isa-l/crc/crc16_t10dif_copy_by4.asm

597 lines
14 KiB
NASM
Raw Permalink Normal View History

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright(c) 2011-2017 Intel Corporation All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in
; the documentation and/or other materials provided with the
; distribution.
; * Neither the name of Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived
; from this software without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Function API:
; UINT16 crc16_t10dif_copy_by4(
; UINT16 init_crc, //initial CRC value, 16 bits
; unsigned char *dst, //buffer pointer destination for copy
; const unsigned char *src, //buffer pointer to calculate CRC on
; UINT64 len //buffer length in bytes (64-bit data)
; );
;
; Authors:
; Erdinc Ozturk
; Vinodh Gopal
; James Guilford
;
; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
; URL: http://download.intel.com/design/intarch/papers/323102.pdf
;
%include "reg_sizes.asm"
%define fetch_dist 1024
[bits 64]
default rel
section .text
%ifidn __OUTPUT_FORMAT__, win64
%xdefine arg1 rcx
%xdefine arg2 rdx
%xdefine arg3 r8
%xdefine arg4 r9
%xdefine tmp1 r10
%xdefine arg1_low32 ecx
%else
%xdefine arg1 rdi
%xdefine arg2 rsi
%xdefine arg3 rdx
%xdefine arg4 rcx
%xdefine tmp1 r10
%xdefine arg1_low32 edi
%endif
align 16
mk_global crc16_t10dif_copy_by4, function
crc16_t10dif_copy_by4:
endbranch
; adjust the 16-bit initial_crc value, scale it to 32 bits
shl arg1_low32, 16
; After this point, code flow is exactly same as a 32-bit CRC.
; The only difference is before returning eax, we will shift
; it right 16 bits, to scale back to 16 bits.
sub rsp,16*4+8
; push the xmm registers into the stack to maintain
movdqa [rsp+16*2],xmm6
movdqa [rsp+16*3],xmm7
; check if smaller than 128B
cmp arg4, 128
; for sizes less than 128, we can't fold 64B at a time...
jl _less_than_128
; load the initial crc value
movd xmm6, arg1_low32 ; initial crc
; crc value does not need to be byte-reflected, but it needs to
; be moved to the high part of the register.
; because data will be byte-reflected and will align with
; initial crc at correct place.
pslldq xmm6, 12
movdqa xmm7, [SHUF_MASK]
; receive the initial 64B data, xor the initial crc value
movdqu xmm0, [arg3]
movdqu xmm1, [arg3+16]
movdqu xmm2, [arg3+32]
movdqu xmm3, [arg3+48]
; copy initial data
movdqu [arg2], xmm0
movdqu [arg2+16], xmm1
movdqu [arg2+32], xmm2
movdqu [arg2+48], xmm3
pshufb xmm0, xmm7
; XOR the initial_crc value
pxor xmm0, xmm6
pshufb xmm1, xmm7
pshufb xmm2, xmm7
pshufb xmm3, xmm7
movdqa xmm6, [rk3] ;xmm6 has rk3 and rk4
;imm value of pclmulqdq instruction
;will determine which constant to use
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; we subtract 128 instead of 64 to save one instruction from the loop
sub arg4, 128
; at this section of the code, there is 64*x+y (0<=y<64) bytes of
; buffer. The _fold_64_B_loop
; loop will fold 64B at a time until we have 64+y Bytes of buffer
; fold 64B at a time. This section of the code folds 4 xmm
