googletest/include/gmock/gmock-generated-actions.h.pump

836 lines
28 KiB
Plaintext
Raw Normal View History

$$ -*- mode: c++; -*-
$$ This is a Pump source file. Please use Pump to convert it to
$$ gmock-generated-variadic-actions.h.
$$
$var n = 10 $$ The maximum arity we support.
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used variadic actions.
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_
#include <gmock/gmock-actions.h>
#include <gmock/internal/gmock-port.h>
namespace testing {
namespace internal {
// InvokeHelper<F> knows how to unpack an N-tuple and invoke an N-ary
// function or method with the unpacked values, where F is a function
// type that takes N arguments.
template <typename Result, typename ArgumentTuple>
class InvokeHelper;
$range i 0..n
$for i [[
$range j 1..i
$var types = [[$for j [[, typename A$j]]]]
$var as = [[$for j, [[A$j]]]]
$var args = [[$if i==0 [[]] $else [[ args]]]]
$var import = [[$if i==0 [[]] $else [[
using ::std::tr1::get;
]]]]
$var gets = [[$for j, [[get<$(j - 1)>(args)]]]]
template <typename R$types>
class InvokeHelper<R, ::std::tr1::tuple<$as> > {
public:
template <typename Function>
static R Invoke(Function function, const ::std::tr1::tuple<$as>&$args) {
$import return function($gets);
}
template <class Class, typename MethodPtr>
static R InvokeMethod(Class* obj_ptr,
MethodPtr method_ptr,
const ::std::tr1::tuple<$as>&$args) {
$import return (obj_ptr->*method_ptr)($gets);
}
};
]]
// Implements the Invoke(f) action. The template argument
// FunctionImpl is the implementation type of f, which can be either a
// function pointer or a functor. Invoke(f) can be used as an
// Action<F> as long as f's type is compatible with F (i.e. f can be
// assigned to a tr1::function<F>).
template <typename FunctionImpl>
class InvokeAction {
public:
// The c'tor makes a copy of function_impl (either a function
// pointer or a functor).
explicit InvokeAction(FunctionImpl function_impl)
: function_impl_(function_impl) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
return InvokeHelper<Result, ArgumentTuple>::Invoke(function_impl_, args);
}
private:
FunctionImpl function_impl_;
};
// Implements the Invoke(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr>
class InvokeMethodAction {
public:
InvokeMethodAction(Class* obj_ptr, MethodPtr method_ptr)
: obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) const {
return InvokeHelper<Result, ArgumentTuple>::InvokeMethod(
obj_ptr_, method_ptr_, args);
}
private:
Class* const obj_ptr_;
const MethodPtr method_ptr_;
};
// A ReferenceWrapper<T> object represents a reference to type T,
// which can be either const or not. It can be explicitly converted
// from, and implicitly converted to, a T&. Unlike a reference,
// ReferenceWrapper<T> can be copied and can survive template type
// inference. This is used to support by-reference arguments in the
// InvokeArgument<N>(...) action. The idea was from "reference
// wrappers" in tr1, which we don't have in our source tree yet.
template <typename T>
class ReferenceWrapper {
public:
// Constructs a ReferenceWrapper<T> object from a T&.
explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT
// Allows a ReferenceWrapper<T> object to be implicitly converted to
// a T&.
operator T&() const { return *pointer_; }
private:
T* pointer_;
};
// CallableHelper has static methods for invoking "callables",
// i.e. function pointers and functors. It uses overloading to
// provide a uniform interface for invoking different kinds of
// callables. In particular, you can use:
//
// CallableHelper<R>::Call(callable, a1, a2, ..., an)
//
// to invoke an n-ary callable, where R is its return type. If an
// argument, say a2, needs to be passed by reference, you should write
// ByRef(a2) instead of a2 in the above expression.
template <typename R>
class CallableHelper {
public:
// Calls a nullary callable.
template <typename Function>
static R Call(Function function) { return function(); }
// Calls a unary callable.
// We deliberately pass a1 by value instead of const reference here
// in case it is a C-string literal. If we had declared the
// parameter as 'const A1& a1' and write Call(function, "Hi"), the
// compiler would've thought A1 is 'char[3]', which causes trouble
// when you need to copy a value of type A1. By declaring the
// parameter as 'A1 a1', the compiler will correctly infer that A1
// is 'const char*' when it sees Call(function, "Hi").
