Allows EXPECT_EQ to accept arguments that don't have operator << (by Zhanyong Wan).

Allows a user to customize how the universal printer prints a pointer of a specific type by overloading << (by Zhanyong Wan).
Works around a bug in Cymbian's C++ compiler (by Vlad Losev).
This commit is contained in:
zhanyong.wan 2010-07-21 22:15:17 +00:00
parent 447ed6474d
commit e2a7f03b80
9 changed files with 261 additions and 218 deletions

View File

@ -280,12 +280,23 @@ void DefaultPrintTo(IsNotContainer /* dummy */,
if (p == NULL) {
*os << "NULL";
} else {
// We want to print p as a const void*. However, we cannot cast
// it to const void* directly, even using reinterpret_cast, as
// earlier versions of gcc (e.g. 3.4.5) cannot compile the cast
// when p is a function pointer. Casting to UInt64 first solves
// the problem.
*os << reinterpret_cast<const void*>(reinterpret_cast<internal::UInt64>(p));
// C++ doesn't allow casting from a function pointer to any object
// pointer.
if (ImplicitlyConvertible<T*, const void*>::value) {
// T is not a function type. We just call << to print p,
// relying on ADL to pick up user-defined << for their pointer
// types, if any.
*os << p;
} else {
// T is a function type, so '*os << p' doesn't do what we want
// (it just prints p as bool). We want to print p as a const
// void*. However, we cannot cast it to const void* directly,
// even using reinterpret_cast, as earlier versions of gcc
// (e.g. 3.4.5) cannot compile the cast when p is a function
// pointer. Casting to UInt64 first solves the problem.
*os << reinterpret_cast<const void*>(
reinterpret_cast<internal::UInt64>(p));
}
}
}
@ -341,13 +352,8 @@ void PrintTo(const T& value, ::std::ostream* os) {
// types, strings, plain arrays, and pointers).
// Overloads for various char types.
GTEST_API_ void PrintCharTo(char c, int char_code, ::std::ostream* os);
inline void PrintTo(unsigned char c, ::std::ostream* os) {
PrintCharTo(c, c, os);
}
inline void PrintTo(signed char c, ::std::ostream* os) {
PrintCharTo(c, c, os);
}
GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os);
GTEST_API_ void PrintTo(signed char c, ::std::ostream* os);
inline void PrintTo(char c, ::std::ostream* os) {
// When printing a plain char, we always treat it as unsigned. This
// way, the output won't be affected by whether the compiler thinks
@ -375,6 +381,21 @@ inline void PrintTo(char* s, ::std::ostream* os) {
PrintTo(implicit_cast<const char*>(s), os);
}
// signed/unsigned char is often used for representing binary data, so
// we print pointers to it as void* to be safe.
inline void PrintTo(const signed char* s, ::std::ostream* os) {
PrintTo(implicit_cast<const void*>(s), os);
}
inline void PrintTo(signed char* s, ::std::ostream* os) {
PrintTo(implicit_cast<const void*>(s), os);
}
inline void PrintTo(const unsigned char* s, ::std::ostream* os) {
PrintTo(implicit_cast<const void*>(s), os);
}
inline void PrintTo(unsigned char* s, ::std::ostream* os) {
PrintTo(implicit_cast<const void*>(s), os);
}
// MSVC can be configured to define wchar_t as a typedef of unsigned
// short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
// type. When wchar_t is a typedef, defining an overload for const

View File

@ -1207,30 +1207,6 @@ GTEST_API_ void InitGoogleTest(int* argc, wchar_t** argv);
namespace internal {
// These overloaded versions handle ::std::string and ::std::wstring.
GTEST_API_ inline String FormatForFailureMessage(const ::std::string& str) {
return (Message() << '"' << str << '"').GetString();
}
#if GTEST_HAS_STD_WSTRING
GTEST_API_ inline String FormatForFailureMessage(const ::std::wstring& wstr) {
return (Message() << "L\"" << wstr << '"').GetString();
}
#endif // GTEST_HAS_STD_WSTRING
// These overloaded versions handle ::string and ::wstring.
#if GTEST_HAS_GLOBAL_STRING
GTEST_API_ inline String FormatForFailureMessage(const ::string& str) {
return (Message() << '"' << str << '"').GetString();
}
#endif // GTEST_HAS_GLOBAL_STRING
#if GTEST_HAS_GLOBAL_WSTRING
GTEST_API_ inline String FormatForFailureMessage(const ::wstring& wstr) {
return (Message() << "L\"" << wstr << '"').GetString();
}
#endif // GTEST_HAS_GLOBAL_WSTRING
// Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc)
// operand to be used in a failure message. The type (but not value)
// of the other operand may affect the format. This allows us to
@ -1246,7 +1222,7 @@ GTEST_API_ inline String FormatForFailureMessage(const ::wstring& wstr) {
template <typename T1, typename T2>
String FormatForComparisonFailureMessage(const T1& value,
const T2& /* other_operand */) {
return FormatForFailureMessage(value);
return PrintToString(value);
}
// The helper function for {ASSERT|EXPECT}_EQ.

