benchmark) {
|
2019-01-22 15:38:26 -07:00
|
|
|
struct perf start;
|
|
|
|
BENCHMARK(&start, BENCHMARK_TIME,
|
|
|
|
ec_encode_data(len / 2, k, p, g_tbls_faster, frag_ptrs,
|
|
|
|
parity_ptrs);
|
|
|
|
ec_encode_data(len / 2, k2, p, &g_tbls[k2 * p * 32],
|
|
|
|
frag_ptrs, &parity_ptrs[p]));
|
2018-01-26 19:16:54 -07:00
|
|
|
printf("ec_piggyback_encode_sparse: ");
|
2019-01-22 15:38:26 -07:00
|
|
|
perf_print(start, m2 * len / 2);
|
2018-01-26 19:16:54 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nerrs <= 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
printf(" recover %d fragments\n", nerrs);
|
|
|
|
|
|
|
|
// Set frag pointers to correspond to parity
|
|
|
|
for (i = k2; i < m2; i++)
|
|
|
|
frag_ptrs[i] = parity_ptrs[i - k2];
|
|
|
|
|
|
|
|
print_list(nerrs2, frag_err_list, " frag err list");
|
|
|
|
|
|
|
|
// Find a decode matrix to regenerate all erasures from remaining frags
|
|
|
|
ret = gf_gen_decode_matrix(encode_matrix, decode_matrix,
|
|
|
|
invert_matrix, temp_matrix, decode_index, frag_err_list,
|
|
|
|
nerrs2, k2, m2);
|
|
|
|
|
|
|
|
if (ret != 0) {
|
|
|
|
printf("Fail on generate decode matrix\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
// Pack recovery array pointers as list of valid fragments
|
|
|
|
for (i = 0; i < k2; i++)
|
|
|
|
if (decode_index[i] < k2)
|
|
|
|
recover_srcs[i] = frag_ptrs[decode_index[i]];
|
|
|
|
else
|
|
|
|
recover_srcs[i] = parity_ptrs[decode_index[i] - k2];
|
|
|
|
|
|
|
|
print_list(k2, decode_index, " decode index");
|
|
|
|
|
|
|
|
// Recover data
|
|
|
|
ec_init_tables(k2, nerrs2, decode_matrix, g_tbls);
|
|
|
|
ec_encode_data(len / 2, k2, nerrs2, g_tbls, recover_srcs, recover_outp);
|
|
|
|
|
|
|
|
if (benchmark) {
|
2019-01-22 15:38:26 -07:00
|
|
|
struct perf start;
|
|
|
|
BENCHMARK(&start, BENCHMARK_TIME,
|
|
|
|
ec_encode_data(len / 2, k2, nerrs2, g_tbls, recover_srcs,
|
|
|
|
recover_outp));
|
2018-01-26 19:16:54 -07:00
|
|
|
printf("ec_piggyback_decode: ");
|
2019-01-22 15:38:26 -07:00
|
|
|
perf_print(start, (k2 + nerrs2) * len / 2);
|
2018-01-26 19:16:54 -07:00
|
|
|
}
|
|
|
|
// Check that recovered buffers are the same as original
|
|
|
|
printf(" check recovery of block {");
|
|
|
|
for (i = 0; i < nerrs2; i++) {
|
|
|
|
printf(" %d", frag_err_list[i]);
|
|
|
|
if (memcmp(recover_outp[i], frag_ptrs[frag_err_list[i]], len / 2)) {
|
|
|
|
printf(" Fail erasure recovery %d, frag %d\n", i, frag_err_list[i]);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
printf(" } done all: Pass\n");
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Generate decode matrix from encode matrix and erasure list
|
|
|
|
|
|
|
|
static int gf_gen_decode_matrix(u8 * encode_matrix,
|
|
|
|
u8 * decode_matrix,
|
|
|
|
u8 * invert_matrix,
|
|
|
|
u8 * temp_matrix,
|
|
|
|
u8 * decode_index, u8 * frag_err_list, int nerrs, int k, int m)
|
|
|
|
{
|
|
|
|
int i, j, p, r;
|
|
|
|
int nsrcerrs = 0;
|
|
|
|
u8 s, *b = temp_matrix;
|
|
|
|
u8 frag_in_err[MMAX];
|
|
|
|
|
|
|
|
memset(frag_in_err, 0, sizeof(frag_in_err));
|
|
|
|
|
|
|
|
// Order the fragments in erasure for easier sorting
|
|
|
|
for (i = 0; i < nerrs; i++) {
|
|
|
|
if (frag_err_list[i] < k)
|
|
|
|
nsrcerrs++;
|
|
|
|
frag_in_err[frag_err_list[i]] = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Construct b (matrix that encoded remaining frags) by removing erased rows
|
|
|
|
for (i = 0, r = 0; i < k; i++, r++) {
|
|
|
|
while (frag_in_err[r])
|
|
|
|
r++;
|
|
|
|
for (j = 0; j < k; j++)
|
|
|
|
b[k * i + j] = encode_matrix[k * r + j];
|
|
|
|
decode_index[i] = r;
|
|
|
|
}
|
|
|
|
if (verbose > 1)
|
|
|
|
print_matrix(k, k, b, "matrix to invert");
|
|
|
|
|
|
|
|
// Invert matrix to get recovery matrix
|
|
|
|
if (gf_invert_matrix(b, invert_matrix, k) < 0)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
if (verbose > 2)
|
|
|
|
print_matrix(k, k, invert_matrix, "matrix inverted");
|
|
|
|
|
|
|
|
// Get decode matrix with only wanted recovery rows
|
|
|
|
for (i = 0; i < nsrcerrs; i++) {
|
|
|
|
for (j = 0; j < k; j++) {
|
|
|
|
decode_matrix[k * i + j] = invert_matrix[k * frag_err_list[i] + j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// For non-src (parity) erasures need to multiply encode matrix * invert
|
|
|
|
for (p = nsrcerrs; p < nerrs; p++) {
|
|
|
|
for (i = 0; i < k; i++) {
|
|
|
|
s = 0;
|
|
|
|
for (j = 0; j < k; j++)
|
|
|
|
s ^= gf_mul(invert_matrix[j * k + i],
|
|
|
|
encode_matrix[k * frag_err_list[p] + j]);
|
|
|
|
|
|
|
|
decode_matrix[k * p + i] = s;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (verbose > 1)
|
|
|
|
print_matrix(nerrs, k, decode_matrix, "decode matrix");
|
|
|
|
return 0;
|
|
|
|
}
|