// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // The ACTION* family of macros can be used in a namespace scope to // define custom actions easily. The syntax: // // ACTION(name) { statements; } // // will define an action with the given name that executes the // statements. The value returned by the statements will be used as // the return value of the action. Inside the statements, you can // refer to the K-th (0-based) argument of the mock function by // 'argK', and refer to its type by 'argK_type'. For example: // // ACTION(IncrementArg1) { // arg1_type temp = arg1; // return ++(*temp); // } // // allows you to write // // ...WillOnce(IncrementArg1()); // // You can also refer to the entire argument tuple and its type by // 'args' and 'args_type', and refer to the mock function type and its // return type by 'function_type' and 'return_type'. // // Note that you don't need to specify the types of the mock function // arguments. However rest assured that your code is still type-safe: // you'll get a compiler error if *arg1 doesn't support the ++ // operator, or if the type of ++(*arg1) isn't compatible with the // mock function's return type, for example. // // Sometimes you'll want to parameterize the action. For that you can use // another macro: // // ACTION_P(name, param_name) { statements; } // // For example: // // ACTION_P(Add, n) { return arg0 + n; } // // will allow you to write: // // ...WillOnce(Add(5)); // // Note that you don't need to provide the type of the parameter // either. If you need to reference the type of a parameter named // 'foo', you can write 'foo_type'. For example, in the body of // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type // of 'n'. // // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support // multi-parameter actions. // // For the purpose of typing, you can view // // ACTION_Pk(Foo, p1, ..., pk) { ... } // // as shorthand for // // template // FooActionPk Foo(p1_type p1, ..., pk_type pk) { ... } // // In particular, you can provide the template type arguments // explicitly when invoking Foo(), as in Foo(5, false); // although usually you can rely on the compiler to infer the types // for you automatically. You can assign the result of expression // Foo(p1, ..., pk) to a variable of type FooActionPk. This can be useful when composing actions. // // You can also overload actions with different numbers of parameters: // // ACTION_P(Plus, a) { ... } // ACTION_P2(Plus, a, b) { ... } // // While it's tempting to always use the ACTION* macros when defining // a new action, you should also consider implementing ActionInterface // or using MakePolymorphicAction() instead, especially if you need to // use the action a lot. While these approaches require more work, // they give you more control on the types of the mock function // arguments and the action parameters, which in general leads to // better compiler error messages that pay off in the long run. They // also allow overloading actions based on parameter types (as opposed // to just based on the number of parameters). // // CAVEAT: // // ACTION*() can only be used in a namespace scope as templates cannot be // declared inside of a local class. // Users can, however, define any local functors (e.g. a lambda) that // can be used as actions. // // MORE INFORMATION: // // To learn more about using these macros, please search for 'ACTION' on // https://github.com/google/googletest/blob/master/googlemock/docs/cook_book.md // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #ifndef _WIN32_WCE # include #endif #include #include #include #include #include #include #include #include "gmock/internal/gmock-internal-utils.h" #include "gmock/internal/gmock-port.h" #include "gmock/internal/gmock-pp.h" #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4100) #endif namespace testing { // To implement an action Foo, define: // 1. a class FooAction that implements the ActionInterface interface, and // 2. a factory function that creates an Action object from a // const FooAction*. // // The two-level delegation design follows that of Matcher, providing // consistency for extension developers. It also eases ownership // management as Action objects can now be copied like plain values. namespace internal { // BuiltInDefaultValueGetter::Get() returns a // default-constructed T value. BuiltInDefaultValueGetter::Get() crashes with an error. // // This primary template is used when kDefaultConstructible is true. template struct BuiltInDefaultValueGetter { static T Get() { return T(); } }; template struct BuiltInDefaultValueGetter { static T Get() { Assert(false, __FILE__, __LINE__, "Default action undefined for the function return type."); return internal::Invalid(); // The above statement will never be reached, but is required in // order for this function to