View File

@ -102,7 +102,7 @@ namespace proto2 { class Message; }
namespace testing {
// Forward declaration of classes.
// Forward declarations.
class AssertionResult; // Result of an assertion.
class Message; // Represents a failure message.
@ -111,6 +111,9 @@ class TestInfo; // Information about a test.
class TestPartResult; // Result of a test part.
class UnitTest; // A collection of test cases.
template <typename T>
::std::string PrintToString(const T& value);
namespace internal {
struct TraceInfo; // Information about a trace point.
@ -192,72 +195,23 @@ class GTEST_API_ ScopedTrace {
template <typename T>
String StreamableToString(const T& streamable);
// Formats a value to be used in a failure message.
#ifdef GTEST_NEEDS_IS_POINTER_
// These are needed as the Nokia Symbian and IBM XL C/C++ compilers
// cannot decide between const T& and const T* in a function template.
// These compilers _can_ decide between class template specializations
// for T and T*, so a tr1::type_traits-like is_pointer works, and we
// can overload on that.
// This overload makes sure that all pointers (including
// those to char or wchar_t) are printed as raw pointers.
template <typename T>
inline String FormatValueForFailureMessage(internal::true_type /*dummy*/,
T* pointer) {
return StreamableToString(static_cast<const void*>(pointer));
}
template <typename T>
inline String FormatValueForFailureMessage(internal::false_type /*dummy*/,
const T& value) {
return StreamableToString(value);
}
template <typename T>
inline String FormatForFailureMessage(const T& value) {
return FormatValueForFailureMessage(
typename internal::is_pointer<T>::type(), value);
}
#else
// These are needed as the above solution using is_pointer has the
// limitation that T cannot be a type without external linkage, when
// compiled using MSVC.
template <typename T>
inline String FormatForFailureMessage(const T& value) {
return StreamableToString(value);
}
// This overload makes sure that all pointers (including
// those to char or wchar_t) are printed as raw pointers.
template <typename T>
inline String FormatForFailureMessage(T* pointer) {
return StreamableToString(static_cast<const void*>(pointer));
}
#endif // GTEST_NEEDS_IS_POINTER_
// These overloaded versions handle narrow and wide characters.
GTEST_API_ String FormatForFailureMessage(char ch);
GTEST_API_ String FormatForFailureMessage(wchar_t wchar);
// When this operand is a const char* or char*, and the other operand
// When this operand is a const char* or char*, if the other operand
// is a ::std::string or ::string, we print this operand as a C string
// rather than a pointer. We do the same for wide strings.
// rather than a pointer (we do the same for wide strings); otherwise
// we print it as a pointer to be safe.
// This internal macro is used to avoid duplicated code.
// Making the first operand const reference works around a bug in the
// Symbian compiler which is unable to select the correct specialization of
// FormatForComparisonFailureMessage.
#define GTEST_FORMAT_IMPL_(operand2_type, operand1_printer)\
inline String FormatForComparisonFailureMessage(\
operand2_type::value_type* str, const operand2_type& /*operand2*/) {\
operand2_type::value_type* const& str, const operand2_type& /*operand2*/) {\
return operand1_printer(str);\
}\
inline String FormatForComparisonFailureMessage(\
const operand2_type::value_type* str, const operand2_type& /*operand2*/) {\
const operand2_type::value_type* const& str, \
const operand2_type& /*operand2*/) {\
return operand1_printer(str);\
}
@ -275,6 +229,27 @@ GTEST_FORMAT_IMPL_(::wstring, String::ShowWideCStringQuoted)
#undef GTEST_FORMAT_IMPL_
// The next four overloads handle the case where the operand being
// printed is a char/wchar_t pointer and the other operand is not a
// string/wstring object. In such cases, we just print the operand as
// a pointer to be safe.
//
// Making the first operand const reference works around a bug in the
// Symbian compiler which is unable to select the correct specialization of
// FormatForComparisonFailureMessage.
#define GTEST_FORMAT_CHAR_PTR_IMPL_(CharType) \
template <typename T> \
String FormatForComparisonFailureMessage(CharType* const& p, const T&) { \
return PrintToString(static_cast<const void*>(p)); \
}
GTEST_FORMAT_CHAR_PTR_IMPL_(char)
GTEST_FORMAT_CHAR_PTR_IMPL_(const char)
GTEST_FORMAT_CHAR_PTR_IMPL_(wchar_t)
GTEST_FORMAT_CHAR_PTR_IMPL_(const wchar_t)
#undef GTEST_FORMAT_CHAR_PTR_IMPL_
// Constructs and returns the message for an equality assertion
// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
//

