// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used argument matchers. More // matchers can be defined by the user implementing the // MatcherInterface interface if necessary. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #include #include #include #include #include // NOLINT #include #include #include #include #include "gtest/gtest.h" #include "gmock/internal/gmock-internal-utils.h" #include "gmock/internal/gmock-port.h" #if GTEST_HAS_STD_INITIALIZER_LIST_ # include // NOLINT -- must be after gtest.h #endif namespace testing { // To implement a matcher Foo for type T, define: // 1. a class FooMatcherImpl that implements the // MatcherInterface interface, and // 2. a factory function that creates a Matcher object from a // FooMatcherImpl*. // // The two-level delegation design makes it possible to allow a user // to write "v" instead of "Eq(v)" where a Matcher is expected, which // is impossible if we pass matchers by pointers. It also eases // ownership management as Matcher objects can now be copied like // plain values. // MatchResultListener is an abstract class. Its << operator can be // used by a matcher to explain why a value matches or doesn't match. // // TODO(wan@google.com): add method // bool InterestedInWhy(bool result) const; // to indicate whether the listener is interested in why the match // result is 'result'. class MatchResultListener { public: // Creates a listener object with the given underlying ostream. The // listener does not own the ostream, and does not dereference it // in the constructor or destructor. explicit MatchResultListener(::std::ostream* os) : stream_(os) {} virtual ~MatchResultListener() = 0; // Makes this class abstract. // Streams x to the underlying ostream; does nothing if the ostream // is NULL. template MatchResultListener& operator<<(const T& x) { if (stream_ != NULL) *stream_ << x; return *this; } // Returns the underlying ostream. ::std::ostream* stream() { return stream_; } // Returns true iff the listener is interested in an explanation of // the match result. A matcher's MatchAndExplain() method can use // this information to avoid generating the explanation when no one // intends to hear it. bool IsInterested() const { return stream_ != NULL; } private: ::std::ostream* const stream_; GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener); }; inline MatchResultListener::~MatchResultListener() { } // An instance of a subclass of this knows how to describe itself as a // matcher. class MatcherDescriberInterface { public: virtual ~MatcherDescriberInterface() {} // Describes this matcher to an ostream. The function should print // a verb phrase that describes the property a value matching this // matcher should have. The subject of the verb phrase is the value // being matched. For example, the DescribeTo() method of the Gt(7) // matcher prints "is greater than 7". virtual void DescribeTo(::std::ostream* os) const = 0; // Describes the negation of this matcher to an ostream. For // example, if the description of this matcher is "is greater than // 7", the negated description could be "is not greater than 7". // You are not required to override this when implementing // MatcherInterface, but it is highly advised so that your matcher // can produce good error messages. virtual void DescribeNegationTo(::std::ostream* os) const { *os << "not ("; DescribeTo(os); *os << ")"; } }; // The implementation of a matcher. template class MatcherInterface : public MatcherDescriberInterface { public: // Returns true iff the matcher matches x; also explains the match // result to 'listener' if necessary (see the next paragraph), in // the form of a non-restrictive relative clause ("which ...", // "whose ...", etc) that describes x. For example, the // MatchAndExplain() method of the Pointee(...) matcher should // generate an explanation like "which points to ...". // // Implementations of MatchAndExplain() should add an explanation of // the match result *if and only if* they can provide additional // information that's not already present (or not obvious) in the // print-out of x and the matcher's description. Whether the match // succeeds is not a factor in deciding whether an explanation is // needed, as sometimes the caller needs to print a failure message // when the match succeeds (e.g. when the matcher is used inside // Not()). // // For example, a "has at least 10 elements" matcher should explain // what the actual element count is, regardless of the match result, // as it is useful information to the reader; on the other hand, an // "is empty" matcher probably only needs to explain what the actual // size is when the match fails, as it's redundant to say that the // size is 0 when the value is already known to be empty. // // You should override this method when defining a new matcher. // // It's the responsibility of the caller (Google Mock) to guarantee // that 'listener' is not NULL. This helps to simplify a matcher's // implementation when it doesn't care about the performance, as it // can talk to 'listener' without checking its validity first. // However, in order to implement dummy listeners efficiently, // listener->stream() may be NULL. virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0; // Inherits these methods from MatcherDescriberInterface: // virtual void