//
// Since this function is defined inline, the compiler can get rid
// of the copying of the arguments. Therefore the performance won't
// be hurt.
template <typename Function, typename A1>
static R Call(Function function, A1 a1) { return function(a1); }
$range i 2..n
$for i
[[
$var arity = [[$if i==2 [[binary]] $elif i==3 [[ternary]] $else [[$i-ary]]]]
// Calls a $arity callable.
$range j 1..i
$var typename_As = [[$for j, [[typename A$j]]]]
$var Aas = [[$for j, [[A$j a$j]]]]
$var as = [[$for j, [[a$j]]]]
$var typename_Ts = [[$for j, [[typename T$j]]]]
$var Ts = [[$for j, [[T$j]]]]
template <typename Function, $typename_As>
static R Call(Function function, $Aas) {
return function($as);
}
]]
}; // class CallableHelper
// Invokes a nullary callable argument.
template <size_t N>
class InvokeArgumentAction0 {
public:
template <typename Result, typename ArgumentTuple>
static Result Perform(const ArgumentTuple& args) {
return CallableHelper<Result>::Call(::std::tr1::get<N>(args));
}
};
// Invokes a unary callable argument with the given argument.
template <size_t N, typename A1>
class InvokeArgumentAction1 {
public:
// We deliberately pass a1 by value instead of const reference here
// in case it is a C-string literal.
//
// Since this function is defined inline, the compiler can get rid
// of the copying of the arguments. Therefore the performance won't
// be hurt.
explicit InvokeArgumentAction1(A1 a1) : arg1_(a1) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), arg1_);
}
private:
const A1 arg1_;
};
$range i 2..n
$for i [[
$var arity = [[$if i==2 [[binary]] $elif i==3 [[ternary]] $else [[$i-ary]]]]
$range j 1..i
$var typename_As = [[$for j, [[typename A$j]]]]
$var args_ = [[$for j, [[arg$j[[]]_]]]]
// Invokes a $arity callable argument with the given arguments.
template <size_t N, $typename_As>
class InvokeArgumentAction$i {
public:
InvokeArgumentAction$i($for j, [[A$j a$j]]) :
$for j, [[arg$j[[]]_(a$j)]] {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
$if i <= 4 [[
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), $args_);
]] $else [[
// We extract the callable to a variable before invoking it, in
// case it is a functor passed by value and its operator() is not
// const.
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function =
::std::tr1::get<N>(args);
return function($args_);
]]
}
private:
$for j [[
const A$j arg$j[[]]_;
]]
};
]]
// An INTERNAL macro for extracting the type of a tuple field. It's
// subject to change without notice - DO NOT USE IN USER CODE!
#define GMOCK_FIELD_(Tuple, N) \
typename ::std::tr1::tuple_element<N, Tuple>::type
$range i 1..n
// SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::type is the
// type of an n-ary function whose i-th (1-based) argument type is the
// k{i}-th (0-based) field of ArgumentTuple, which must be a tuple
// type, and whose return type is Result. For example,
// SelectArgs<int, ::std::tr1::tuple<bool, char, double, long>, 0, 3>::type
// is int(bool, long).
//
// SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::Select(args)
// returns the selected fields (k1, k2, ..., k_n) of args as a tuple.
// For example,
// SelectArgs<int, ::std::tr1::tuple<bool, char, double>, 2, 0>::Select(
// ::std::tr1::make_tuple(true, 'a', 2.5))
// returns ::std::tr1::tuple (2.5, true).