View File

@ -123,10 +123,31 @@ void PrintBytesInObjectTo(const unsigned char* obj_bytes, size_t count,
namespace internal {
// Prints a wide char as a char literal without the quotes, escaping it
// when necessary.
static void PrintAsWideCharLiteralTo(wchar_t c, ostream* os) {
switch (c) {
// Depending on the value of a char (or wchar_t), we print it in one
// of three formats:
// - as is if it's a printable ASCII (e.g. 'a', '2', ' '),
// - as a hexidecimal escape sequence (e.g. '\x7F'), or
// - as a special escape sequence (e.g. '\r', '\n').
enum CharFormat {
kAsIs,
kHexEscape,
kSpecialEscape
};
// Returns true if c is a printable ASCII character. We test the
// value of c directly instead of calling isprint(), which is buggy on
// Windows Mobile.
static inline bool IsPrintableAscii(wchar_t c) {
return 0x20 <= c && c <= 0x7E;
}
// Prints a wide or narrow char c as a character literal without the
// quotes, escaping it when necessary; returns how c was formatted.
// The template argument UnsignedChar is the unsigned version of Char,
// which is the type of c.
template <typename UnsignedChar, typename Char>
static CharFormat PrintAsCharLiteralTo(Char c, ostream* os) {
switch (static_cast<wchar_t>(c)) {
case L'\0':
*os << "\\0";
break;
@ -161,19 +182,15 @@ static void PrintAsWideCharLiteralTo(wchar_t c, ostream* os) {
*os << "\\v";
break;
default:
// Checks whether c is printable or not. Printable characters are in
// the range [0x20,0x7E].
// We test the value of c directly instead of calling isprint(), as
// isprint() is buggy on Windows mobile.
if (0x20 <= c && c <= 0x7E) {
if (IsPrintableAscii(c)) {
*os << static_cast<char>(c);
return kAsIs;
} else {
// Buffer size enough for the maximum number of digits and \0.
char text[2 * sizeof(unsigned long) + 1] = "";
snprintf(text, sizeof(text), "%lX", static_cast<unsigned long>(c));
*os << "\\x" << text;
*os << String::Format("\\x%X", static_cast<UnsignedChar>(c));
return kHexEscape;
}
}
return kSpecialEscape;
}
// Prints a char as if it's part of a string literal, escaping it when
@ -187,50 +204,57 @@ static void PrintAsWideStringLiteralTo(wchar_t c, ostream* os) {
*os << "\\\"";
break;
default:
PrintAsWideCharLiteralTo(c, os);
PrintAsCharLiteralTo<wchar_t>(c, os);
}
}
// Prints a char as a char literal without the quotes, escaping it
// when necessary.
static void PrintAsCharLiteralTo(char c, ostream* os) {
PrintAsWideCharLiteralTo(static_cast<unsigned char>(c), os);
}
// Prints a char as if it's part of a string literal, escaping it when
// necessary.
static void PrintAsStringLiteralTo(char c, ostream* os) {
static void PrintAsNarrowStringLiteralTo(char c, ostream* os) {
PrintAsWideStringLiteralTo(static_cast<unsigned char>(c), os);
}
// Prints a char and its code. The '\0' char is printed as "'\\0'",
// other unprintable characters are also properly escaped using the
// standard C++ escape sequence.
void PrintCharTo(char c, int char_code, ostream* os) {
// Prints a wide or narrow character c and its code. '\0' is printed
// as "'\\0'", other unprintable characters are also properly escaped
// using the standard C++ escape sequence. The template argument
// UnsignedChar is the unsigned version of Char, which is the type of c.
template <typename UnsignedChar, typename Char>
void PrintCharAndCodeTo(Char c, ostream* os) {
// First, print c as a literal in the most readable form we can find.
*os << ((sizeof(c) > 1) ? "L'" : "'");
const CharFormat format = PrintAsCharLiteralTo<UnsignedChar>(c, os);
*os << "'";
PrintAsCharLiteralTo(c, os);
*os << "'";
if (c != '\0')
*os << " (" << char_code << ")";
// To aid user debugging, we also print c's code in decimal, unless