DescribeTo(::std::ostream* os) const = 0; // virtual void DescribeNegationTo(::std::ostream* os) const; }; // A match result listener that stores the explanation in a string. class StringMatchResultListener : public MatchResultListener { public: StringMatchResultListener() : MatchResultListener(&ss_) {} // Returns the explanation accumulated so far. std::string str() const { return ss_.str(); } // Clears the explanation accumulated so far. void Clear() { ss_.str(""); } private: ::std::stringstream ss_; GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); }; namespace internal { struct AnyEq { template bool operator()(const A& a, const B& b) const { return a == b; } }; struct AnyNe { template bool operator()(const A& a, const B& b) const { return a != b; } }; struct AnyLt { template bool operator()(const A& a, const B& b) const { return a < b; } }; struct AnyGt { template bool operator()(const A& a, const B& b) const { return a > b; } }; struct AnyLe { template bool operator()(const A& a, const B& b) const { return a <= b; } }; struct AnyGe { template bool operator()(const A& a, const B& b) const { return a >= b; } }; // A match result listener that ignores the explanation. class DummyMatchResultListener : public MatchResultListener { public: DummyMatchResultListener() : MatchResultListener(NULL) {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener); }; // A match result listener that forwards the explanation to a given // ostream. The difference between this and MatchResultListener is // that the former is concrete. class StreamMatchResultListener : public MatchResultListener { public: explicit StreamMatchResultListener(::std::ostream* os) : MatchResultListener(os) {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener); }; // An internal class for implementing Matcher, which will derive // from it. We put functionalities common to all Matcher // specializations here to avoid code duplication. template class MatcherBase { public: // Returns true iff the matcher matches x; also explains the match // result to 'listener'. bool MatchAndExplain(T x, MatchResultListener* listener) const { return impl_->MatchAndExplain(x, listener); } // Returns true iff this matcher matches x. bool Matches(T x) const { DummyMatchResultListener dummy; return MatchAndExplain(x, &dummy); } // Describes this matcher to an ostream. void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } // Describes the negation of this matcher to an ostream. void DescribeNegationTo(::std::ostream* os) const { impl_->DescribeNegationTo(os); } // Explains why x matches, or doesn't match, the matcher. void ExplainMatchResultTo(T x, ::std::ostream* os) const { StreamMatchResultListener listener(os); MatchAndExplain(x, &listener); } // Returns the describer for this matcher object; retains ownership // of the describer, which is only guaranteed to be alive when // this matcher object is alive. const MatcherDescriberInterface* GetDescriber() const { return impl_.get(); } protected: MatcherBase() {} // Constructs a matcher from its implementation. explicit MatcherBase(const MatcherInterface* impl) : impl_(impl) {} virtual ~MatcherBase() {} private: // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar // interfaces. The former dynamically allocates a chunk of memory // to hold the reference count, while the latter tracks all // references using a circular linked list without allocating // memory. It has been observed that linked_ptr performs better in // typical scenarios. However, shared_ptr can out-perform // linked_ptr when there are many more uses of the copy constructor // than the default constructor. // // If performance becomes a problem, we should see if using // shared_ptr helps. ::testing::internal::linked_ptr > impl_; }; } // namespace internal // A Matcher is a copyable and IMMUTABLE (except by assignment) // object that can check whether a value of type T matches. The // implementation of Matcher is just a linked_ptr to const // MatcherInterface, so copying is fairly cheap. Don't inherit // from Matcher! template class Matcher : public internal::MatcherBase { public: // Constructs a null matcher. Needed for storing Matcher objects in STL // containers. A default-constructed matcher is not yet initialized. You // cannot use it until a valid value has been assigned to it. explicit Matcher() {} // NOLINT // Constructs a matcher from its implementation. explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Implicit constructor here allows people to write // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes Matcher(T value); // NOLINT }; // The following two specializations allow the user to write str // instead of Eq(str) and "foo" instead of Eq("foo") when a string // matcher is expected. template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; #if GTEST_HAS_STRING_PIECE_ // The following two specializations allow the user to write str // instead of Eq(str) and "foo" instead of Eq("foo") when a StringPiece // matcher is expected. template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT // Allows the user to pass StringPieces directly. Matcher(StringPiece s); // NOLINT }; template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT // Allows the user to pass StringPieces directly. Matcher(StringPiece s); // NOLINT }; #endif // GTEST_HAS_STRING_PIECE_ // The PolymorphicMatcher class template makes it easy to implement a // polymorphic matcher (i.e. a matcher that can match values of more // than one type, e.g. Eq(n) and NotNull()). // // To define a polymorphic matcher, a user should provide an Impl // class that has a DescribeTo() method and a DescribeNegationTo() // method, and define a member function (or member function template) // // bool MatchAndExplain(const Value& value, // MatchResultListener* listener) const; // // See the definition of NotNull() for a complete example. template class PolymorphicMatcher { public: explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {} // Returns a mutable reference to the underlying matcher // implementation object. Impl& mutable_impl() { return impl_; } // Returns an immutable reference to the underlying matcher // implementation object. const Impl& impl() const { return impl_; } template operator Matcher() const { return Matcher(new MonomorphicImpl(impl_)); } private: template class MonomorphicImpl : public MatcherInterface { public: explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} virtual void DescribeTo(::std::ostream* os) const { impl_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { impl_.DescribeNegationTo(os); } virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { return impl_.MatchAndExplain(x, listener); } private: const Impl impl_; GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); }; Impl impl_; GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher); }; // Creates a matcher from its implementation. This is easier to use // than the Matcher constructor as it doesn't require you to // explicitly write the template argument, e.g. // // MakeMatcher(foo); // vs // Matcher(foo); template inline Matcher MakeMatcher(const MatcherInterface* impl) { return Matcher(impl); } // Creates a polymorphic matcher from its implementation. This is // easier to use than the PolymorphicMatcher constructor as it // doesn't require you to explicitly write the template argument, e.g. // // MakePolymorphicMatcher(foo); // vs // PolymorphicMatcher(foo); template inline PolymorphicMatcher MakePolymorphicMatcher(const Impl& impl) { return PolymorphicMatcher(impl); } // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // The MatcherCastImpl class template is a helper for implementing // MatcherCast(). We need this helper in order to partially // specialize the implementation of MatcherCast() (C++ allows // class/struct templates to be partially specialized, but not // function templates.). // This general version is used when MatcherCast()'s argument is a // polymorphic matcher (i.e. something that can be converted to a // Matcher but is not one yet; for example, Eq(value)) or a value (for // example, "hello"). template class MatcherCastImpl { public: static Matcher Cast(const M& polymorphic_matcher_or_value) { // M can be a polymorhic matcher, in which case we want to use // its conversion operator to create Matcher. Or it can be a value // that should be passed to the Matcher's constructor. // // We can't call Matcher(polymorphic_matcher_or_value) when M is a // polymorphic matcher because it'll be ambiguous if T has an implicit // constructor from M (this usually happens when T has an implicit // constructor from any type). // // It won't work to unconditionally implict_cast // polymorphic_matcher_or_value to Matcher because it won't trigger // a user-defined conversion from M to T if one exists (assuming M is // a value). return CastImpl( polymorphic_matcher_or_value, BooleanConstant< internal::ImplicitlyConvertible >::value>()); } private: static Matcher CastImpl(const M& value, BooleanConstant) { // M can't be implicitly converted to Matcher, so M isn't a polymorphic // matcher. It must be a value then. Use direct initialization to create // a matcher. return Matcher(ImplicitCast_(value)); } static Matcher CastImpl(const M& polymorphic_matcher_or_value, BooleanConstant) { // M is implicitly convertible to Matcher, which means that either // M is a polymorhpic matcher or Matcher has an implicit constructor // from M. In both cases using the implicit conversion will produce a // matcher. // // Even if T has an implicit constructor from M, it won't be called because // creating Matcher would require a chain of two user-defined conversions // (first to create T from M and then to create Matcher from T). return polymorphic_matcher_or_value; } }; // This more specialized version is used when MatcherCast()'s argument // is already a Matcher. This only compiles when type T can be // statically converted to type U. template class MatcherCastImpl > { public: static Matcher Cast(const Matcher& source_matcher) { return Matcher(new Impl(source_matcher)); } private: class Impl : public MatcherInterface { public: explicit Impl(const Matcher& source_matcher) : source_matcher_(source_matcher) {} // We delegate the matching logic to the source matcher. virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { return source_matcher_.MatchAndExplain(static_cast(x), listener); } virtual void DescribeTo(::std::ostream* os) const { source_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { source_matcher_.DescribeNegationTo(os); } private: const Matcher source_matcher_; GTEST_DISALLOW_ASSIGN_(Impl); }; }; // This