Googletest export

Some mechanical and grammatical fixes to the Primer.

PiperOrigin-RevId: 268200783
This commit is contained in:
Abseil Team 2019-09-10 08:04:39 -04:00 committed by Shaindel Schwartz
parent 3a45039862
commit 33a0d4f6d7

View File

@ -5,9 +5,9 @@
*googletest* helps you write better C++ tests.
googletest is a testing framework developed by the Testing Technology team with
Google's specific requirements and constraints in mind. No matter whether you
work on Linux, Windows, or a Mac, if you write C++ code, googletest can help
you. And it supports *any* kind of tests, not just unit tests.
Google's specific requirements and constraints in mind. Whether you work on
Linux, Windows, or a Mac, if you write C++ code, googletest can help you. And it
supports *any* kind of tests, not just unit tests.
So what makes a good test, and how does googletest fit in? We believe:
@ -21,7 +21,7 @@ So what makes a good test, and how does googletest fit in? We believe:
easy to maintain. Such consistency is especially helpful when people switch
projects and start to work on a new code base.
3. Tests should be *portable* and *reusable*. Google has a lot of code that is
platform-neutral, its tests should also be platform-neutral. googletest
platform-neutral; its tests should also be platform-neutral. googletest
works on different OSes, with different compilers, with or without
exceptions, so googletest tests can work with a variety of configurations.
4. When tests fail, they should provide as much *information* about the problem
@ -44,18 +44,17 @@ minutes to learn the basics and get started. So let's go!
## Beware of the nomenclature
_Note:_ There might be some confusion of idea due to different
definitions of the terms _Test_, _Test Case_ and _Test Suite_, so beware
of misunderstanding these.
_Note:_ There might be some confusion arising from different definitions of the
terms _Test_, _Test Case_ and _Test Suite_, so beware of misunderstanding these.
Historically, googletest started to use the term _Test Case_ for grouping
related tests, whereas current publications including the International Software
Testing Qualifications Board ([ISTQB](http://www.istqb.org/)) and various
textbooks on Software Quality use the term _[Test Suite][istqb test suite]_ for
this.
related tests, whereas current publications, including International Software
Testing Qualifications Board ([ISTQB](http://www.istqb.org/)) materials and
various textbooks on software quality, use the term
_[Test Suite][istqb test suite]_ for this.
The related term _Test_, as it is used in the googletest, is corresponding to
the term _[Test Case][istqb test case]_ of ISTQB and others.
The related term _Test_, as it is used in googletest, corresponds to the term
_[Test Case][istqb test case]_ of ISTQB and others.
The term _Test_ is commonly of broad enough sense, including ISTQB's definition
of _Test Case_, so it's not much of a problem here. But the term _Test Case_ as
@ -120,7 +119,7 @@ Depending on the nature of the leak, it may or may not be worth fixing - so keep
this in mind if you get a heap checker error in addition to assertion errors.
To provide a custom failure message, simply stream it into the macro using the
`<<` operator, or a sequence of such operators. An example:
`<<` operator or a sequence of such operators. An example:
```c++
ASSERT_EQ(x.size(), y.size()) << "Vectors x and y are of unequal length";
@ -166,16 +165,16 @@ Fatal assertion | Nonfatal assertion | Verifies
Value arguments must be comparable by the assertion's comparison operator or
you'll get a compiler error. We used to require the arguments to support the
`<<` operator for streaming to an `ostream`, but it's no longer necessary. If
`<<` operator for streaming to an `ostream`, but this is no longer necessary. If
`<<` is supported, it will be called to print the arguments when the assertion
fails; otherwise googletest will attempt to print them in the best way it can.
For more details and how to customize the printing of the arguments, see
[documentation](../../googlemock/docs/cook_book.md#teaching-gmock-how-to-print-your-values)
For more details and how to customize the printing of the arguments, see the
[documentation](../../googlemock/docs/cook_book.md#teaching-gmock-how-to-print-your-values).
These assertions can work with a user-defined type, but only if you define the
corresponding comparison operator (e.g. `==`, `<`, etc). Since this is
discouraged by the Google [C++ Style
Guide](https://google.github.io/styleguide/cppguide.html#Operator_Overloading),
corresponding comparison operator (e.g., `==` or `<`). Since this is discouraged
by the Google
[C++ Style Guide](https://google.github.io/styleguide/cppguide.html#Operator_Overloading),
you may need to use `ASSERT_TRUE()` or `EXPECT_TRUE()` to assert the equality of
two objects of a user-defined type.
@ -185,8 +184,8 @@ values on failure.
Arguments are always evaluated exactly once. Therefore, it's OK for the
arguments to have side effects. However, as with any ordinary C/C++ function,
the arguments' evaluation order is undefined (i.e. the compiler is free to
choose any order) and your code should not depend on any particular argument
the arguments' evaluation order is undefined (i.e., the compiler is free to
choose any order), and your code should not depend on any particular argument