// it's 0 (in which case c was printed as '\\0', making the code
// obvious).
if (c == 0)
return;
*os << " (" << String::Format("%d", c).c_str();
// For more convenience, we print c's code again in hexidecimal,
// unless c was already printed in the form '\x##' or the code is in
// [1, 9].
if (format == kHexEscape || (1 <= c && c <= 9)) {
// Do nothing.
} else {
*os << String::Format(", 0x%X",
static_cast<UnsignedChar>(c)).c_str();
}
*os << ")";
}
void PrintTo(unsigned char c, ::std::ostream* os) {
PrintCharAndCodeTo<unsigned char>(c, os);
}
void PrintTo(signed char c, ::std::ostream* os) {
PrintCharAndCodeTo<unsigned char>(c, os);
}
// Prints a wchar_t as a symbol if it is printable or as its internal
// code otherwise and also as its decimal code (except for L'\0').
// The L'\0' char is printed as "L'\\0'". The decimal code is printed
// as signed integer when wchar_t is implemented by the compiler
// as a signed type and is printed as an unsigned integer when wchar_t
// is implemented as an unsigned type.
// code otherwise and also as its code. L'\0' is printed as "L'\\0'".
void PrintTo(wchar_t wc, ostream* os) {
*os << "L'";
PrintAsWideCharLiteralTo(wc, os);
*os << "'";
if (wc != L'\0') {
// Type Int64 is used because it provides more storage than wchar_t thus
// when the compiler converts signed or unsigned implementation of wchar_t
// to Int64 it fills higher bits with either zeros or the sign bit
// passing it to operator <<() as either signed or unsigned integer.
*os << " (" << static_cast<Int64>(wc) << ")";
}
PrintCharAndCodeTo<wchar_t>(wc, os);
}
// Prints the given array of characters to the ostream.
@ -239,7 +263,7 @@ void PrintTo(wchar_t wc, ostream* os) {
static void PrintCharsAsStringTo(const char* begin, size_t len, ostream* os) {
*os << "\"";
for (size_t index = 0; index < len; ++index) {
PrintAsStringLiteralTo(begin[index], os);
PrintAsNarrowStringLiteralTo(begin[index], os);
}
*os << "\"";
}

View File

@ -918,48 +918,6 @@ Message& Message::operator <<(const ::wstring& wstr) {
}
#endif // GTEST_HAS_GLOBAL_WSTRING
namespace internal {
// Formats a value to be used in a failure message.
// For a char value, we print it as a C++ char literal and as an
// unsigned integer (both in decimal and in hexadecimal).
String FormatForFailureMessage(char ch) {
const unsigned int ch_as_uint = ch;
// A String object cannot contain '\0', so we print "\\0" when ch is
// '\0'.
return String::Format("'%s' (%u, 0x%X)",
ch ? String::Format("%c", ch).c_str() : "\\0",
ch_as_uint, ch_as_uint);
}
// For a wchar_t value, we print it as a C++ wchar_t literal and as an
// unsigned integer (both in decimal and in hexidecimal).
String FormatForFailureMessage(wchar_t wchar) {
// The C++ standard doesn't specify the exact size of the wchar_t
// type. It just says that it shall have the same size as another
// integral type, called its underlying type.
//
// Therefore, in order to print a wchar_t value in the numeric form,
// we first convert it to the largest integral type (UInt64) and
// then print the converted value.
//
// We use streaming to print the value as "%llu" doesn't work
// correctly with MSVC 7.1.
const UInt64 wchar_as_uint64 = wchar;
Message msg;
// A String object cannot contain '\0', so we print "\\0" when wchar is
// L'\0'.
char buffer[32]; // CodePointToUtf8 requires a buffer that big.
msg << "L'"
<< (wchar ? CodePointToUtf8(static_cast<UInt32>(wchar), buffer) : "\\0")
<< "' (" << wchar_as_uint64 << ", 0x" << ::std::setbase(16)
<< wchar_as_uint64 << ")";
return msg.GetString();
}
} // namespace internal
// AssertionResult constructors.
// Used in EXPECT_TRUE/FALSE(assertion_result).
AssertionResult::AssertionResult(const AssertionResult& other)