even more specialized version is used for efficiently casting // a matcher to its own type. template class MatcherCastImpl > { public: static Matcher Cast(const Matcher& matcher) { return matcher; } }; } // namespace internal // In order to be safe and clear, casting between different matcher // types is done explicitly via MatcherCast(m), which takes a // matcher m and returns a Matcher. It compiles only when T can be // statically converted to the argument type of m. template inline Matcher MatcherCast(const M& matcher) { return internal::MatcherCastImpl::Cast(matcher); } // Implements SafeMatcherCast(). // // We use an intermediate class to do the actual safe casting as Nokia's // Symbian compiler cannot decide between // template ... (M) and // template ... (const Matcher&) // for function templates but can for member function templates. template class SafeMatcherCastImpl { public: // This overload handles polymorphic matchers and values only since // monomorphic matchers are handled by the next one. template static inline Matcher Cast(const M& polymorphic_matcher_or_value) { return internal::MatcherCastImpl::Cast(polymorphic_matcher_or_value); } // This overload handles monomorphic matchers. // // In general, if type T can be implicitly converted to type U, we can // safely convert a Matcher to a Matcher (i.e. Matcher is // contravariant): just keep a copy of the original Matcher, convert the // argument from type T to U, and then pass it to the underlying Matcher. // The only exception is when U is a reference and T is not, as the // underlying Matcher may be interested in the argument's address, which // is not preserved in the conversion from T to U. template static inline Matcher Cast(const Matcher& matcher) { // Enforce that T can be implicitly converted to U. GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible::value), T_must_be_implicitly_convertible_to_U); // Enforce that we are not converting a non-reference type T to a reference // type U. GTEST_COMPILE_ASSERT_( internal::is_reference::value || !internal::is_reference::value, cannot_convert_non_reference_arg_to_reference); // In case both T and U are arithmetic types, enforce that the // conversion is not lossy. typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; GTEST_COMPILE_ASSERT_( kTIsOther || kUIsOther || (internal::LosslessArithmeticConvertible::value), conversion_of_arithmetic_types_must_be_lossless); return MatcherCast(matcher); } }; template inline Matcher SafeMatcherCast(const M& polymorphic_matcher) { return SafeMatcherCastImpl::Cast(polymorphic_matcher); } // A() returns a matcher that matches any value of type T. template Matcher A(); // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // If the explanation is not empty, prints it to the ostream. inline void PrintIfNotEmpty(const std::string& explanation, ::std::ostream* os) { if (explanation != "" && os != NULL) { *os << ", " << explanation; } } // Returns true if the given type name is easy to read by a human. // This is used to decide whether printing the type of a value might // be helpful. inline bool IsReadableTypeName(const std::string& type_name) { // We consider a type name readable if it's short or doesn't contain // a template or function type. return (type_name.length() <= 20 || type_name.find_first_of("<(") == std::string::npos); } // Matches the value against the given matcher, prints the value and explains // the match result to the listener. Returns the match result. // 'listener' must not be NULL. // Value cannot be passed by const reference, because some matchers take a // non-const argument. template bool MatchPrintAndExplain(Value& value, const Matcher& matcher, MatchResultListener* listener) { if (!listener->IsInterested()) { // If the listener is not interested, we do not need to construct the // inner explanation. return matcher.Matches(value); } StringMatchResultListener inner_listener; const bool match = matcher.MatchAndExplain(value, &inner_listener); UniversalPrint(value, listener->stream()); #if GTEST_HAS_RTTI const std::string& type_name = GetTypeName(); if (IsReadableTypeName(type_name)) *listener->stream() << " (of type " << type_name << ")"; #endif PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; } // An internal helper class for doing compile-time loop on a tuple's // fields. template class TuplePrefix { public: // TuplePrefix::Matches(matcher_tuple, value_tuple) returns true // iff the first N fields of matcher_tuple matches the first N // fields of value_tuple, respectively. template static bool Matches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { return TuplePrefix::Matches(matcher_tuple, value_tuple) && get(matcher_tuple).Matches(get(value_tuple)); } // TuplePrefix::ExplainMatchFailuresTo(matchers, values, os) // describes failures in matching the first N fields of matchers // against the first N fields of values. If there is no failure, // nothing will be streamed to os. template static void ExplainMatchFailuresTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { // First, describes failures in the first N - 1 fields. TuplePrefix::ExplainMatchFailuresTo(matchers, values, os); // Then describes the failure (if any) in the (N - 1)-th (0-based) // field. typename tuple_element::type matcher = get(matchers); typedef typename tuple_element::type