evaluation order.
`ASSERT_EQ()` does pointer equality on pointers. If used on two C strings, it
@ -199,7 +198,7 @@ objects, you should use `ASSERT_EQ`.
When doing pointer comparisons use `*_EQ(ptr, nullptr)` and `*_NE(ptr, nullptr)`
instead of `*_EQ(ptr, NULL)` and `*_NE(ptr, NULL)`. This is because `nullptr` is
typed while `NULL` is not. See [FAQ](faq.md) for more details.
typed, while `NULL` is not. See the [FAQ](faq.md) for more details.
If you're working with floating point numbers, you may want to use the floating
point variations of some of these macros in order to avoid problems caused by
@ -246,7 +245,7 @@ Advanced googletest Guide.
To create a test:
1. Use the `TEST()` macro to define and name a test function, These are
1. Use the `TEST()` macro to define and name a test function. These are
ordinary C++ functions that don't return a value.
2. In this function, along with any valid C++ statements you want to include,
use the various googletest assertions to check values.
@ -263,7 +262,7 @@ TEST(TestSuiteName, TestName) {
`TEST()` arguments go from general to specific. The *first* argument is the name
of the test suite, and the *second* argument is the test's name within the test
case. Both names must be valid C++ identifiers, and they should not contain
underscore (`_`). A test's *full name* consists of its containing test suite and
any underscores (`_`). A test's *full name* consists of its containing test suite and
its individual name. Tests from different test suites can have the same
individual name.
@ -290,7 +289,7 @@ TEST(FactorialTest, HandlesPositiveInput) {
}
```
googletest groups the test results by test suites, so logically-related tests
googletest groups the test results by test suites, so logically related tests
should be in the same test suite; in other words, the first argument to their
`TEST()` should be the same. In the above example, we have two tests,
`HandlesZeroInput` and `HandlesPositiveInput`, that belong to the same test
@ -305,18 +304,18 @@ for
## Test Fixtures: Using the Same Data Configuration for Multiple Tests {#same-data-multiple-tests}
If you find yourself writing two or more tests that operate on similar data, you
can use a *test fixture*. It allows you to reuse the same configuration of
can use a *test fixture*. This allows you to reuse the same configuration of
objects for several different tests.
To create a fixture:
1. Derive a class from `::testing::Test` . Start its body with `protected:` as
1. Derive a class from `::testing::Test` . Start its body with `protected:`, as
we'll want to access fixture members from sub-classes.
2. Inside the class, declare any objects you plan to use.
3. If necessary, write a default constructor or `SetUp()` function to prepare
the objects for each test. A common mistake is to spell `SetUp()` as
**`Setup()`** with a small `u` - Use `override` in C++11 to make sure you
spelled it correctly
spelled it correctly.
4. If necessary, write a destructor or `TearDown()` function to release any
resources you allocated in `SetUp()` . To learn when you should use the
constructor/destructor and when you should use `SetUp()/TearDown()`, read
@ -447,7 +446,7 @@ different test suites, or even different source files.
When invoked, the `RUN_ALL_TESTS()` macro:
* Saves the state of all googletest flags
* Saves the state of all googletest flags.
* Creates a test fixture object for the first test.
@ -459,7 +458,7 @@ When invoked, the `RUN_ALL_TESTS()` macro:
* Deletes the fixture.
* Restores the state of all googletest flags
* Restores the state of all googletest flags.
* Repeats the above steps for the next test, until all tests have run.
@ -472,7 +471,7 @@ If a fatal failure happens the subsequent steps will be skipped.
> return the value of `RUN_ALL_TESTS()`.
>
> Also, you should call `RUN_ALL_TESTS()` only **once**. Calling it more than
> once conflicts with some advanced googletest features (e.g. thread-safe
> once conflicts with some advanced googletest features (e.g., thread-safe
> [death tests](advanced.md#death-tests)) and thus is not supported.
**Availability**: Linux, Windows, Mac.
@ -480,7 +479,7 @@ If a fatal failure happens the subsequent steps will be skipped.
## Writing the main() Function
Write your own main() function, which should return the value of
`RUN_ALL_TESTS()`
`RUN_ALL_TESTS()`.
You can start from this boilerplate:
@ -544,14 +543,14 @@ int main(int argc, char **argv) {
The `::testing::InitGoogleTest()` function parses the command line for
googletest flags, and removes all recognized flags. This allows the user to
control a test program's behavior via various flags, which we'll cover in
[AdvancedGuide](advanced.md). You **must** call this function before calling
the [AdvancedGuide](advanced.md). You **must** call this function before calling
`RUN_ALL_TESTS()`, or the flags won't be properly initialized.
On Windows, `InitGoogleTest()` also works with wide strings, so it can be used
in programs compiled in `UNICODE` mode as well.
But maybe you think that writing all those main() functions is too much work? We
agree with you completely and that's why Google Test provides a basic
agree with you completely, and that's why Google Test provides a basic
implementation of main(). If it fits your needs, then just link your test with
gtest\_main library and you are good to go.