View File

@ -79,6 +79,10 @@ inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) {
os << "StreamableInGlobal";
}
void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) {
os << "StreamableInGlobal*";
}
namespace foo {
// A user-defined unprintable type in a user namespace.
@ -100,6 +104,15 @@ void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) {
*os << "PrintableViaPrintTo: " << x.value;
}
// A type with a user-defined << for printing its pointer.
struct PointerPrintable {
};
::std::ostream& operator<<(::std::ostream& os,
const PointerPrintable* /* x */) {
return os << "PointerPrintable*";
}
// A user-defined printable class template in a user-chosen namespace.
template <typename T>
class PrintableViaPrintToTemplate {
@ -199,21 +212,21 @@ string PrintByRef(const T& value) {
// char.
TEST(PrintCharTest, PlainChar) {
EXPECT_EQ("'\\0'", Print('\0'));
EXPECT_EQ("'\\'' (39)", Print('\''));
EXPECT_EQ("'\"' (34)", Print('"'));
EXPECT_EQ("'\\?' (63)", Print('\?'));
EXPECT_EQ("'\\\\' (92)", Print('\\'));
EXPECT_EQ("'\\'' (39, 0x27)", Print('\''));
EXPECT_EQ("'\"' (34, 0x22)", Print('"'));
EXPECT_EQ("'\\?' (63, 0x3F)", Print('\?'));
EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\'));
EXPECT_EQ("'\\a' (7)", Print('\a'));
EXPECT_EQ("'\\b' (8)", Print('\b'));
EXPECT_EQ("'\\f' (12)", Print('\f'));
EXPECT_EQ("'\\n' (10)", Print('\n'));
EXPECT_EQ("'\\r' (13)", Print('\r'));
EXPECT_EQ("'\\f' (12, 0xC)", Print('\f'));
EXPECT_EQ("'\\n' (10, 0xA)", Print('\n'));
EXPECT_EQ("'\\r' (13, 0xD)", Print('\r'));
EXPECT_EQ("'\\t' (9)", Print('\t'));
EXPECT_EQ("'\\v' (11)", Print('\v'));
EXPECT_EQ("'\\v' (11, 0xB)", Print('\v'));
EXPECT_EQ("'\\x7F' (127)", Print('\x7F'));
EXPECT_EQ("'\\xFF' (255)", Print('\xFF'));
EXPECT_EQ("' ' (32)", Print(' '));
EXPECT_EQ("'a' (97)", Print('a'));
EXPECT_EQ("' ' (32, 0x20)", Print(' '));
EXPECT_EQ("'a' (97, 0x61)", Print('a'));
}
// signed char.
@ -226,7 +239,7 @@ TEST(PrintCharTest, SignedChar) {
// unsigned char.
TEST(PrintCharTest, UnsignedChar) {
EXPECT_EQ("'\\0'", Print(static_cast<unsigned char>('\0')));
EXPECT_EQ("'b' (98)",
EXPECT_EQ("'b' (98, 0x62)",
Print(static_cast<unsigned char>('b')));
}
@ -241,21 +254,21 @@ TEST(PrintBuiltInTypeTest, Bool) {
// wchar_t.
TEST(PrintBuiltInTypeTest, Wchar_t) {
EXPECT_EQ("L'\\0'", Print(L'\0'));
EXPECT_EQ("L'\\'' (39)", Print(L'\''));
EXPECT_EQ("L'\"' (34)", Print(L'"'));
EXPECT_EQ("L'\\?' (63)", Print(L'\?'));
EXPECT_EQ("L'\\\\' (92)", Print(L'\\'));
EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\''));
EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"'));
EXPECT_EQ("L'\\?' (63, 0x3F)", Print(L'\?'));
EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\'));
EXPECT_EQ("L'\\a' (7)", Print(L'\a'));
EXPECT_EQ("L'\\b' (8)", Print(L'\b'));
EXPECT_EQ("L'\\f' (12)", Print(L'\f'));
EXPECT_EQ("L'\\n' (10)", Print(L'\n'));
EXPECT_EQ("L'\\r' (13)", Print(L'\r'));
EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f'));
EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n'));
EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r'));
EXPECT_EQ("L'\\t' (9)", Print(L'\t'));
EXPECT_EQ("L'\\v' (11)", Print(L'\v'));
EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v'));
EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F'));
EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF'));
EXPECT_EQ("L' ' (32)", Print(L' '));
EXPECT_EQ("L'a' (97)", Print(L'a'));
EXPECT_EQ("L' ' (32, 0x20)", Print(L' '));
EXPECT_EQ("L'a' (97, 0x61)", Print(L'a'));
EXPECT_EQ("L'\\x576' (1398)", Print(L'\x576'));
EXPECT_EQ("L'\\xC74D' (51021)", Print(L'\xC74D'));
}
@ -700,7 +713,7 @@ TEST(PrintStlContainerTest, NonEmptyDeque) {
TEST(PrintStlContainerTest, OneElementHashMap) {