compile. } }; // BuiltInDefaultValue::Get() returns the "built-in" default value // for type T, which is NULL when T is a raw pointer type, 0 when T is // a numeric type, false when T is bool, or "" when T is string or // std::string. In addition, in C++11 and above, it turns a // default-constructed T value if T is default constructible. For any // other type T, the built-in default T value is undefined, and the // function will abort the process. template class BuiltInDefaultValue { public: // This function returns true if and only if type T has a built-in default // value. static bool Exists() { return ::std::is_default_constructible::value; } static T Get() { return BuiltInDefaultValueGetter< T, ::std::is_default_constructible::value>::Get(); } }; // This partial specialization says that we use the same built-in // default value for T and const T. template class BuiltInDefaultValue { public: static bool Exists() { return BuiltInDefaultValue::Exists(); } static T Get() { return BuiltInDefaultValue::Get(); } }; // This partial specialization defines the default values for pointer // types. template class BuiltInDefaultValue { public: static bool Exists() { return true; } static T* Get() { return nullptr; } }; // The following specializations define the default values for // specific types we care about. #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ template <> \ class BuiltInDefaultValue { \ public: \ static bool Exists() { return true; } \ static type Get() { return value; } \ } GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); // There's no need for a default action for signed wchar_t, as that // type is the same as wchar_t for gcc, and invalid for MSVC. // // There's also no need for a default action for unsigned wchar_t, as // that type is the same as unsigned int for gcc, and invalid for // MSVC. #if GMOCK_WCHAR_T_IS_NATIVE_ GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT #endif GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ // Simple two-arg form of std::disjunction. template using disjunction = typename ::std::conditional::type; } // namespace internal // When an unexpected function call is encountered, Google Mock will // let it return a default value if the user has specified one for its // return type, or if the return type has a built-in default value; // otherwise Google Mock won't know what value to return and will have // to abort the process. // // The DefaultValue class allows a user to specify the // default value for a type T that is both copyable and publicly // destructible (i.e. anything that can be used as a function return // type). The usage is: // // // Sets the default value for type T to be foo. // DefaultValue::Set(foo); template class DefaultValue { public: // Sets the default value for type T; requires T to be // copy-constructable and have a public destructor. static void Set(T x) { delete producer_; producer_ = new FixedValueProducer(x); } // Provides a factory function to be called to generate the default value. // This method can be used even if T is only move-constructible, but it is not // limited to that case. typedef T (*FactoryFunction)(); static void SetFactory(FactoryFunction factory) { delete producer_; producer_ = new FactoryValueProducer(factory); } // Unsets the default value for type T. static void Clear() { delete producer_; producer_ = nullptr; } // Returns true if and only if the user has set the default value for type T. static bool IsSet() { return producer_ != nullptr; } // Returns true if T has a default return value set by the user or there // exists a built-in default value. static bool Exists() { return IsSet() || internal::BuiltInDefaultValue::Exists(); } // Returns the default value for type T if the user has set one; // otherwise returns the built-in default value. Requires that Exists() // is true, which ensures that the return value is well-defined. static T Get() { return producer_ == nullptr ? internal::BuiltInDefaultValue::Get() : producer_->Produce(); } private: class ValueProducer { public: virtual ~ValueProducer() {} virtual T Produce() = 0; }; class FixedValueProducer : public ValueProducer { public: explicit FixedValueProducer(T value) : value_(value) {} T Produce() override { return value_; } private: const T value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); }; class FactoryValueProducer : public ValueProducer { public: explicit FactoryValueProducer(FactoryFunction factory) : factory_(factory) {} T Produce() override { return factory_(); } private: const FactoryFunction factory_; GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); }; static ValueProducer* producer_; }; // This partial specialization allows a user to set default values for // reference types. template class DefaultValue { public: // Sets the default value for type T&. static void Set(T& x) { // NOLINT