; registers in parallel
_fold_64_B_loop:
; update the buffer pointer
add arg3, 64 ; buf += 64;
add arg2, 64
prefetchnta [arg3+fetch_dist+0]
movdqu xmm4, xmm0
movdqu xmm5, xmm1
pclmulqdq xmm0, xmm6 , 0x11
pclmulqdq xmm1, xmm6 , 0x11
pclmulqdq xmm4, xmm6, 0x0
pclmulqdq xmm5, xmm6, 0x0
pxor xmm0, xmm4
pxor xmm1, xmm5
prefetchnta [arg3+fetch_dist+32]
movdqu xmm4, xmm2
movdqu xmm5, xmm3
pclmulqdq xmm2, xmm6, 0x11
pclmulqdq xmm3, xmm6, 0x11
pclmulqdq xmm4, xmm6, 0x0
pclmulqdq xmm5, xmm6, 0x0
pxor xmm2, xmm4
pxor xmm3, xmm5
movdqu xmm4, [arg3]
movdqu xmm5, [arg3+16]
movdqu [arg2], xmm4
movdqu [arg2+16], xmm5
pshufb xmm4, xmm7
pshufb xmm5, xmm7
pxor xmm0, xmm4
pxor xmm1, xmm5
movdqu xmm4, [arg3+32]
movdqu xmm5, [arg3+48]
movdqu [arg2+32], xmm4
movdqu [arg2+48], xmm5
pshufb xmm4, xmm7
pshufb xmm5, xmm7
pxor xmm2, xmm4
pxor xmm3, xmm5
sub arg4, 64
; check if there is another 64B in the buffer to be able to fold
jge _fold_64_B_loop
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
add arg3, 64
add arg2, 64
; at this point, the buffer pointer is pointing at the last y Bytes of the buffer
; the 64B of folded data is in 4 of the xmm registers: xmm0, xmm1, xmm2, xmm3
; fold the 4 xmm registers to 1 xmm register with different constants
movdqa xmm6, [rk1] ;xmm6 has rk1 and rk2
;imm value of pclmulqdq instruction will
;determine which constant to use
movdqa xmm4, xmm0
pclmulqdq xmm0, xmm6, 0x11
pclmulqdq xmm4, xmm6, 0x0
pxor xmm1, xmm4
pxor xmm1, xmm0
movdqa xmm4, xmm1
pclmulqdq xmm1, xmm6, 0x11
pclmulqdq xmm4, xmm6, 0x0
pxor xmm2, xmm4
pxor xmm2, xmm1
movdqa xmm4, xmm2
pclmulqdq xmm2, xmm6, 0x11
pclmulqdq xmm4, xmm6, 0x0
pxor xmm3, xmm4
pxor xmm3, xmm2
; instead of 64, we add 48 to the loop counter to save 1 instruction from the loop
; instead of a cmp instruction, we use the negative flag with the jl instruction
add arg4, 64-16
jl _final_reduction_for_128
; now we have 16+y bytes left to reduce. 16 Bytes
; is in register xmm3 and the rest is in memory
; we can fold 16 bytes at a time if y>=16
; continue folding 16B at a time
_16B_reduction_loop:
movdqa xmm4, xmm3
pclmulqdq xmm3, xmm6, 0x11
pclmulqdq xmm4, xmm6, 0x0
pxor xmm3, xmm4
movdqu xmm0, [arg3]
movdqu [arg2], xmm0
pshufb xmm0, xmm7
pxor xmm3, xmm0
add arg3, 16
add arg2, 16
sub arg4, 16
; instead of a cmp instruction, we utilize the flags with the jge instruction
; equivalent of: cmp arg4, 16-16
; check if there is any more 16B in the buffer to be able to fold
jge _16B_reduction_loop
;now we have 16+z bytes left to reduce, where 0<= z < 16.
;first, we reduce the data in the xmm3 register
_final_reduction_for_128:
; check if any more data to fold. If not, compute the CRC of the final 128 bits
add arg4, 16
je _128_done
; here we are getting data that is less than 16 bytes.
; since we know that there was data before the pointer,
; we can offset the input pointer before the actual point,
; to receive exactly 16 bytes.
; after that the registers need to be adjusted.
