googletest/include/gmock/internal/gmock-internal-utils.h

489 lines
19 KiB
C
Raw Normal View History

// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file defines some utilities useful for implementing Google
// Mock. They are subject to change without notice, so please DO NOT
// USE THEM IN USER CODE.
#ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
#define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
#include <stdio.h>
#include <ostream> // NOLINT
#include <string>
#include <gmock/internal/gmock-generated-internal-utils.h>
#include <gmock/internal/gmock-port.h>
#include <gtest/gtest.h>
// Concatenates two pre-processor symbols; works for concatenating
// built-in macros like __FILE__ and __LINE__.
#define GMOCK_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar
#define GMOCK_CONCAT_TOKEN_(foo, bar) GMOCK_CONCAT_TOKEN_IMPL_(foo, bar)
#ifdef __GNUC__
#define GMOCK_ATTRIBUTE_UNUSED_ __attribute__ ((unused))
#else
#define GMOCK_ATTRIBUTE_UNUSED_
#endif // __GNUC__
class ProtocolMessage;
namespace proto2 { class Message; }
namespace testing {
namespace internal {
2009-02-12 02:34:27 +01:00
// Converts an identifier name to a space-separated list of lower-case
// words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is
// treated as one word. For example, both "FooBar123" and
// "foo_bar_123" are converted to "foo bar 123".
string ConvertIdentifierNameToWords(const char* id_name);
// Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
// compiler error iff T1 and T2 are different types.
template <typename T1, typename T2>
struct CompileAssertTypesEqual;
template <typename T>
struct CompileAssertTypesEqual<T, T> {
};
// Removes the reference from a type if it is a reference type,
// otherwise leaves it unchanged. This is the same as
// tr1::remove_reference, which is not widely available yet.
template <typename T>
struct RemoveReference { typedef T type; }; // NOLINT
template <typename T>
struct RemoveReference<T&> { typedef T type; }; // NOLINT
// A handy wrapper around RemoveReference that works when the argument
// T depends on template parameters.
#define GMOCK_REMOVE_REFERENCE_(T) \
typename ::testing::internal::RemoveReference<T>::type
// Removes const from a type if it is a const type, otherwise leaves
// it unchanged. This is the same as tr1::remove_const, which is not
// widely available yet.
template <typename T>
struct RemoveConst { typedef T type; }; // NOLINT
template <typename T>
struct RemoveConst<const T> { typedef T type; }; // NOLINT
// A handy wrapper around RemoveConst that works when the argument
// T depends on template parameters.
#define GMOCK_REMOVE_CONST_(T) \
typename ::testing::internal::RemoveConst<T>::type
// Adds reference to a type if it is not a reference type,
// otherwise leaves it unchanged. This is the same as
// tr1::add_reference, which is not widely available yet.
template <typename T>
struct AddReference { typedef T& type; }; // NOLINT
template <typename T>
struct AddReference<T&> { typedef T& type; }; // NOLINT
// A handy wrapper around AddReference that works when the argument T
// depends on template parameters.
#define GMOCK_ADD_REFERENCE_(T) \
typename ::testing::internal::AddReference<T>::type
// Adds a reference to const on top of T as necessary. For example,
// it transforms
//
// char ==> const char&
// const char ==> const char&
// char& ==> const char&
// const char& ==> const char&
//
// The argument T must depend on some template parameters.
#define GMOCK_REFERENCE_TO_CONST_(T) \
GMOCK_ADD_REFERENCE_(const GMOCK_REMOVE_REFERENCE_(T))
// PointeeOf<Pointer>::type is the type of a value pointed to by a
// Pointer, which can be either a smart pointer or a raw pointer. The
// following default implementation is for the case where Pointer is a
// smart pointer.
template <typename Pointer>
struct PointeeOf {
// Smart pointer classes define type element_type as the type of
// their pointees.
typedef typename Pointer::element_type type;
};
// This specialization is for the raw pointer case.
template <typename T>
struct PointeeOf<T*> { typedef T type; }; // NOLINT
// GetRawPointer(p) returns the raw pointer underlying p when p is a
// smart pointer, or returns p itself when p is already a raw pointer.