address_ = &x; } // Unsets the default value for type T&. static void Clear() { address_ = nullptr; } // Returns true if and only if the user has set the default value for type T&. static bool IsSet() { return address_ != nullptr; } // Returns true if T has a default return value set by the user or there // exists a built-in default value. static bool Exists() { return IsSet() || internal::BuiltInDefaultValue::Exists(); } // Returns the default value for type T& if the user has set one; // otherwise returns the built-in default value if there is one; // otherwise aborts the process. static T& Get() { return address_ == nullptr ? internal::BuiltInDefaultValue::Get() : *address_; } private: static T* address_; }; // This specialization allows DefaultValue::Get() to // compile. template <> class DefaultValue { public: static bool Exists() { return true; } static void Get() {} }; // Points to the user-set default value for type T. template typename DefaultValue::ValueProducer* DefaultValue::producer_ = nullptr; // Points to the user-set default value for type T&. template T* DefaultValue::address_ = nullptr; // Implement this interface to define an action for function type F. template class ActionInterface { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; ActionInterface() {} virtual ~ActionInterface() {} // Performs the action. This method is not const, as in general an // action can have side effects and be stateful. For example, a // get-the-next-element-from-the-collection action will need to // remember the current element. virtual Result Perform(const ArgumentTuple& args) = 0; private: GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); }; // An Action is a copyable and IMMUTABLE (except by assignment) // object that represents an action to be taken when a mock function // of type F is called. The implementation of Action is just a // std::shared_ptr to const ActionInterface. Don't inherit from Action! // You can view an object implementing ActionInterface as a // concrete action (including its current state), and an Action // object as a handle to it. template class Action { // Adapter class to allow constructing Action from a legacy ActionInterface. // New code should create Actions from functors instead. struct ActionAdapter { // Adapter must be copyable to satisfy std::function requirements. ::std::shared_ptr> impl_; template typename internal::Function::Result operator()(Args&&... args) { return impl_->Perform( ::std::forward_as_tuple(::std::forward(args)...)); } }; public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; // Constructs a null Action. Needed for storing Action objects in // STL containers. Action() {} // Construct an Action from a specified callable. // This cannot take std::function directly, because then Action would not be // directly constructible from lambda (it would require two conversions). template , G>, typename IsNoArgsFunctor = ::std::is_constructible<::std::function, G>, typename = typename ::std::enable_if::value>::type> Action(G&& fun) { // NOLINT Init(::std::forward(fun), IsCompatibleFunctor()); } // Constructs an Action from its implementation. explicit Action(ActionInterface* impl) : fun_(ActionAdapter{::std::shared_ptr>(impl)}) {} // This constructor allows us to turn an Action object into an // Action, as long as F's arguments can be implicitly converted // to Func's and Func's return type can be implicitly converted to F's. template explicit Action(const Action& action) : fun_(action.fun_) {} // Returns true if and only if this is the DoDefault() action. bool IsDoDefault() const { return fun_ == nullptr; } // Performs the action. Note that this method is const even though // the corresponding method in ActionInterface is not. The reason // is that a const Action means that it cannot be re-bound to // another concrete action, not that the concrete action it binds to // cannot change state. (Think of the difference between a const // pointer and a pointer to const.) Result Perform(ArgumentTuple args) const { if (IsDoDefault()) { internal::IllegalDoDefault(__FILE__, __LINE__); } return internal::Apply(fun_, ::std::move(args)); } private: template friend class Action; template void Init(G&& g, ::std::true_type) { fun_ = ::std::forward(g); } template void Init(G&& g, ::std::false_type) { fun_ = IgnoreArgs::type>{::std::forward(g)}; } template struct IgnoreArgs { template Result operator()(const Args&...) const { return function_impl(); } FunctionImpl function_impl; }; // fun_ is an empty function if and only if this is the DoDefault() action. ::std::function fun_; }; // The PolymorphicAction class template makes it easy to implement a // polymorphic action (i.e. an action that can be used in mock // functions of than one type, e.g. Return()). // // To define a polymorphic action, a user first provides a