_get_last_two_xmms:
movdqa xmm2, xmm3
movdqu xmm1, [arg3 - 16 + arg4]
movdqu [arg2 - 16 + arg4], xmm1
pshufb xmm1, xmm7
; get rid of the extra data that was loaded before
; load the shift constant
lea rax, [pshufb_shf_table + 16]
sub rax, arg4
movdqu xmm0, [rax]
; shift xmm2 to the left by arg4 bytes
pshufb xmm2, xmm0
; shift xmm3 to the right by 16-arg4 bytes
pxor xmm0, [mask1]
pshufb xmm3, xmm0
pblendvb xmm1, xmm2 ;xmm0 is implicit
; fold 16 Bytes
movdqa xmm2, xmm1
movdqa xmm4, xmm3
pclmulqdq xmm3, xmm6, 0x11
pclmulqdq xmm4, xmm6, 0x0
pxor xmm3, xmm4
pxor xmm3, xmm2
_128_done:
; compute crc of a 128-bit value
movdqa xmm6, [rk5] ; rk5 and rk6 in xmm6
movdqa xmm0, xmm3
;64b fold
pclmulqdq xmm3, xmm6, 0x1
pslldq xmm0, 8
pxor xmm3, xmm0
;32b fold
movdqa xmm0, xmm3
pand xmm0, [mask2]
psrldq xmm3, 12
pclmulqdq xmm3, xmm6, 0x10
pxor xmm3, xmm0
;barrett reduction
_barrett:
movdqa xmm6, [rk7] ; rk7 and rk8 in xmm6
movdqa xmm0, xmm3
pclmulqdq xmm3, xmm6, 0x01
pslldq xmm3, 4
pclmulqdq xmm3, xmm6, 0x11
pslldq xmm3, 4
pxor xmm3, xmm0
pextrd eax, xmm3,1
_cleanup:
; scale the result back to 16 bits
shr eax, 16
movdqa xmm6, [rsp+16*2]
movdqa xmm7, [rsp+16*3]
add rsp,16*4+8
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 16
_less_than_128:
; check if there is enough buffer to be able to fold 16B at a time
cmp arg4, 32
jl _less_than_32
movdqa xmm7, [SHUF_MASK]
; if there is, load the constants
movdqa xmm6, [rk1] ; rk1 and rk2 in xmm6
movd xmm0, arg1_low32 ; get the initial crc value
pslldq xmm0, 12 ; align it to its correct place
movdqu xmm3, [arg3] ; load the plaintext
movdqu [arg2], xmm3 ; store copy
pshufb xmm3, xmm7 ; byte-reflect the plaintext
pxor xmm3, xmm0
; update the buffer pointer
add arg3, 16
add arg2, 16
; update the counter. subtract 32 instead of 16 to save one instruction from the loop
sub arg4, 32
jmp _16B_reduction_loop
align 16
_less_than_32:
; mov initial crc to the return value. this is necessary for zero-length buffers.
mov eax, arg1_low32
test arg4, arg4
je _cleanup
movdqa xmm7, [SHUF_MASK]
movd xmm0, arg1_low32 ; get the initial crc value
pslldq xmm0, 12 ; align it to its correct place
cmp arg4, 16
je _exact_16_left
jl _less_than_16_left
movdqu xmm3, [arg3] ; load the plaintext
movdqu [arg2], xmm3 ; store the copy
pshufb xmm3, xmm7 ; byte-reflect the plaintext
pxor xmm3, xmm0 ; xor the initial crc value
add arg3, 16
add arg2, 16
sub arg4, 16
movdqa xmm6, [rk1] ; rk1 and rk2 in xmm6
jmp _get_last_two_xmms
align 16
_less_than_16_left:
; use stack space to load data less than 16 bytes, zero-out the 16B in memory first.