//
// The numbers in list k1, k2, ..., k_n must be >= 0, where n can be
// in the range [0, $n]. Duplicates are allowed and they don't have
// to be in an ascending or descending order.
template <typename Result, typename ArgumentTuple, $for i, [[int k$i]]>
class SelectArgs {
public:
typedef Result type($for i, [[GMOCK_FIELD_(ArgumentTuple, k$i)]]);
typedef typename Function<type>::ArgumentTuple SelectedArgs;
static SelectedArgs Select(const ArgumentTuple& args) {
using ::std::tr1::get;
return SelectedArgs($for i, [[get<k$i>(args)]]);
}
};
$for i [[
$range j 1..n
$range j1 1..i-1
template <typename Result, typename ArgumentTuple$for j1[[, int k$j1]]>
class SelectArgs<Result, ArgumentTuple,
$for j, [[$if j <= i-1 [[k$j]] $else [[-1]]]]> {
public:
typedef Result type($for j1, [[GMOCK_FIELD_(ArgumentTuple, k$j1)]]);
typedef typename Function<type>::ArgumentTuple SelectedArgs;
static SelectedArgs Select(const ArgumentTuple& [[]]
$if i == 1 [[/* args */]] $else [[args]]) {
using ::std::tr1::get;
return SelectedArgs($for j1, [[get<k$j1>(args)]]);
}
};
]]
#undef GMOCK_FIELD_
$var ks = [[$for i, [[k$i]]]]
// Implements the WithArgs action.
template <typename InnerAction, $for i, [[int k$i = -1]]>
class WithArgsAction {
public:
explicit WithArgsAction(const InnerAction& action) : action_(action) {}
template <typename F>
operator Action<F>() const { return MakeAction(new Impl<F>(action_)); }
private:
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const InnerAction& action) : action_(action) {}
virtual Result Perform(const ArgumentTuple& args) {
return action_.Perform(SelectArgs<Result, ArgumentTuple, $ks>::Select(args));
}
private:
typedef typename SelectArgs<Result, ArgumentTuple,
$ks>::type InnerFunctionType;
Action<InnerFunctionType> action_;
};
const InnerAction action_;
};
// Does two actions sequentially. Used for implementing the DoAll(a1,
// a2, ...) action.
template <typename Action1, typename Action2>
class DoBothAction {
public:
DoBothAction(Action1 action1, Action2 action2)
: action1_(action1), action2_(action2) {}
// This template type conversion operator allows DoAll(a1, ..., a_n)
// to be used in ANY function of compatible type.
template <typename F>
operator Action<F>() const {
return Action<F>(new Impl<F>(action1_, action2_));
}
private:
// Implements the DoAll(...) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
typedef typename Function<F>::MakeResultVoid VoidResult;
Impl(const Action<VoidResult>& action1, const Action<F>& action2)
: action1_(action1), action2_(action2) {}
virtual Result Perform(const ArgumentTuple& args) {
action1_.Perform(args);
return action2_.Perform(args);
}
private:
const Action<VoidResult> action1_;
const Action<F> action2_;
};
Action1 action1_;
Action2 action2_;
};
2009-01-09 22:43:57 +01:00
// A macro from the ACTION* family (defined later in this file)
// defines an action that can be used in a mock function. Typically,
// these actions only care about a subset of the arguments of the mock
// function. For example, if such an action only uses the second
// argument, it can be used in any mock function that takes >= 2
// arguments where the type of the second argument is compatible.
//
// Therefore, the action implementation must be prepared to take more
// arguments than it needs. The ExcessiveArg type is used to
// represent those excessive arguments. In order to keep the compiler
// error messages tractable, we define it in the testing namespace
// instead of testing::internal. However, this is an INTERNAL TYPE
// and subject to change without notice, so a user MUST NOT USE THIS
// TYPE DIRECTLY.
struct ExcessiveArg {};
// A helper class needed for implementing the ACTION* macros.
template <typename Result, class Impl>
class ActionHelper {
public:
$range i 0..n
$for i
[[
$var template = [[$if i==0 [[]] $else [[
$range j 0..i-1
template <$for j, [[typename A$j]]>
]]]]
$range j 0..i-1
$var As = [[$for j, [[A$j]]]]
$var as = [[$for j, [[get<$j>(args)]]]]
$range k 1..n-i
$var eas = [[$for k, [[ExcessiveArg()]]]]
$var arg_list = [[$if (i==0) | (i==n) [[$as$eas]] $else [[$as, $eas]]]]
$template
static Result Perform(Impl* impl, const ::std::tr1::tuple<$As>& args) {
using ::std::tr1::get;
return impl->template gmock_PerformImpl<$As>(args, $arg_list);
2009-01-09 22:43:57 +01:00
}
]]
};
} // namespace internal
// Various overloads for Invoke().