Value; Value value = get(values); StringMatchResultListener listener; if (!matcher.MatchAndExplain(value, &listener)) { // TODO(wan): include in the message the name of the parameter // as used in MOCK_METHOD*() when possible. *os << " Expected arg #" << N - 1 << ": "; get(matchers).DescribeTo(os); *os << "\n Actual: "; // We remove the reference in type Value to prevent the // universal printer from printing the address of value, which // isn't interesting to the user most of the time. The // matcher's MatchAndExplain() method handles the case when // the address is interesting. internal::UniversalPrint(value, os); PrintIfNotEmpty(listener.str(), os); *os << "\n"; } } }; // The base case. template <> class TuplePrefix<0> { public: template static bool Matches(const MatcherTuple& /* matcher_tuple */, const ValueTuple& /* value_tuple */) { return true; } template static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, const ValueTuple& /* values */, ::std::ostream* /* os */) {} }; // TupleMatches(matcher_tuple, value_tuple) returns true iff all // matchers in matcher_tuple match the corresponding fields in // value_tuple. It is a compiler error if matcher_tuple and // value_tuple have different number of fields or incompatible field // types. template bool TupleMatches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { // Makes sure that matcher_tuple and value_tuple have the same // number of fields. GTEST_COMPILE_ASSERT_(tuple_size::value == tuple_size::value, matcher_and_value_have_different_numbers_of_fields); return TuplePrefix::value>:: Matches(matcher_tuple, value_tuple); } // Describes failures in matching matchers against values. If there // is no failure, nothing will be streamed to os. template void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { TuplePrefix::value>::ExplainMatchFailuresTo( matchers, values, os); } // TransformTupleValues and its helper. // // TransformTupleValuesHelper hides the internal machinery that // TransformTupleValues uses to implement a tuple traversal. template class TransformTupleValuesHelper { private: typedef ::testing::tuple_size TupleSize; public: // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. // Returns the final value of 'out' in case the caller needs it. static OutIter Run(Func f, const Tuple& t, OutIter out) { return IterateOverTuple()(f, t, out); } private: template struct IterateOverTuple { OutIter operator() (Func f, const Tup& t, OutIter out) const { *out++ = f(::testing::get(t)); return IterateOverTuple()(f, t, out); } }; template struct IterateOverTuple { OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { return out; } }; }; // Successively invokes 'f(element)' on each element of the tuple 't', // appending each result to the 'out' iterator. Returns the final value // of 'out'. template OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { return TransformTupleValuesHelper::Run(f, t, out); } // Implements A(). template class AnyMatcherImpl : public MatcherInterface { public: virtual bool MatchAndExplain( T /* x */, MatchResultListener* /* listener */) const { return true; } virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; } virtual void DescribeNegationTo(::std::ostream* os) const { // This is mostly for completeness' safe, as it's not very useful // to write Not(A()). However we cannot completely rule out // such a possibility, and it doesn't hurt to be prepared. *os << "never matches"; } }; // Implements _, a matcher that matches any value of any // type. This is a polymorphic matcher, so we need a template type // conversion operator to make it appearing as a Matcher for any // type T. class AnythingMatcher { public: template operator Matcher() const { return A(); } }; // Implements a matcher that compares a given value with a // pre-supplied value using one of the ==, <=, <, etc, operators. The // two values being compared don't have to have the same type. // // The matcher defined here is polymorphic (for example, Eq(5) can be // used to match an int, a short, a double, etc). Therefore we use // a template type conversion operator in the implementation. // // The following template definition assumes that the Rhs parameter is // a "bare" type (i.e. neither 'const T' nor 'T&'). template class ComparisonBase { public: explicit ComparisonBase(const Rhs& rhs) : rhs_(rhs) {} template operator Matcher() const { return MakeMatcher(new Impl(rhs_)); } private: template class Impl : public MatcherInterface { public: explicit Impl(const Rhs& rhs) : rhs_(rhs) {} virtual bool MatchAndExplain( Lhs lhs, MatchResultListener* /* listener */) const { return Op()(lhs, rhs_); } virtual void DescribeTo(::std::ostream* os) const { *os << D::Desc() << " "; UniversalPrint(rhs_, os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << D::NegatedDesc() << " "; UniversalPrint(rhs_, os); } private: Rhs rhs_; GTEST_DISALLOW_ASSIGN_(Impl); }; Rhs rhs_; GTEST_DISALLOW_ASSIGN_(ComparisonBase); }; template class EqMatcher : public ComparisonBase, Rhs, AnyEq> { public: explicit EqMatcher(const Rhs& rhs) : ComparisonBase, Rhs, AnyEq>(rhs) { } static const char* Desc() { return "is equal to"; } static const char* NegatedDesc() { return "isn't equal to"; } }; template class NeMatcher : public ComparisonBase, Rhs, AnyNe> { public: explicit NeMatcher(const