isa-l/crc/crc64_iso_refl_by16_10.asm

495 lines
13 KiB
NASM
Raw Normal View History

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright(c) 2011-2019 Intel Corporation All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in
; the documentation and/or other materials provided with the
; distribution.
; * Neither the name of Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived
; from this software without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Function API:
; uint64_t crc64_iso_refl_by16_10(
; uint64_t init_crc, //initial CRC value, 64 bits
; const unsigned char *buf, //buffer pointer to calculate CRC on
; uint64_t len //buffer length in bytes (64-bit data)
; );
;
%include "reg_sizes.asm"
%ifndef FUNCTION_NAME
%define FUNCTION_NAME crc64_iso_refl_by16_10
%endif
%if (AS_FEATURE_LEVEL) >= 10
%define fetch_dist 1024
[bits 64]
default rel
section .text
%ifidn __OUTPUT_FORMAT__, win64
%xdefine arg1 rcx
%xdefine arg2 rdx
%xdefine arg3 r8
%else
%xdefine arg1 rdi
%xdefine arg2 rsi
%xdefine arg3 rdx
%endif
%define TMP 16*0
%ifidn __OUTPUT_FORMAT__, win64
%define XMM_SAVE 16*2
%define VARIABLE_OFFSET 16*12+8
%else
%define VARIABLE_OFFSET 16*2+8
%endif
align 16
mk_global FUNCTION_NAME, function
FUNCTION_NAME:
not arg1
sub rsp, VARIABLE_OFFSET
%ifidn __OUTPUT_FORMAT__, win64
; push the xmm registers into the stack to maintain
vmovdqa [rsp + XMM_SAVE + 16*0], xmm6
vmovdqa [rsp + XMM_SAVE + 16*1], xmm7
vmovdqa [rsp + XMM_SAVE + 16*2], xmm8
vmovdqa [rsp + XMM_SAVE + 16*3], xmm9
vmovdqa [rsp + XMM_SAVE + 16*4], xmm10
vmovdqa [rsp + XMM_SAVE + 16*5], xmm11
vmovdqa [rsp + XMM_SAVE + 16*6], xmm12
vmovdqa [rsp + XMM_SAVE + 16*7], xmm13
vmovdqa [rsp + XMM_SAVE + 16*8], xmm14
vmovdqa [rsp + XMM_SAVE + 16*9], xmm15
%endif
cmp arg3, 256
jl _less_than_256
; load the initial crc value
vmovq xmm10, arg1 ; initial crc
; receive the initial 128B data, xor the initial crc value
vmovdqu8 zmm0, [arg2+16*0]
vmovdqu8 zmm4, [arg2+16*4]
vpxorq zmm0, zmm10
vbroadcasti32x4 zmm10, [rk3] ;zmm10 has rk3 and rk4
;imm value of pclmulqdq instruction will determine which constant to use
sub arg3, 256
cmp arg3, 256
jl _fold_128_B_loop
vmovdqu8 zmm7, [arg2+16*8]
vmovdqu8 zmm8, [arg2+16*12]
vbroadcasti32x4 zmm16, [rk_1] ;zmm16 has rk-1 and rk-2
sub arg3, 256
_fold_256_B_loop:
add arg2, 256
vmovdqu8 zmm3, [arg2+16*0]
vpclmulqdq zmm1, zmm0, zmm16, 0x10
vpclmulqdq zmm2, zmm0, zmm16, 0x01
vpxorq zmm0, zmm1, zmm2
vpxorq zmm0, zmm0, zmm3
vmovdqu8 zmm9, [arg2+16*4]
vpclmulqdq zmm5, zmm4, zmm16, 0x10
vpclmulqdq zmm6, zmm4, zmm16, 0x01
vpxorq zmm4, zmm5, zmm6
vpxorq zmm4, zmm4, zmm9
vmovdqu8 zmm11, [arg2+16*8]
vpclmulqdq zmm12, zmm7, zmm16, 0x10
vpclmulqdq zmm13, zmm7, zmm16, 0x01
vpxorq zmm7, zmm12, zmm13
vpxorq zmm7, zmm7, zmm11
vmovdqu8 zmm17, [arg2+16*12]
vpclmulqdq zmm14, zmm8, zmm16, 0x10
vpclmulqdq zmm15, zmm8, zmm16, 0x01
vpxorq zmm8, zmm14, zmm15
vpxorq zmm8, zmm8, zmm17
sub arg3, 256
jge _fold_256_B_loop
;; Fold 256 into 128
add arg2, 256
vpclmulqdq zmm1, zmm0, zmm10, 0x01
vpclmulqdq zmm2, zmm0, zmm10, 0x10
vpternlogq zmm7, zmm1, zmm2, 0x96 ; xor ABC
vpclmulqdq zmm5, zmm4, zmm10, 0x01
vpclmulqdq zmm6, zmm4, zmm10, 0x10
vpternlogq zmm8, zmm5, zmm6, 0x96 ; xor ABC
vmovdqa32 zmm0, zmm7
vmovdqa32 zmm4, zmm8
add arg3, 128
jmp _fold_128_B_register
; fold 128B at a time. This section of the code folds 2 zmm registers in parallel
_fold_128_B_loop:
add arg2, 128 ; update the buffer pointer
vmovdqu8 zmm8, [arg2+16*0]
vpclmulqdq zmm1, zmm0, zmm10, 0x10
vpclmulqdq zmm2, zmm0, zmm10, 0x01
vpxorq zmm0, zmm1, zmm2
vpxorq zmm0, zmm0, zmm8
vmovdqu8 zmm9, [arg2+16*4]
vpclmulqdq zmm5, zmm4, zmm10, 0x10
vpclmulqdq zmm6, zmm4, zmm10, 0x01
vpxorq zmm4, zmm5, zmm6
vpxorq zmm4, zmm4, zmm9
sub arg3, 128
jge _fold_128_B_loop
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