// Creates an action that invokes 'function_impl' with the mock
// function's arguments.
template <typename FunctionImpl>
PolymorphicAction<internal::InvokeAction<FunctionImpl> > Invoke(
FunctionImpl function_impl) {
return MakePolymorphicAction(
internal::InvokeAction<FunctionImpl>(function_impl));
}
// Creates an action that invokes the given method on the given object
// with the mock function's arguments.
template <class Class, typename MethodPtr>
PolymorphicAction<internal::InvokeMethodAction<Class, MethodPtr> > Invoke(
Class* obj_ptr, MethodPtr method_ptr) {
return MakePolymorphicAction(
internal::InvokeMethodAction<Class, MethodPtr>(obj_ptr, method_ptr));
}
// Creates a reference wrapper for the given L-value. If necessary,
// you can explicitly specify the type of the reference. For example,
// suppose 'derived' is an object of type Derived, ByRef(derived)
// would wrap a Derived&. If you want to wrap a const Base& instead,
// where Base is a base class of Derived, just write:
//
// ByRef<const Base>(derived)
template <typename T>
inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT
return internal::ReferenceWrapper<T>(l_value);
}
// Various overloads for InvokeArgument<N>().
//
// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
// (0-based) argument, which must be a k-ary callable, of the mock
// function, with arguments a1, a2, ..., a_k.
//
// Notes:
//
// 1. The arguments are passed by value by default. If you need to
// pass an argument by reference, wrap it inside ByRef(). For
// example,
//
// InvokeArgument<1>(5, string("Hello"), ByRef(foo))
//
// passes 5 and string("Hello") by value, and passes foo by
// reference.
//
// 2. If the callable takes an argument by reference but ByRef() is
// not used, it will receive the reference to a copy of the value,
// instead of the original value. For example, when the 0-th
// argument of the mock function takes a const string&, the action
//
// InvokeArgument<0>(string("Hello"))
//
// makes a copy of the temporary string("Hello") object and passes a
// reference of the copy, instead of the original temporary object,
// to the callable. This makes it easy for a user to define an
// InvokeArgument action from temporary values and have it performed
// later.
template <size_t N>
inline PolymorphicAction<internal::InvokeArgumentAction0<N> > InvokeArgument() {
return MakePolymorphicAction(internal::InvokeArgumentAction0<N>());
}
// We deliberately pass a1 by value instead of const reference here in
// case it is a C-string literal. If we had declared the parameter as
// 'const A1& a1' and write InvokeArgument<0>("Hi"), the compiler
// would've thought A1 is 'char[3]', which causes trouble as the
// implementation needs to copy a value of type A1. By declaring the
// parameter as 'A1 a1', the compiler will correctly infer that A1 is
// 'const char*' when it sees InvokeArgument<0>("Hi").
//
// Since this function is defined inline, the compiler can get rid of
// the copying of the arguments. Therefore the performance won't be
// hurt.
template <size_t N, typename A1>
inline PolymorphicAction<internal::InvokeArgumentAction1<N, A1> >
InvokeArgument(A1 a1) {
return MakePolymorphicAction(internal::InvokeArgumentAction1<N, A1>(a1));
}
$range i 2..n
$for i [[
$range j 1..i
$var typename_As = [[$for j, [[typename A$j]]]]
$var As = [[$for j, [[A$j]]]]
$var Aas = [[$for j, [[A$j a$j]]]]
$var as = [[$for j, [[a$j]]]]
template <size_t N, $typename_As>
inline PolymorphicAction<internal::InvokeArgumentAction$i<N, $As> >
InvokeArgument($Aas) {
return MakePolymorphicAction(
internal::InvokeArgumentAction$i<N, $As>($as));
}
]]
// WithoutArgs(inner_action) can be used in a mock function with a
// non-empty argument list to perform inner_action, which takes no
// argument. In other words, it adapts an action accepting no
// argument to one that accepts (and ignores) arguments.
template <typename InnerAction>
inline internal::WithArgsAction<InnerAction>
WithoutArgs(const InnerAction& action) {
return internal::WithArgsAction<InnerAction>(action);
}
// WithArg<k>(an_action) creates an action that passes the k-th
// (0-based) argument of the mock function to an_action and performs
// it. It adapts an action accepting one argument to one that accepts
// multiple arguments. For convenience, we also provide
// WithArgs<k>(an_action) (defined below) as a synonym.
template <int k, typename InnerAction>
inline internal::WithArgsAction<InnerAction, k>
WithArg(const InnerAction& action) {
return internal::WithArgsAction<InnerAction, k>(action);
}
// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
// the selected arguments of the mock function to an_action and
// performs it. It serves as an adaptor between actions with
// different argument lists. C++ doesn't support default arguments for
// function templates, so we have to overload it.