hash_map<int, char> map1;
map1[1] = 'a';
EXPECT_EQ("{ (1, 'a' (97)) }", Print(map1));
EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1));
}
TEST(PrintStlContainerTest, HashMultiMap) {
@ -848,7 +861,7 @@ TEST(PrintTupleTest, VariousSizes) {
EXPECT_EQ("(5)", Print(t1));
tuple<char, bool> t2('a', true);
EXPECT_EQ("('a' (97), true)", Print(t2));
EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
tuple<bool, int, int> t3(false, 2, 3);
EXPECT_EQ("(false, 2, 3)", Print(t3));
@ -877,7 +890,7 @@ TEST(PrintTupleTest, VariousSizes) {
tuple<bool, char, short, testing::internal::Int32, // NOLINT
testing::internal::Int64, float, double, const char*, void*, string>
t10(false, 'a', 3, 4, 5, 1.5F, -2.5, str, NULL, "10");
EXPECT_EQ("(false, 'a' (97), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
" pointing to \"8\", NULL, \"10\")",
Print(t10));
}
@ -885,7 +898,7 @@ TEST(PrintTupleTest, VariousSizes) {
// Nested tuples.
TEST(PrintTupleTest, NestedTuple) {
tuple<tuple<int, bool>, char> nested(make_tuple(5, true), 'a');
EXPECT_EQ("((5, true), 'a' (97))", Print(nested));
EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
}
#endif // GTEST_HAS_TR1_TUPLE
@ -926,8 +939,9 @@ TEST(PrintUnpritableTypeTest, BigObject) {
// Streamable types in the global namespace.
TEST(PrintStreamableTypeTest, InGlobalNamespace) {
EXPECT_EQ("StreamableInGlobal",
Print(StreamableInGlobal()));
StreamableInGlobal x;
EXPECT_EQ("StreamableInGlobal", Print(x));
EXPECT_EQ("StreamableInGlobal*", Print(&x));
}
// Printable template types in a user namespace.
@ -942,6 +956,13 @@ TEST(PrintPrintableTypeTest, InUserNamespace) {
Print(::foo::PrintableViaPrintTo()));
}
// Tests printing a pointer to a user-defined type that has a <<
// operator for its pointer.
TEST(PrintPrintableTypeTest, PointerInUserNamespace) {
::foo::PointerPrintable x;
EXPECT_EQ("PointerPrintable*", Print(&x));
}
// Tests printing user-defined class template that have a PrintTo() function.
TEST(PrintPrintableTypeTest, TemplateInUserNamespace) {
EXPECT_EQ("PrintableViaPrintToTemplate: 5",
@ -1046,26 +1067,35 @@ TEST(PrintReferenceTest, HandlesMemberVariablePointer) {
"@" + PrintPointer(&p) + " " + Print(sizeof(p)) + "-byte object "));
}
// Useful for testing PrintToString(). We cannot use EXPECT_EQ()
// there as its implementation uses PrintToString(). The caller must
// ensure that 'value' has no side effect.
#define EXPECT_PRINT_TO_STRING_(value, expected_string) \
EXPECT_TRUE(PrintToString(value) == (expected_string)) \
<< " where " #value " prints as " << (PrintToString(value))
TEST(PrintToStringTest, WorksForScalar) {
EXPECT_EQ("123", PrintToString(123));
EXPECT_PRINT_TO_STRING_(123, "123");
}
TEST(PrintToStringTest, WorksForPointerToConstChar) {
const char* p = "hello";
EXPECT_EQ("\"hello\"", PrintToString(p));
EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
}
TEST(PrintToStringTest, WorksForPointerToNonConstChar) {
char s[] = "hello";
char* p = s;
EXPECT_EQ("\"hello\"", PrintToString(p));
EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
}
TEST(PrintToStringTest, WorksForArray) {
int n[3] = { 1, 2, 3 };
EXPECT_EQ("{ 1, 2, 3 }", PrintToString(n));
EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }");
}
#undef EXPECT_PRINT_TO_STRING_
TEST(UniversalTersePrintTest, WorksForNonReference) {
::std::stringstream ss;
UniversalTersePrint(123, &ss);
@ -1144,7 +1174,7 @@ TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsTwoTuple) {
Strings result = UniversalTersePrintTupleFieldsToStrings(make_tuple(1, 'a'));
ASSERT_EQ(2u, result.size());
EXPECT_EQ("1", result[0]);
EXPECT_EQ("'a' (97)", result[1]);
EXPECT_EQ("'a' (97, 0x61)", result[1]);
}
TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsTersely) {