add arg2, 128
; at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
; the 128B of folded data is in 2 zmm registers: zmm0, zmm4
_fold_128_B_register:
; fold the 8 128b parts into 1 xmm register with different constants
vmovdqu8 zmm16, [rk9] ; multiply by rk9-rk16
vmovdqu8 zmm11, [rk17] ; multiply by rk17-rk20, rk1,rk2, 0,0
vpclmulqdq zmm1, zmm0, zmm16, 0x01
vpclmulqdq zmm2, zmm0, zmm16, 0x10
vextracti64x2 xmm7, zmm4, 3 ; save last that has no multiplicand
vpclmulqdq zmm5, zmm4, zmm11, 0x01
vpclmulqdq zmm6, zmm4, zmm11, 0x10
vmovdqa xmm10, [rk1] ; Needed later in reduction loop
vpternlogq zmm1, zmm2, zmm5, 0x96 ; xor ABC
vpternlogq zmm1, zmm6, zmm7, 0x96 ; xor ABC
vshufi64x2 zmm8, zmm1, zmm1, 0x4e ; Swap 1,0,3,2 - 01 00 11 10
vpxorq ymm8, ymm8, ymm1
vextracti64x2 xmm5, ymm8, 1
vpxorq xmm7, xmm5, xmm8
; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop
; instead of a cmp instruction, we use the negative flag with the jl instruction
add arg3, 128-16
jl _final_reduction_for_128
; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
; we can fold 16 bytes at a time if y>=16
; continue folding 16B at a time
_16B_reduction_loop:
vmovdqa xmm8, xmm7
vpclmulqdq xmm7, xmm10, 0x1
vpclmulqdq xmm8, xmm10, 0x10
vpxor xmm7, xmm8
vmovdqu xmm0, [arg2]
vpxor xmm7, xmm0
add arg2, 16
sub arg3, 16
; instead of a cmp instruction, we utilize the flags with the jge instruction
; equivalent of: cmp arg3, 16-16
; check if there is any more 16B in the buffer to be able to fold
jge _16B_reduction_loop
;now we have 16+z bytes left to reduce, where 0<= z < 16.
;first, we reduce the data in the xmm7 register
_final_reduction_for_128:
add arg3, 16
je _128_done
; here we are getting data that is less than 16 bytes.
; since we know that there was data before the pointer, we can offset
; the input pointer before the actual point, to receive exactly 16 bytes.
; after that the registers need to be adjusted.
_get_last_two_xmms:
vmovdqa xmm2, xmm7
vmovdqu xmm1, [arg2 - 16 + arg3]
; get rid of the extra data that was loaded before
; load the shift constant
lea rax, [pshufb_shf_table]
add rax, arg3
vmovdqu xmm0, [rax]
vpshufb xmm7, xmm0
vpxor xmm0, [mask3]
vpshufb xmm2, xmm0
vpblendvb xmm2, xmm2, xmm1, xmm0
;;;;;;;;;;
vmovdqa xmm8, xmm7
vpclmulqdq xmm7, xmm10, 0x1
vpclmulqdq xmm8, xmm10, 0x10
vpxor xmm7, xmm8
vpxor xmm7, xmm2
_128_done:
; compute crc of a 128-bit value
vmovdqa xmm10, [rk5]
vmovdqa xmm0, xmm7
;64b fold
vpclmulqdq xmm7, xmm10, 0
vpsrldq xmm0, 8
vpxor xmm7, xmm0
;barrett reduction
_barrett:
vmovdqa xmm1, xmm7
vmovdqa xmm10, [rk7]
vpclmulqdq xmm7, xmm10, 0
vmovdqa xmm2, xmm7
vpclmulqdq xmm7, xmm10, 0x10
vpslldq xmm2, 8
vpxor xmm7, xmm2
vpxor xmm7, xmm1
vpextrq rax, xmm7, 1
_cleanup:
not rax
%ifidn __OUTPUT_FORMAT__, win64
vmovdqa xmm6, [rsp + XMM_SAVE + 16*0]
vmovdqa xmm7, [rsp + XMM_SAVE + 16*1]
vmovdqa xmm8, [rsp + XMM_SAVE + 16*2]
vmovdqa xmm9, [rsp + XMM_SAVE + 16*3]
vmovdqa xmm10, [rsp + XMM_SAVE + 16*4]
vmovdqa xmm11, [rsp + XMM_SAVE + 16*5]
vmovdqa xmm12, [rsp + XMM_SAVE + 16*6]
vmovdqa xmm13, [rsp + XMM_SAVE + 16*7]
vmovdqa xmm14, [rsp + XMM_SAVE + 16*8]
vmovdqa xmm15, [rsp + XMM_SAVE + 16*9]
%endif
add rsp, VARIABLE_OFFSET
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 16
_less_than_256:
; check if there is enough buffer to be able to fold 16B at a time
cmp arg3, 32
jl _less_than_32
; if there is, load the constants
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
vmovq xmm0, arg1 ; get the initial crc value
vmovdqu xmm7, [arg2] ; load the plaintext
vpxor xmm7, xmm0
; update the buffer pointer
add arg2, 16
; update the counter. subtract 32 instead of 16 to save one instruction from the loop
sub arg3, 32
jmp _16B_reduction_loop
align 16
_less_than_32:
; mov initial crc to the return value. this is necessary for zero-length buffers.