$range i 1..n
$for i [[
$range j 1..i
template <$for j [[int k$j, ]]typename InnerAction>
inline internal::WithArgsAction<InnerAction$for j [[, k$j]]>
WithArgs(const InnerAction& action) {
return internal::WithArgsAction<InnerAction$for j [[, k$j]]>(action);
}
]]
// Creates an action that does actions a1, a2, ..., sequentially in
// each invocation.
$range i 2..n
$for i [[
$range j 2..i
$var types = [[$for j, [[typename Action$j]]]]
$var Aas = [[$for j [[, Action$j a$j]]]]
template <typename Action1, $types>
$range k 1..i-1
inline $for k [[internal::DoBothAction<Action$k, ]]Action$i$for k [[>]]
DoAll(Action1 a1$Aas) {
$if i==2 [[
return internal::DoBothAction<Action1, Action2>(a1, a2);
]] $else [[
$range j2 2..i
return DoAll(a1, DoAll($for j2, [[a$j2]]));
]]
}
]]
} // namespace testing
2009-01-09 22:43:57 +01:00
// The ACTION* family of macros can be used in a namespace scope to
// define custom actions easily. The syntax:
//
// ACTION(name) { statements; }
//
// will define an action with the given name that executes the
// statements. The value returned by the statements will be used as
// the return value of the action. Inside the statements, you can
// refer to the K-th (0-based) argument of the mock function by
// 'argK', and refer to its type by 'argK_type'. For example:
//
// ACTION(IncrementArg1) {
// arg1_type temp = arg1;
// return ++(*temp);
// }
//
// allows you to write
//
// ...WillOnce(IncrementArg1());
//
// You can also refer to the entire argument tuple and its type by
// 'args' and 'args_type', and refer to the mock function type and its
// return type by 'function_type' and 'return_type'.
//
// Note that you don't need to specify the types of the mock function
// arguments. However rest assured that your code is still type-safe:
// you'll get a compiler error if *arg1 doesn't support the ++
// operator, or if the type of ++(*arg1) isn't compatible with the
// mock function's return type, for example.
//
// Sometimes you'll want to parameterize the action. For that you can use
// another macro:
//
// ACTION_P(name, param_name) { statements; }
//
// For example:
//
// ACTION_P(Add, n) { return arg0 + n; }
//
// will allow you to write:
//
// ...WillOnce(Add(5));
//
// Note that you don't need to provide the type of the parameter
// either. If you need to reference the type of a parameter named
// 'foo', you can write 'foo_type'. For example, in the body of
// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
// of 'n'.
//
// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P$n to support
// multi-parameter actions.
//
// For the purpose of typing, you can view
//
// ACTION_Pk(Foo, p1, ..., pk) { ... }
//
// as shorthand for
//
// template <typename p1_type, ..., typename pk_type>
// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
//
// In particular, you can provide the template type arguments
// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
// although usually you can rely on the compiler to infer the types
// for you automatically. You can assign the result of expression
// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
// pk_type>. This can be useful when composing actions.
//
// You can also overload actions with different numbers of parameters:
//
// ACTION_P(Plus, a) { ... }
// ACTION_P2(Plus, a, b) { ... }
//
// While it's tempting to always use the ACTION* macros when defining
// a new action, you should also consider implementing ActionInterface
// or using MakePolymorphicAction() instead, especially if you need to
// use the action a lot. While these approaches require more work,
// they give you more control on the types of the mock function
// arguments and the action parameters, which in general leads to
// better compiler error messages that pay off in the long run. They
// also allow overloading actions based on parameter types (as opposed
// to just based on the number of parameters).