View File

@ -418,7 +418,7 @@ Expected failure
[ RUN ] Unsigned/TypedTestP/0.Failure
gtest_output_test_.cc:#: Failure
Value of: TypeParam()
Actual: \0
Actual: '\0'
Expected: 1U
Which is: 1
Expected failure

View File

@ -375,7 +375,7 @@ Expected failure
[ OK ] Unsigned/TypedTestP/0.Success
[ RUN ] Unsigned/TypedTestP/0.Failure
gtest_output_test_.cc:#: error: Value of: TypeParam()
Actual: \0
Actual: '\0'
Expected: 1U
Which is: 1
Expected failure

View File

@ -4652,6 +4652,65 @@ TEST(EqAssertionTest, OtherPointer) {
"0x1234");
}
// A class that supports binary comparison operators but not streaming.
class UnprintableChar {
public:
explicit UnprintableChar(char ch) : char_(ch) {}
bool operator==(const UnprintableChar& rhs) const {
return char_ == rhs.char_;
}
bool operator!=(const UnprintableChar& rhs) const {
return char_ != rhs.char_;
}
bool operator<(const UnprintableChar& rhs) const {
return char_ < rhs.char_;
}
bool operator<=(const UnprintableChar& rhs) const {
return char_ <= rhs.char_;
}
bool operator>(const UnprintableChar& rhs) const {
return char_ > rhs.char_;
}
bool operator>=(const UnprintableChar& rhs) const {
return char_ >= rhs.char_;
}
private:
char char_;
};
// Tests that ASSERT_EQ() and friends don't require the arguments to
// be printable.
TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
const UnprintableChar x('x'), y('y');
ASSERT_EQ(x, x);
EXPECT_NE(x, y);
ASSERT_LT(x, y);
EXPECT_LE(x, y);
ASSERT_GT(y, x);
EXPECT_GE(x, x);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
// Code tested by EXPECT_FATAL_FAILURE cannot reference local
// variables, so we have to write UnprintableChar('x') instead of x.
EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
"1-byte object <78>");
EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
"1-byte object <78>");
EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
"1-byte object <79>");
EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
"1-byte object <78>");
EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
"1-byte object <79>");
}
// Tests the FRIEND_TEST macro.
// This class has a private member we want to test. We will test it