mov rax, arg1
test arg3, arg3
je _cleanup
vmovq xmm0, arg1 ; get the initial crc value
cmp arg3, 16
je _exact_16_left
jl _less_than_16_left
vmovdqu xmm7, [arg2] ; load the plaintext
vpxor xmm7, xmm0 ; xor the initial crc value
add arg2, 16
sub arg3, 16
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
jmp _get_last_two_xmms
align 16
_less_than_16_left:
; use stack space to load data less than 16 bytes, zero-out the 16B in memory first.
vpxor xmm1, xmm1
mov r11, rsp
vmovdqa [r11], xmm1
; backup the counter value
mov r9, arg3
cmp arg3, 8
jl _less_than_8_left
; load 8 Bytes
mov rax, [arg2]
mov [r11], rax
add r11, 8
sub arg3, 8
add arg2, 8
_less_than_8_left:
cmp arg3, 4
jl _less_than_4_left
; load 4 Bytes
mov eax, [arg2]
mov [r11], eax
add r11, 4
sub arg3, 4
add arg2, 4
_less_than_4_left:
cmp arg3, 2
jl _less_than_2_left
; load 2 Bytes
mov ax, [arg2]
mov [r11], ax
add r11, 2
sub arg3, 2
add arg2, 2
_less_than_2_left:
cmp arg3, 1
jl _zero_left
; load 1 Byte
mov al, [arg2]
mov [r11], al
_zero_left:
vmovdqa xmm7, [rsp]
vpxor xmm7, xmm0 ; xor the initial crc value
lea rax,[pshufb_shf_table]
cmp r9, 8
jl _end_1to7
_end_8to15:
vmovdqu xmm0, [rax + r9]
vpshufb xmm7,xmm0
jmp _128_done
_end_1to7:
; Left shift (8-length) bytes in XMM
vmovdqu xmm0, [rax + r9 + 8]
vpshufb xmm7,xmm0
jmp _barrett
align 16
_exact_16_left:
vmovdqu xmm7, [arg2]
vpxor xmm7, xmm0 ; xor the initial crc value
jmp _128_done
section .data
align 32
%ifndef USE_CONSTS
; precomputed constants
rk_1: dq 0x45000000b0000000
rk_2: dq 0x6b700000f5000000
rk1: dq 0xf500000000000001
rk2: dq 0x6b70000000000001
rk3: dq 0xb001000000010000
rk4: dq 0xf501b0000001b000
rk5: dq 0xf500000000000001
rk6: dq 0x0000000000000000
rk7: dq 0xb000000000000001
rk8: dq 0xb000000000000000
rk9: dq 0xe014514514501501
rk10: dq 0x771db6db6db71c71
rk11: dq 0xa101101101110001
rk12: dq 0x1ab1ab1ab1aab001
rk13: dq 0xf445014445000001
rk14: dq 0x6aab71daab700001
rk15: dq 0xb100010100000001
rk16: dq 0x01b001b1b0000001
rk17: dq 0xe145150000000001
rk18: dq 0x76db6c7000000001
rk19: dq 0xa011000000000001
rk20: dq 0x1b1ab00000000001
rk_1b: dq 0xf500000000000001
rk_2b: dq 0x6b70000000000001
dq 0x0000000000000000
dq 0x0000000000000000
%else
INCLUDE_CONSTS
%endif
pshufb_shf_table:
; use these values for shift constants for the pshufb instruction
; different alignments result in values as shown:
; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7
; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8
; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9
; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10
; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11
; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12
; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13
; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14
; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
dq 0x0706050403020100, 0x000e0d0c0b0a0908
mask: dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000
mask2: dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF
mask3: dq 0x8080808080808080, 0x8080808080808080
%else ; Assembler doesn't understand these opcodes. Add empty symbol for windows.
%ifidn __OUTPUT_FORMAT__, win64
global no_ %+ FUNCTION_NAME
no_ %+ FUNCTION_NAME %+ :
%endif
%endif ; (AS_FEATURE_LEVEL) >= 10