// The following default implementation is for the smart pointer case.
template <typename Pointer>
inline typename Pointer::element_type* GetRawPointer(const Pointer& p) {
return p.get();
}
// This overloaded version is for the raw pointer case.
template <typename Element>
inline Element* GetRawPointer(Element* p) { return p; }
// This comparator allows linked_ptr to be stored in sets.
template <typename T>
struct LinkedPtrLessThan {
bool operator()(const ::testing::internal::linked_ptr<T>& lhs,
const ::testing::internal::linked_ptr<T>& rhs) const {
return lhs.get() < rhs.get();
}
};
// ImplicitlyConvertible<From, To>::value is a compile-time bool
// constant that's true iff type From can be implicitly converted to
// type To.
template <typename From, typename To>
class ImplicitlyConvertible {
private:
// We need the following helper functions only for their types.
// They have no implementations.
// MakeFrom() is an expression whose type is From. We cannot simply
// use From(), as the type From may not have a public default
// constructor.
static From MakeFrom();
// These two functions are overloaded. Given an expression
// Helper(x), the compiler will pick the first version if x can be
// implicitly converted to type To; otherwise it will pick the
// second version.
//
// The first version returns a value of size 1, and the second
// version returns a value of size 2. Therefore, by checking the
// size of Helper(x), which can be done at compile time, we can tell
// which version of Helper() is used, and hence whether x can be
// implicitly converted to type To.
static char Helper(To);
static char (&Helper(...))[2]; // NOLINT
// We have to put the 'public' section after the 'private' section,
// or MSVC refuses to compile the code.
public:
// MSVC warns about implicitly converting from double to int for
// possible loss of data, so we need to temporarily disable the
// warning.
#ifdef _MSC_VER
#pragma warning(push) // Saves the current warning state.
#pragma warning(disable:4244) // Temporarily disables warning 4244.
static const bool value =
sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
#pragma warning(pop) // Restores the warning state.
#else
static const bool value =
sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
#endif // _MSV_VER
};
template <typename From, typename To>
const bool ImplicitlyConvertible<From, To>::value;
// In what follows, we use the term "kind" to indicate whether a type
// is bool, an integer type (excluding bool), a floating-point type,
// or none of them. This categorization is useful for determining
// when a matcher argument type can be safely converted to another
// type in the implementation of SafeMatcherCast.
enum TypeKind {
kBool, kInteger, kFloatingPoint, kOther
};
// KindOf<T>::value is the kind of type T.
template <typename T> struct KindOf {
enum { value = kOther }; // The default kind.
};
// This macro declares that the kind of 'type' is 'kind'.
#define GMOCK_DECLARE_KIND_(type, kind) \
template <> struct KindOf<type> { enum { value = kind }; }
GMOCK_DECLARE_KIND_(bool, kBool);
// All standard integer types.
GMOCK_DECLARE_KIND_(char, kInteger);
GMOCK_DECLARE_KIND_(signed char, kInteger);
GMOCK_DECLARE_KIND_(unsigned char, kInteger);
GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT
GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT
GMOCK_DECLARE_KIND_(int, kInteger);
GMOCK_DECLARE_KIND_(unsigned int, kInteger);
GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT
GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT
// MSVC can be configured to define wchar_t as a typedef of unsigned
// short. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t is a
// native type.
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
GMOCK_DECLARE_KIND_(wchar_t, kInteger);
#endif
// Non-standard integer types.
GMOCK_DECLARE_KIND_(Int64, kInteger);
GMOCK_DECLARE_KIND_(UInt64, kInteger);
// All standard floating-point types.
GMOCK_DECLARE_KIND_(float, kFloatingPoint);
GMOCK_DECLARE_KIND_(double, kFloatingPoint);
GMOCK_DECLARE_KIND_(long double, kFloatingPoint);
#undef GMOCK_DECLARE_KIND_
// Evaluates to the kind of 'type'.