COPYABLE // implementation class that has a Perform() method template: // // class FooAction { // public: // template // Result Perform(const ArgumentTuple& args) const { // // Processes the arguments and returns a result, using // // std::get(args) to get the N-th (0-based) argument in the tuple. // } // ... // }; // // Then the user creates the polymorphic action using // MakePolymorphicAction(object) where object has type FooAction. See // the definition of Return(void) and SetArgumentPointee(value) for // complete examples. template class PolymorphicAction { public: explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} template operator Action() const { return Action(new MonomorphicImpl(impl_)); } private: template class MonomorphicImpl : public ActionInterface { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} Result Perform(const ArgumentTuple& args) override { return impl_.template Perform(args); } private: Impl impl_; }; Impl impl_; }; // Creates an Action from its implementation and returns it. The // created Action object owns the implementation. template Action MakeAction(ActionInterface* impl) { return Action(impl); } // Creates a polymorphic action from its implementation. This is // easier to use than the PolymorphicAction constructor as it // doesn't require you to explicitly write the template argument, e.g. // // MakePolymorphicAction(foo); // vs // PolymorphicAction(foo); template inline PolymorphicAction MakePolymorphicAction(const Impl& impl) { return PolymorphicAction(impl); } namespace internal { // Helper struct to specialize ReturnAction to execute a move instead of a copy // on return. Useful for move-only types, but could be used on any type. template struct ByMoveWrapper { explicit ByMoveWrapper(T value) : payload(std::move(value)) {} T payload; }; // Implements the polymorphic Return(x) action, which can be used in // any function that returns the type of x, regardless of the argument // types. // // Note: The value passed into Return must be converted into // Function::Result when this action is cast to Action rather than // when that action is performed. This is important in scenarios like // // MOCK_METHOD1(Method, T(U)); // ... // { // Foo foo; // X x(&foo); // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); // } // // In the example above the variable x holds reference to foo which leaves // scope and gets destroyed. If copying X just copies a reference to foo, // that copy will be left with a hanging reference. If conversion to T // makes a copy of foo, the above code is safe. To support that scenario, we // need to make sure that the type conversion happens inside the EXPECT_CALL // statement, and conversion of the result of Return to Action is a // good place for that. // // The real life example of the above scenario happens when an invocation // of gtl::Container() is passed into Return. // template class ReturnAction { public: // Constructs a ReturnAction object from the value to be returned. // 'value' is passed by value instead of by const reference in order // to allow Return("string literal") to compile. explicit ReturnAction(R value) : value_(new R(std::move(value))) {} // This template type conversion operator allows Return(x) to be // used in ANY function that returns x's type. template operator Action() const { // NOLINT // Assert statement belongs here because this is the best place to verify // conditions on F. It produces the clearest error messages // in most compilers. // Impl really belongs in this scope as a local class but can't // because MSVC produces duplicate symbols in different translation units // in this case. Until MS fixes that bug we put Impl into the class scope // and put the typedef both here (for use in assert statement) and // in the Impl class. But both definitions must be the same. typedef typename Function::Result Result; GTEST_COMPILE_ASSERT_( !std::is_reference::value, use_ReturnRef_instead_of_Return_to_return_a_reference); static_assert(!std::is_void::value, "Can't use Return() on an action expected to return `void`."); return Action(new Impl(value_)); } private: // Implements the Return(x) action for a particular function type F. template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; // The implicit cast is necessary when Result has more than one // single-argument constructor (e.g. Result is std::vector) and R // has a type conversion operator template. In that case, value_(value) // won't compile as the compiler doesn't known which constructor of // Result to call. ImplicitCast_ forces the compiler to convert R to // Result without considering explicit constructors, thus resolving the // ambiguity. value_ is then initialized using its copy constructor. explicit Impl(const std::shared_ptr& value) : value_before_cast_(*value), value_(ImplicitCast_(value_before_cast_)) {} Result