pxor xmm1, xmm1
mov r11, rsp
movdqa [r11], xmm1
cmp arg4, 4
jl _only_less_than_4
; backup the counter value
mov tmp1, arg4
cmp arg4, 8
jl _less_than_8_left
; load 8 Bytes
mov rax, [arg3]
mov [arg2], rax
mov [r11], rax
add r11, 8
sub arg4, 8
add arg3, 8
add arg2, 8
_less_than_8_left:
cmp arg4, 4
jl _less_than_4_left
; load 4 Bytes
mov eax, [arg3]
mov [arg2], eax
mov [r11], eax
add r11, 4
sub arg4, 4
add arg3, 4
add arg2, 4
_less_than_4_left:
cmp arg4, 2
jl _less_than_2_left
; load 2 Bytes
mov ax, [arg3]
mov [arg2], ax
mov [r11], ax
add r11, 2
sub arg4, 2
add arg3, 2
add arg2, 2
_less_than_2_left:
cmp arg4, 1
jl _zero_left
; load 1 Byte
mov al, [arg3]
mov [arg2], al
mov [r11], al
_zero_left:
movdqa xmm3, [rsp]
pshufb xmm3, xmm7
pxor xmm3, xmm0 ; xor the initial crc value
; shl tmp1, 4
lea rax, [pshufb_shf_table + 16]
sub rax, tmp1
movdqu xmm0, [rax]
pxor xmm0, [mask1]
pshufb xmm3, xmm0
jmp _128_done
align 16
_exact_16_left:
movdqu xmm3, [arg3]
movdqu [arg2], xmm3
pshufb xmm3, xmm7
pxor xmm3, xmm0 ; xor the initial crc value
jmp _128_done
_only_less_than_4:
cmp arg4, 3
jl _only_less_than_3
; load 3 Bytes
mov al, [arg3]
mov [arg2], al
mov [r11], al
mov al, [arg3+1]
mov [arg2+1], al
mov [r11+1], al
mov al, [arg3+2]
mov [arg2+2], al
mov [r11+2], al
movdqa xmm3, [rsp]
pshufb xmm3, xmm7
pxor xmm3, xmm0 ; xor the initial crc value
psrldq xmm3, 5
jmp _barrett
_only_less_than_3:
cmp arg4, 2
jl _only_less_than_2
; load 2 Bytes
mov al, [arg3]
mov [arg2], al
mov [r11], al
mov al, [arg3+1]
mov [arg2+1], al
mov [r11+1], al
movdqa xmm3, [rsp]
pshufb xmm3, xmm7
pxor xmm3, xmm0 ; xor the initial crc value
psrldq xmm3, 6
jmp _barrett
_only_less_than_2:
; load 1 Byte
mov al, [arg3]
mov [arg2],al
mov [r11], al
movdqa xmm3, [rsp]
pshufb xmm3, xmm7
pxor xmm3, xmm0 ; xor the initial crc value
psrldq xmm3, 7
jmp _barrett
section .data
; precomputed constants
; these constants are precomputed from the poly: 0x8bb70000 (0x8bb7 scaled to 32 bits)
align 16
; Q = 0x18BB70000
; rk1 = 2^(32*3) mod Q << 32
; rk2 = 2^(32*5) mod Q << 32
; rk3 = 2^(32*15) mod Q << 32
; rk4 = 2^(32*17) mod Q << 32
; rk5 = 2^(32*3) mod Q << 32
; rk6 = 2^(32*2) mod Q << 32
; rk7 = floor(2^64/Q)
; rk8 = Q
rk1:
DQ 0x2d56000000000000
rk2:
DQ 0x06df000000000000
rk3:
DQ 0x044c000000000000
rk4:
DQ 0xe658000000000000
rk5:
DQ 0x2d56000000000000
rk6:
DQ 0x1368000000000000
rk7:
DQ 0x00000001f65a57f8
rk8:
DQ 0x000000018bb70000
mask1:
dq 0x8080808080808080, 0x8080808080808080
mask2:
dq 0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFF
SHUF_MASK:
dq 0x08090A0B0C0D0E0F, 0x0001020304050607
pshufb_shf_table:
; use these values for shift constants for the pshufb instruction
; different alignments result in values as shown:
; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7
; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8
; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9
; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10
; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11
; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12
; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13
; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14
; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
dq 0x0706050403020100, 0x000e0d0c0b0a0908