#define GMOCK_KIND_OF_(type) \
static_cast< ::testing::internal::TypeKind>( \
::testing::internal::KindOf<type>::value)
// Evaluates to true iff integer type T is signed.
#define GMOCK_IS_SIGNED_(T) (static_cast<T>(-1) < 0)
// LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value
// is true iff arithmetic type From can be losslessly converted to
// arithmetic type To.
//
// It's the user's responsibility to ensure that both From and To are
// raw (i.e. has no CV modifier, is not a pointer, and is not a
// reference) built-in arithmetic types, kFromKind is the kind of
// From, and kToKind is the kind of To; the value is
// implementation-defined when the above pre-condition is violated.
template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To>
struct LosslessArithmeticConvertibleImpl : public false_type {};
// Converting bool to bool is lossless.
template <>
struct LosslessArithmeticConvertibleImpl<kBool, bool, kBool, bool>
: public true_type {}; // NOLINT
// Converting bool to any integer type is lossless.
template <typename To>
struct LosslessArithmeticConvertibleImpl<kBool, bool, kInteger, To>
: public true_type {}; // NOLINT
// Converting bool to any floating-point type is lossless.
template <typename To>
struct LosslessArithmeticConvertibleImpl<kBool, bool, kFloatingPoint, To>
: public true_type {}; // NOLINT
// Converting an integer to bool is lossy.
template <typename From>
struct LosslessArithmeticConvertibleImpl<kInteger, From, kBool, bool>
: public false_type {}; // NOLINT
// Converting an integer to another non-bool integer is lossless iff
// the target type's range encloses the source type's range.
template <typename From, typename To>
struct LosslessArithmeticConvertibleImpl<kInteger, From, kInteger, To>
: public bool_constant<
// When converting from a smaller size to a larger size, we are
// fine as long as we are not converting from signed to unsigned.
((sizeof(From) < sizeof(To)) &&
(!GMOCK_IS_SIGNED_(From) || GMOCK_IS_SIGNED_(To))) ||
// When converting between the same size, the signedness must match.
((sizeof(From) == sizeof(To)) &&
(GMOCK_IS_SIGNED_(From) == GMOCK_IS_SIGNED_(To)))> {}; // NOLINT
#undef GMOCK_IS_SIGNED_
// Converting an integer to a floating-point type may be lossy, since
// the format of a floating-point number is implementation-defined.
template <typename From, typename To>
struct LosslessArithmeticConvertibleImpl<kInteger, From, kFloatingPoint, To>
: public false_type {}; // NOLINT
// Converting a floating-point to bool is lossy.
template <typename From>
struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kBool, bool>
: public false_type {}; // NOLINT
// Converting a floating-point to an integer is lossy.
template <typename From, typename To>
struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kInteger, To>
: public false_type {}; // NOLINT
// Converting a floating-point to another floating-point is lossless
// iff the target type is at least as big as the source type.
template <typename From, typename To>
struct LosslessArithmeticConvertibleImpl<
kFloatingPoint, From, kFloatingPoint, To>
: public bool_constant<sizeof(From) <= sizeof(To)> {}; // NOLINT
// LosslessArithmeticConvertible<From, To>::value is true iff arithmetic
// type From can be losslessly converted to arithmetic type To.
//
// It's the user's responsibility to ensure that both From and To are
// raw (i.e. has no CV modifier, is not a pointer, and is not a
// reference) built-in arithmetic types; the value is
// implementation-defined when the above pre-condition is violated.
template <typename From, typename To>
struct LosslessArithmeticConvertible
: public LosslessArithmeticConvertibleImpl<
GMOCK_KIND_OF_(From), From, GMOCK_KIND_OF_(To), To> {}; // NOLINT
// IsAProtocolMessage<T>::value is a compile-time bool constant that's
// true iff T is type ProtocolMessage, proto2::Message, or a subclass
// of those.
template <typename T>
struct IsAProtocolMessage
: public bool_constant<
ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
};
// When the compiler sees expression IsContainerTest<C>(0), the first
// overload of IsContainerTest will be picked if C is an STL-style
// container class (since C::const_iterator* is a valid type and 0 can
// be converted to it), while the second overload will be picked
// otherwise (since C::const_iterator will be an invalid type in this
// case). Therefore, we can determine whether C is a container class
// by checking the type of IsContainerTest<C>(0). The value of the
// expression is insignificant.