Perform(const ArgumentTuple&) override { return value_; } private: GTEST_COMPILE_ASSERT_(!std::is_reference::value, Result_cannot_be_a_reference_type); // We save the value before casting just in case it is being cast to a // wrapper type. R value_before_cast_; Result value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); }; // Partially specialize for ByMoveWrapper. This version of ReturnAction will // move its contents instead. template class Impl, F> : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; explicit Impl(const std::shared_ptr& wrapper) : performed_(false), wrapper_(wrapper) {} Result Perform(const ArgumentTuple&) override { GTEST_CHECK_(!performed_) << "A ByMove() action should only be performed once."; performed_ = true; return std::move(wrapper_->payload); } private: bool performed_; const std::shared_ptr wrapper_; }; const std::shared_ptr value_; }; // Implements the ReturnNull() action. class ReturnNullAction { public: // Allows ReturnNull() to be used in any pointer-returning function. In C++11 // this is enforced by returning nullptr, and in non-C++11 by asserting a // pointer type on compile time. template static Result Perform(const ArgumentTuple&) { return nullptr; } }; // Implements the Return() action. class ReturnVoidAction { public: // Allows Return() to be used in any void-returning function. template static void Perform(const ArgumentTuple&) { static_assert(std::is_void::value, "Result should be void."); } }; // Implements the polymorphic ReturnRef(x) action, which can be used // in any function that returns a reference to the type of x, // regardless of the argument types. template class ReturnRefAction { public: // Constructs a ReturnRefAction object from the reference to be returned. explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT // This template type conversion operator allows ReturnRef(x) to be // used in ANY function that returns a reference to x's type. template operator Action() const { typedef typename Function::Result Result; // Asserts that the function return type is a reference. This // catches the user error of using ReturnRef(x) when Return(x) // should be used, and generates some helpful error message. GTEST_COMPILE_ASSERT_(std::is_reference::value, use_Return_instead_of_ReturnRef_to_return_a_value); return Action(new Impl(ref_)); } private: // Implements the ReturnRef(x) action for a particular function type F. template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; explicit Impl(T& ref) : ref_(ref) {} // NOLINT Result Perform(const ArgumentTuple&) override { return ref_; } private: T& ref_; }; T& ref_; }; // Implements the polymorphic ReturnRefOfCopy(x) action, which can be // used in any function that returns a reference to the type of x, // regardless of the argument types. template class ReturnRefOfCopyAction { public: // Constructs a ReturnRefOfCopyAction object from the reference to // be returned. explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT // This template type conversion operator allows ReturnRefOfCopy(x) to be // used in ANY function that returns a reference to x's type. template operator Action() const { typedef typename Function::Result Result; // Asserts that the function return type is a reference. This // catches the user error of using ReturnRefOfCopy(x) when Return(x) // should be used, and generates some helpful error message. GTEST_COMPILE_ASSERT_( std::is_reference::value, use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); return Action(new Impl(value_)); } private: // Implements the ReturnRefOfCopy(x) action for a particular function type F. template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; explicit Impl(const T& value) : value_(value) {} // NOLINT Result Perform(const ArgumentTuple&) override { return value_; } private: T value_; }; const T value_; }; // Implements the polymorphic ReturnRoundRobin(v) action, which can be // used in any function that returns the element_type of v. template class ReturnRoundRobinAction { public: explicit ReturnRoundRobinAction(std::vector values) { GTEST_CHECK_(!values.empty()) << "ReturnRoundRobin requires at least one element."; state_->values = std::move(values); } template T operator()(Args&&...) const { return state_->Next(); } private: struct State { T Next() { T ret_val = values[i++]; if (i == values.size()) i = 0; return ret_val; } std::vector values; size_t i = 0; }; std::shared_ptr state_ = std::make_shared(); }; // Implements the polymorphic DoDefault() action. class DoDefaultAction { public: // This template type conversion operator allows DoDefault() to be // used in any function. template operator Action() const { return Action(); } // NOLINT }; // Implements the Assign action to set a given pointer referent to a // particular value. template class AssignAction { public: AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} template void Perform(const ArgumentTuple& /* args */) const { *ptr_ = value_; } private: T1* const ptr_; const T2 value_; }; #if !GTEST_OS_WINDOWS_MOBILE // Implements the SetErrnoAndReturn action to simulate return from // various system calls and libc functions. template class SetErrnoAndReturnAction { public: SetErrnoAndReturnAction(int errno_value, T result) : errno_(errno_value), result_(result) {} template Result Perform(const ArgumentTuple& /* args */) const { errno = errno_; return result_; } private: const int errno_; const T result_; }; #endif // !GTEST_OS_WINDOWS_MOBILE // Implements the SetArgumentPointee(x) action for any function // whose N-th argument (0-based) is a pointer to x's type. template struct SetArgumentPointeeAction { A value; template void operator()(const Args&... args) const { *::std::get(std::tie(args...)) = value; } }; // Implements the Invoke(object_ptr, &Class::Method) action. template struct InvokeMethodAction { Class* const obj_ptr; const MethodPtr method_ptr; template auto operator()(Args&&... args) const -> decltype((obj_ptr->*method_ptr)(std::forward(args)...)) { return (obj_ptr->*method_ptr)(std::forward(args)...); } }; // Implements the InvokeWithoutArgs(f) action. The template argument // FunctionImpl is the implementation type of f, which can be either a // function pointer or a functor. InvokeWithoutArgs(f) can be used as an // Action as long as f's type is compatible with F. template struct InvokeWithoutArgsAction { FunctionImpl function_impl; // Allows InvokeWithoutArgs(f) to be used as any action whose type is // compatible with f. template auto operator()(const Args&...) -> decltype(function_impl()) { return function_impl(); } }; // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. template struct InvokeMethodWithoutArgsAction { Class* const obj_ptr; const MethodPtr method_ptr; using ReturnType = decltype((std::declval()->*std::declval())()); template ReturnType operator()(const Args&...) const { return (obj_ptr->*method_ptr)(); } }; // Implements the IgnoreResult(action) action. template class IgnoreResultAction { public: explicit IgnoreResultAction(const A& action) : action_(action) {} template operator Action() const { // Assert statement belongs here because this is the best place to verify // conditions on F. It produces the clearest error messages // in most compilers. // Impl really belongs in this scope as a local class but can't // because MSVC produces duplicate symbols in different translation units // in this case. Until MS fixes that bug we put Impl into the class scope // and put the typedef both here (for use in assert statement) and // in the Impl class. But both definitions must be the same. typedef typename internal::Function::Result Result; // Asserts at compile time that F returns void. static_assert(std::is_void::value, "Result type should be void."); return Action(new Impl(action_)); } private: template class Impl : public ActionInterface { public: typedef typename internal::Function::Result Result; typedef typename internal::Function::ArgumentTuple ArgumentTuple; explicit Impl(const A& action) : action_(action) {} void Perform(const ArgumentTuple& args) override { // Performs the action and ignores its result. action_.Perform(args); } private: // Type OriginalFunction is the same as F except that its return // type is IgnoredValue. typedef typename internal::Function::MakeResultIgnoredValue OriginalFunction; const Action action_; }; const A action_; }; template struct WithArgsAction { InnerAction action; // The inner action could be anything convertible to Action. // We use the conversion operator to detect the signature of the inner Action. template operator Action() const { // NOLINT using TupleType = std::tuple; Action::type...)> converted(action); return [converted](Args... args) -> R { return converted.Perform(std::forward_as_tuple( std::get(std::forward_as_tuple(std::forward(args)...))...)); }; } }; template struct DoAllAction { private: template using NonFinalType = typename std::conditional::value, T, const T&>::type; template std::vector Convert(IndexSequence) const { return {ActionT(std::get(actions))...}; } public: std::tuple actions; template operator Action() const { // NOLINT struct Op { std::vector...)>> converted; Action last; R operator()(Args... args) const { auto tuple_args = std::forward_as_tuple(std::forward(args)...); for (auto& a : converted) { a.Perform(tuple_args); } return last.Perform(std::move(tuple_args)); } }; return Op{Convert...)