Rhs& rhs) : ComparisonBase, Rhs, AnyNe>(rhs) { } static const char* Desc() { return "isn't equal to"; } static const char* NegatedDesc() { return "is equal to"; } }; template class LtMatcher : public ComparisonBase, Rhs, AnyLt> { public: explicit LtMatcher(const Rhs& rhs) : ComparisonBase, Rhs, AnyLt>(rhs) { } static const char* Desc() { return "is <"; } static const char* NegatedDesc() { return "isn't <"; } }; template class GtMatcher : public ComparisonBase, Rhs, AnyGt> { public: explicit GtMatcher(const Rhs& rhs) : ComparisonBase, Rhs, AnyGt>(rhs) { } static const char* Desc() { return "is >"; } static const char* NegatedDesc() { return "isn't >"; } }; template class LeMatcher : public ComparisonBase, Rhs, AnyLe> { public: explicit LeMatcher(const Rhs& rhs) : ComparisonBase, Rhs, AnyLe>(rhs) { } static const char* Desc() { return "is <="; } static const char* NegatedDesc() { return "isn't <="; } }; template class GeMatcher : public ComparisonBase, Rhs, AnyGe> { public: explicit GeMatcher(const Rhs& rhs) : ComparisonBase, Rhs, AnyGe>(rhs) { } static const char* Desc() { return "is >="; } static const char* NegatedDesc() { return "isn't >="; } }; // Implements the polymorphic IsNull() matcher, which matches any raw or smart // pointer that is NULL. class IsNullMatcher { public: template bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { #if GTEST_LANG_CXX11 return p == nullptr; #else // GTEST_LANG_CXX11 return GetRawPointer(p) == NULL; #endif // GTEST_LANG_CXX11 } void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; } }; // Implements the polymorphic NotNull() matcher, which matches any raw or smart // pointer that is not NULL. class NotNullMatcher { public: template bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { #if GTEST_LANG_CXX11 return p != nullptr; #else // GTEST_LANG_CXX11 return GetRawPointer(p) != NULL; #endif // GTEST_LANG_CXX11 } void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; } }; // Ref(variable) matches any argument that is a reference to // 'variable'. This matcher is polymorphic as it can match any // super type of the type of 'variable'. // // The RefMatcher template class implements Ref(variable). It can // only be instantiated with a reference type. This prevents a user // from mistakenly using Ref(x) to match a non-reference function // argument. For example, the following will righteously cause a // compiler error: // // int n; // Matcher m1 = Ref(n); // This won't compile. // Matcher m2 = Ref(n); // This will compile. template class RefMatcher; template class RefMatcher { // Google Mock is a generic framework and thus needs to support // mocking any function types, including those that take non-const // reference arguments. Therefore the template parameter T (and // Super below) can be instantiated to either a const type or a // non-const type. public: // RefMatcher() takes a T& instead of const T&, as we want the // compiler to catch using Ref(const_value) as a matcher for a // non-const reference. explicit RefMatcher(T& x) : object_(x) {} // NOLINT template operator Matcher() const { // By passing object_ (type T&) to Impl(), which expects a Super&, // we make sure that Super is a super type of T. In particular, // this catches using Ref(const_value) as a matcher for a // non-const reference, as you cannot implicitly convert a const // reference to a non-const reference. return MakeMatcher(new Impl(object_)); } private: template class Impl : public MatcherInterface { public: explicit Impl(Super& x) : object_(x) {} // NOLINT // MatchAndExplain() takes a Super& (as opposed to const Super&) // in order to match the interface MatcherInterface. virtual bool MatchAndExplain( Super& x, MatchResultListener* listener) const { *listener << "which is located @" << static_cast(&x); return &x == &object_; } virtual void DescribeTo(::std::ostream* os) const { *os << "references the variable "; UniversalPrinter::Print(object_, os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "does not reference the variable "; UniversalPrinter::Print(object_, os); } private: const Super& object_; GTEST_DISALLOW_ASSIGN_(Impl); }; T& object_; GTEST_DISALLOW_ASSIGN_(RefMatcher); }; // Polymorphic helper functions for narrow and wide string matchers. inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { return String::CaseInsensitiveCStringEquals(lhs, rhs); } inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { return String::CaseInsensitiveWideCStringEquals(lhs, rhs); } // String comparison for narrow or wide strings that can have embedded NUL // characters. template bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) { // Are the heads equal? if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { return false; } // Skip the equal heads. const typename StringType::value_type nul = 0; const size_t i1 = s1.find(nul), i2 = s2.find(nul); // Are we at the end of either s1 or s2? if (i1 == StringType::npos || i2 == StringType::npos) { return i1 == i2; } // Are the tails equal? return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); } // String matchers. // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. template class StrEqualityMatcher { public: StrEqualityMatcher(const StringType& str, bool expect_eq, bool case_sensitive) : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { if (s == NULL) { return !expect_eq_; } return MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringPiece has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); const bool eq = case_sensitive_ ? s2 == string_ : CaseInsensitiveStringEquals(s2, string_); return expect_eq_ == eq; } void DescribeTo(::std::ostream* os) const { DescribeToHelper(expect_eq_, os); } void DescribeNegationTo(::std::ostream* os) const { DescribeToHelper(!expect_eq_, os); } private: void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { *os << (expect_eq ? "is " : "isn't "); *os << "equal to "; if (!case_sensitive_) { *os << "(ignoring case) "; } UniversalPrint(string_, os); } const StringType string_; const bool expect_eq_; const bool case_sensitive_; GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher); }; // Implements the polymorphic HasSubstr(substring) matcher, which // can be used as a Matcher as long as T can be converted to a // string. template class HasSubstrMatcher { public: explicit HasSubstrMatcher(const StringType& substring) : substring_(substring) {} // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringPiece has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.find(substring_) != StringType::npos; } // Describes what this matcher matches. void DescribeTo(::std::ostream* os) const { *os << "has substring "; UniversalPrint(substring_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "has no substring "; UniversalPrint(substring_, os); } private: const StringType substring_; GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher); }; // Implements the polymorphic StartsWith(substring) matcher, which // can be used as a Matcher as long as T can be converted to a // string. template class StartsWithMatcher { public: explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { } // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringPiece has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.length() >= prefix_.length() && s2.substr(0, prefix_.length()) == prefix_; } void DescribeTo(::std::ostream* os) const { *os << "starts with "; UniversalPrint(prefix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't start with "; UniversalPrint(prefix_, os); } private: const StringType prefix_; GTEST_DISALLOW_ASSIGN_(StartsWithMatcher); }; // Implements the polymorphic EndsWith(substring) matcher, which // can be used as a Matcher as long as T can be converted to a // string. template class EndsWithMatcher { public: explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringPiece has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.length() >= suffix_.length() && s2.substr(s2.length() - suffix_.length()) == suffix_; } void DescribeTo(::std::ostream* os) const { *os << "ends with "; UniversalPrint(suffix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't end with "; UniversalPrint(suffix_, os); } private: const StringType suffix_; GTEST_DISALLOW_ASSIGN_(EndsWithMatcher); }; // Implements polymorphic matchers MatchesRegex(regex) and // ContainsRegex(regex), which can be used as a Matcher as long as // T can be converted to a string. class MatchesRegexMatcher { public: MatchesRegexMatcher(const RE* regex, bool full_match) : regex_(regex), full_match_(full_match) {} // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(std::string(s), listener); } // Matches anything that can convert to std::string. // // This is a template, not just a plain function with const std::string&, // because StringPiece has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const std::string& s2(s); return full_match_ ? RE::FullMatch(s2, *regex_) : RE::PartialMatch(s2, *regex_); } void DescribeTo(::std::ostream* os) const { *os << (full_match_ ? "matches" : "contains") << " regular expression "; UniversalPrinter::Print(regex_->pattern(), os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't " << (full_match_ ? "match" : "contain") << " regular expression "; UniversalPrinter::Print(regex_->pattern(), os); } private: const internal::linked_ptr regex_; const bool full_match_; GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher); }; // Implements a matcher that compares the two fields of a 2-tuple // using one of the ==, <=, <, etc, operators. The two fields being // compared don't have to have the same type. // // The matcher defined here is polymorphic (for example, Eq() can be // used to match a tuple, a tuple, // etc). Therefore we use a template type conversion operator in the // implementation. template class PairMatchBase { public: template operator Matcher< ::testing::tuple >() const { return MakeMatcher(new Impl< ::testing::tuple >); } template operator Matcher&>() const { return MakeMatcher(new Impl&>); } private: static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT return os << D::Desc(); } template class Impl : public MatcherInterface { public: virtual bool MatchAndExplain( Tuple args, MatchResultListener* /* listener */) const { return Op()(::testing::get<0>(args), ::testing::get<1>(args)); } virtual void DescribeTo(::std::ostream* os) const { *os << "are " << GetDesc; } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "aren't " << GetDesc; } }; }; class Eq2Matcher : public PairMatchBase { public: static const char* Desc() { return "an equal pair"; } }; class Ne2Matcher : public PairMatchBase { public: static const char* Desc() { return "an unequal pair"; } }; class Lt2Matcher : public PairMatchBase { public: static const char* Desc() { return "a pair where the first < the second"; } }; class Gt2Matcher : public PairMatchBase { public: static const char* Desc() { return "a pair where the first > the second"; } }; class Le2Matcher : public PairMatchBase { public: static const char* Desc() { return "a pair where the first <= the second"; } }; class Ge2Matcher : public PairMatchBase { public: static const char* Desc() { return "a pair where the first >= the second"; } }; // Implements the Not(...) matcher for a particular argument type T. // We do not nest it inside the NotMatcher class template, as that // will prevent different instantiations of NotMatcher from sharing // the same NotMatcherImpl class. template class NotMatcherImpl : public MatcherInterface { public: explicit NotMatcherImpl(const Matcher& matcher) : matcher_(matcher) {} virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { return !matcher_.MatchAndExplain(x, listener); } virtual void DescribeTo(::std::ostream* os) const { matcher_.DescribeNegationTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { matcher_.DescribeTo(os); } private: const Matcher matcher_; GTEST_DISALLOW_ASSIGN_(NotMatcherImpl); }; // Implements the Not(m) matcher, which matches a value that doesn't // match matcher m. template class NotMatcher { public: explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} // This template type conversion operator allows Not(m) to be used // to match any type m can match. template operator Matcher() const { return Matcher(new NotMatcherImpl(SafeMatcherCast(matcher_))); } private: InnerMatcher matcher_; GTEST_DISALLOW_ASSIGN_(NotMatcher); }; // Implements the AllOf(m1, m2) matcher for a particular argument type // T. We do not nest it inside the BothOfMatcher class template, as // that will prevent different instantiations of BothOfMatcher from // sharing the same BothOfMatcherImpl class. template class BothOfMatcherImpl : public MatcherInterface { public: BothOfMatcherImpl(const Matcher& matcher1, const Matcher& matcher2) : matcher1_(matcher1), matcher2_(matcher2) {} virtual void DescribeTo(::std::ostream* os) const { *os << "("; matcher1_.DescribeTo(os); *os << ") and ("; matcher2_.DescribeTo(os); *os << ")"; } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "("; matcher1_.DescribeNegationTo(os); *os << ") or ("; matcher2_.DescribeNegationTo(os); *os << ")"; } virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { // If either matcher1_ or matcher2_ doesn't match x, we only need // to explain why one of them fails. StringMatchResultListener listener1; if (!matcher1_.MatchAndExplain(x, &listener1)) { *listener << listener1.str(); return false; } StringMatchResultListener listener2; if (!matcher2_.MatchAndExplain(x, &listener2)) { *listener << listener2.str(); return false; } // Otherwise we need to explain why *both* of them match. const std::string s1 = listener1.str(); const std::string s2 = listener2.str(); if (s1 == "") { *listener << s2; } else { *listener << s1; if (s2 != "") { *listener << ", and " << s2; } } return true; } private: const Matcher matcher1_; const Matcher matcher2_; GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl); }; #if GTEST_LANG_CXX11 // MatcherList provides mechanisms for storing a variable number of matchers in // a list structure (ListType) and creating a combining matcher from such a // list. // The template is defined recursively using the following template paramters: // * kSize is the length of the MatcherList. // * Head is the type of the first matcher of the list. // * Tail denotes the types of the remaining matchers of the list. template struct MatcherList { typedef MatcherList MatcherListTail; typedef ::std::pair ListType; // BuildList stores variadic type values in a nested pair structure. // Example: // MatcherList<3, int, string, float>::BuildList(5, "foo", 2.0) will return // the corresponding result of type pair>. static ListType BuildList(const Head& matcher, const Tail&... tail) { return ListType(matcher, MatcherListTail::BuildList(tail...)); } // CreateMatcher creates a Matcher from a given list of matchers (built // by BuildList()). CombiningMatcher is used to combine the matchers of the // list. CombiningMatcher must implement MatcherInterface and have a // constructor taking two Matchers as input. template class CombiningMatcher> static Matcher CreateMatcher(const ListType& matchers) { return Matcher(new CombiningMatcher( SafeMatcherCast(matchers.first), MatcherListTail::template CreateMatcher( matchers.second))); } }; // The following defines the base case for the recursive definition of // MatcherList. template struct MatcherList<2, Matcher1, Matcher2> { typedef ::std::pair ListType; static ListType BuildList(const Matcher1& matcher1, const Matcher2& matcher2) { return ::std::pair(matcher1, matcher2); } template class CombiningMatcher> static Matcher CreateMatcher(const ListType& matchers) { return Matcher(new CombiningMatcher( SafeMatcherCast(matchers.first), SafeMatcherCast(matchers.second))); } }; // VariadicMatcher is used for the variadic implementation of // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). // CombiningMatcher is used to recursively combine the provided matchers // (of type Args...). template