typedef int IsContainer;
template <class C>
IsContainer IsContainerTest(typename C::const_iterator*) { return 0; }
typedef char IsNotContainer;
template <class C>
IsNotContainer IsContainerTest(...) { return '\0'; }
// This interface knows how to report a Google Mock failure (either
// non-fatal or fatal).
class FailureReporterInterface {
public:
// The type of a failure (either non-fatal or fatal).
enum FailureType {
NONFATAL, FATAL
};
virtual ~FailureReporterInterface() {}
// Reports a failure that occurred at the given source file location.
virtual void ReportFailure(FailureType type, const char* file, int line,
const string& message) = 0;
};
// Returns the failure reporter used by Google Mock.
FailureReporterInterface* GetFailureReporter();
// Asserts that condition is true; aborts the process with the given
// message if condition is false. We cannot use LOG(FATAL) or CHECK()
// as Google Mock might be used to mock the log sink itself. We
// inline this function to prevent it from showing up in the stack
// trace.
inline void Assert(bool condition, const char* file, int line,
const string& msg) {
if (!condition) {
GetFailureReporter()->ReportFailure(FailureReporterInterface::FATAL,
file, line, msg);
}
}
inline void Assert(bool condition, const char* file, int line) {
Assert(condition, file, line, "Assertion failed.");
}
// Verifies that condition is true; generates a non-fatal failure if
// condition is false.
inline void Expect(bool condition, const char* file, int line,
const string& msg) {
if (!condition) {
GetFailureReporter()->ReportFailure(FailureReporterInterface::NONFATAL,
file, line, msg);
}
}
inline void Expect(bool condition, const char* file, int line) {
Expect(condition, file, line, "Expectation failed.");
}
// Severity level of a log.
enum LogSeverity {
INFO = 0,
WARNING = 1,
};
// Valid values for the --gmock_verbose flag.
// All logs (informational and warnings) are printed.
const char kInfoVerbosity[] = "info";
// Only warnings are printed.
const char kWarningVerbosity[] = "warning";
// No logs are printed.
const char kErrorVerbosity[] = "error";
// Returns true iff a log with the given severity is visible according
// to the --gmock_verbose flag.
bool LogIsVisible(LogSeverity severity);
// Prints the given message to stdout iff 'severity' >= the level
// specified by the --gmock_verbose flag. If stack_frames_to_skip >=
// 0, also prints the stack trace excluding the top
// stack_frames_to_skip frames. In opt mode, any positive
// stack_frames_to_skip is treated as 0, since we don't know which
// function calls will be inlined by the compiler and need to be
// conservative.
void Log(LogSeverity severity, const string& message, int stack_frames_to_skip);
// The universal value printer (public/gmock-printers.h) needs this
// to declare an unused << operator in the global namespace.
struct Unused {};
// TODO(wan@google.com): group all type utilities together.
// Type traits.
// is_reference<T>::value is non-zero iff T is a reference type.
template <typename T> struct is_reference : public false_type {};
template <typename T> struct is_reference<T&> : public true_type {};
// type_equals<T1, T2>::value is non-zero iff T1 and T2 are the same type.
template <typename T1, typename T2> struct type_equals : public false_type {};
template <typename T> struct type_equals<T, T> : public true_type {};
// remove_reference<T>::type removes the reference from type T, if any.
template <typename T> struct remove_reference { typedef T type; }; // NOLINT
template <typename T> struct remove_reference<T&> { typedef T type; }; // NOLINT
// Invalid<T>() returns an invalid value of type T. This is useful
// when a value of type T is needed for compilation, but the statement
// will not really be executed (or we don't care if the statement
// crashes).
template <typename T>
inline T Invalid() {
return *static_cast<typename remove_reference<T>::type*>(NULL);
}
template <>
inline void Invalid<void>() {}
} // namespace internal
} // namespace testing
#endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_