>>( MakeIndexSequence()), std::get(actions)}; } }; } // namespace internal // An Unused object can be implicitly constructed from ANY value. // This is handy when defining actions that ignore some or all of the // mock function arguments. For example, given // // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); // MOCK_METHOD3(Bar, double(int index, double x, double y)); // // instead of // // double DistanceToOriginWithLabel(const string& label, double x, double y) { // return sqrt(x*x + y*y); // } // double DistanceToOriginWithIndex(int index, double x, double y) { // return sqrt(x*x + y*y); // } // ... // EXPECT_CALL(mock, Foo("abc", _, _)) // .WillOnce(Invoke(DistanceToOriginWithLabel)); // EXPECT_CALL(mock, Bar(5, _, _)) // .WillOnce(Invoke(DistanceToOriginWithIndex)); // // you could write // // // We can declare any uninteresting argument as Unused. // double DistanceToOrigin(Unused, double x, double y) { // return sqrt(x*x + y*y); // } // ... // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); typedef internal::IgnoredValue Unused; // Creates an action that does actions a1, a2, ..., sequentially in // each invocation. All but the last action will have a readonly view of the // arguments. template internal::DoAllAction::type...> DoAll( Action&&... action) { return {std::forward_as_tuple(std::forward(action)...)}; } // WithArg(an_action) creates an action that passes the k-th // (0-based) argument of the mock function to an_action and performs // it. It adapts an action accepting one argument to one that accepts // multiple arguments. For convenience, we also provide // WithArgs(an_action) (defined below) as a synonym. template internal::WithArgsAction::type, k> WithArg(InnerAction&& action) { return {std::forward(action)}; } // WithArgs(an_action) creates an action that passes // the selected arguments of the mock function to an_action and // performs it. It serves as an adaptor between actions with // different argument lists. template internal::WithArgsAction::type, k, ks...> WithArgs(InnerAction&& action) { return {std::forward(action)}; } // WithoutArgs(inner_action) can be used in a mock function with a // non-empty argument list to perform inner_action, which takes no // argument. In other words, it adapts an action accepting no // argument to one that accepts (and ignores) arguments. template internal::WithArgsAction::type> WithoutArgs(InnerAction&& action) { return {std::forward(action)}; } // Creates an action that returns 'value'. 'value' is passed by value // instead of const reference - otherwise Return("string literal") // will trigger a compiler error about using array as initializer. template internal::ReturnAction Return(R value) { return internal::ReturnAction(std::move(value)); } // Creates an action that returns NULL. inline PolymorphicAction ReturnNull() { return MakePolymorphicAction(internal::ReturnNullAction()); } // Creates an action that returns from a void function. inline PolymorphicAction Return() { return MakePolymorphicAction(internal::ReturnVoidAction()); } // Creates an action that returns the reference to a variable. template inline internal::ReturnRefAction ReturnRef(R& x) { // NOLINT return internal::ReturnRefAction(x); } // Prevent using ReturnRef on reference to temporary. template internal::ReturnRefAction ReturnRef(R&&) = delete; // Creates an action that returns the reference to a copy of the // argument. The copy is created when the action is constructed and // lives as long as the action. template inline internal::ReturnRefOfCopyAction ReturnRefOfCopy(const R& x) { return internal::ReturnRefOfCopyAction(x); } // Modifies the parent action (a Return() action) to perform a move of the // argument instead of a copy. // Return(ByMove()) actions can only be executed once and will assert this // invariant. template internal::ByMoveWrapper ByMove(R x) { return internal::ByMoveWrapper(std::move(x)); } // Creates an action that returns an element of `vals`. Calling this action will // repeatedly return the next value from `vals` until it reaches the end and // will restart from the beginning. template internal::ReturnRoundRobinAction ReturnRoundRobin(std::vector vals) { return internal::ReturnRoundRobinAction(std::move(vals)); } // Creates an action that returns an element of `vals`. Calling this action will // repeatedly return the next value from `vals` until it reaches the end and // will restart from the beginning. template internal::ReturnRoundRobinAction ReturnRoundRobin( std::initializer_list vals) { return internal::ReturnRoundRobinAction(std::vector(vals)); } // Creates an action that does the default action for the give mock function. inline internal::DoDefaultAction DoDefault() { return internal::DoDefaultAction(); } // Creates an action that sets the variable pointed by the N-th // (0-based) function argument to 'value'. template internal::SetArgumentPointeeAction SetArgPointee(T value) { return {std::move(value)}; } // The following version is DEPRECATED. template internal::SetArgumentPointeeAction SetArgumentPointee(T value) { return {std::move(value)}; } // Creates an action that sets a pointer referent to a given value. template PolymorphicAction > Assign(T1* ptr, T2 val) { return MakePolymorphicAction(internal::AssignAction(ptr, val)); } #if !GTEST_OS_WINDOWS_MOBILE // Creates an action that sets errno and returns the appropriate error. template PolymorphicAction > SetErrnoAndReturn(int errval, T result) { return MakePolymorphicAction( internal::SetErrnoAndReturnAction(errval, result)); } #endif // !GTEST_OS_WINDOWS_MOBILE // Various overloads for Invoke(). // Legacy function. // Actions can now be implicitly constructed from callables. No need to create // wrapper objects. // This function exists for backwards compatibility. template typename std::decay::type Invoke(FunctionImpl&& function_impl) { return std::forward(function_impl); } // Creates an action that invokes the given method on the given object // with the mock function's arguments. template internal::InvokeMethodAction Invoke(Class* obj_ptr, MethodPtr method_ptr) { return {obj_ptr, method_ptr}; } // Creates an action that invokes 'function_impl' with no argument. template internal::InvokeWithoutArgsAction::type> InvokeWithoutArgs(FunctionImpl function_impl) { return {std::move(function_impl)}; } // Creates an action that invokes the given method on the given object // with no argument. template internal::InvokeMethodWithoutArgsAction InvokeWithoutArgs( Class* obj_ptr, MethodPtr method_ptr) { return {obj_ptr, method_ptr}; } // Creates an action that performs an_action and throws away its // result. In other words, it changes the return type of an_action to // void. an_action MUST NOT return void, or the code won't compile. template inline internal::IgnoreResultAction IgnoreResult(const A& an_action) { return internal::IgnoreResultAction(an_action); } // Creates a reference wrapper for the given L-value. If necessary, // you can explicitly specify the type of the reference. For example, // suppose 'derived' is an object of type Derived, ByRef(derived) // would wrap a Derived&. If you want to wrap a const Base& instead, // where Base is a base class of Derived, just write: // // ByRef(derived) // // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. // However, it may still be used for consistency with ByMove(). template inline ::std::reference_wrapper ByRef(T& l_value) { // NOLINT return ::std::reference_wrapper(l_value); } namespace internal { template struct ReturnNewAction { T* operator()() const { return internal::Apply( [](const Params&... unpacked_params) { return new T(unpacked_params...); }, params); } std::tuple params; }; } // namespace internal // The ReturnNew(a1, a2, ..., a_k) action returns a pointer to a new // instance of type T, constructed on the heap with constructor arguments // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. template internal::ReturnNewAction::type...> ReturnNew( Params&&... params) { return {std::forward_as_tuple(std::forward(params)...)}; } namespace internal { // A macro from the ACTION* family (defined later in gmock-generated-actions.h) // defines an action that can be used in a mock function. Typically, // these actions only care about a subset of the arguments of the mock // function. For example, if such an action only uses the second // argument, it can be used in any mock function that takes >= 2 // arguments where the type of the second argument is compatible. // // Therefore, the action implementation must be prepared to take more // arguments than it needs. The ExcessiveArg type is used to // represent those excessive arguments. In order to keep the compiler // error messages tractable, we define it in the testing namespace // instead of testing::internal. However, this is an INTERNAL TYPE // and subject to change without notice, so a user MUST NOT USE THIS // TYPE DIRECTLY. struct ExcessiveArg {}; // A helper class needed for implementing the ACTION* macros. template class ActionHelper { public: template static Result Perform(Impl* impl, const std::tuple& args) { static constexpr size_t kMaxArgs = sizeof...(Ts) <= 10 ? sizeof...(Ts) : 10; return Apply(impl, args, MakeIndexSequence{}, MakeIndexSequence<10 - kMaxArgs>{}); } private: template static Result Apply(Impl* impl, const std::tuple& args, IndexSequence, IndexSequence) { return impl->template gmock_PerformImpl< typename std::tuple_element>::type...>( args, std::get(args)..., ((void)rest_ids, ExcessiveArg())...); } }; // A helper base class needed for implementing the ACTION* macros. // Implements constructor and conversion operator for Action. // // Template specialization for parameterless Action. template class ActionImpl { public: ActionImpl() = default; template operator ::testing::Action() const { // NOLINT(runtime/explicit) return ::testing::Action(new typename Derived::template gmock_Impl()); } }; // Template specialization for parameterized Action. template