//
// CAVEAT:
//
// ACTION*() can only be used in a namespace scope. The reason is
// that C++ doesn't yet allow function-local types to be used to
// instantiate templates. The up-coming C++0x standard will fix this.
// Once that's done, we'll consider supporting using ACTION*() inside
// a function.
//
// MORE INFORMATION:
//
// To learn more about using these macros, please search for 'ACTION'
// on http://code.google.com/p/googlemock/wiki/CookBook.
$range i 0..n
$range k 0..n-1
// An internal macro needed for implementing ACTION*().
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_\
const args_type& args GTEST_ATTRIBUTE_UNUSED_
$for k [[,\
arg$k[[]]_type arg$k GTEST_ATTRIBUTE_UNUSED_]]
2009-01-09 22:43:57 +01:00
$for i
[[
$var template = [[$if i==0 [[]] $else [[
$range j 0..i-1
template <$for j, [[typename p$j##_type]]>\
]]]]
$var class_name = [[name##Action[[$if i==0 [[]] $elif i==1 [[P]]
$else [[P$i]]]]]]
$range j 0..i-1
$var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]]
$var param_types_and_names = [[$for j, [[p$j##_type p$j]]]]
$var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]]
$var param_field_decls = [[$for j
2009-01-09 22:43:57 +01:00
[[
p$j##_type p$j;\
2009-01-09 22:43:57 +01:00
]]]]
$var param_field_decls2 = [[$for j
2009-01-09 22:43:57 +01:00
[[
p$j##_type p$j;\
2009-01-09 22:43:57 +01:00
]]]]
$var params = [[$for j, [[p$j]]]]
$var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]]
$var typename_arg_types = [[$for k, [[typename arg$k[[]]_type]]]]
$var arg_types_and_names = [[$for k, [[arg$k[[]]_type arg$k]]]]
$var macro_name = [[$if i==0 [[ACTION]] $elif i==1 [[ACTION_P]]
$else [[ACTION_P$i]]]]
#define $macro_name(name$for j [[, p$j]])\$template
class $class_name {\
public:\
$class_name($ctor_param_list)$inits {}\
template <typename F>\
class gmock_Impl : public ::testing::ActionInterface<F> {\
public:\
typedef F function_type;\
typedef typename ::testing::internal::Function<F>::Result return_type;\
typedef typename ::testing::internal::Function<F>::ArgumentTuple\
args_type;\
[[$if i==1 [[explicit ]]]]gmock_Impl($ctor_param_list)$inits {}\
virtual return_type Perform(const args_type& args) {\
return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
Perform(this, args);\
}\
template <$typename_arg_types>\
return_type gmock_PerformImpl(const args_type& args, [[]]
$arg_types_and_names) const;\$param_field_decls
2009-01-09 22:43:57 +01:00
};\
template <typename F> operator ::testing::Action<F>() const {\
return ::testing::Action<F>(new gmock_Impl<F>($params));\
}\$param_field_decls2
2009-01-09 22:43:57 +01:00
};\$template
inline $class_name$param_types name($param_types_and_names) {\
return $class_name$param_types($params);\
}\$template
template <typename F>\
template <$typename_arg_types>\
typename ::testing::internal::Function<F>::Result\
$class_name$param_types::gmock_Impl<F>::gmock_PerformImpl(\
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2009-01-09 22:43:57 +01:00
]]
$$ } // This meta comment fixes auto-indentation in Emacs. It won't
$$ // show up in the generated code.
2009-01-09 22:43:57 +01:00
// TODO(wan@google.com): move the following to a different .h file
// such that we don't have to run 'pump' every time the code is
// updated.
2009-02-06 02:09:43 +01:00
namespace testing {
namespace internal {
// Saves argument #0 to where the pointer points.
ACTION_P(SaveArg0, pointer) { *pointer = arg0; }
// Assigns 'value' to the variable referenced by argument #0.
ACTION_P(SetArg0Referee, value) {
// Ensures that argument #0 is a reference. If you get a compiler
// error on the next line, you are using SetArgReferee<k>(value) in
// a mock function whose k-th (0-based) argument is not a reference.
GMOCK_COMPILE_ASSERT_(internal::is_reference<arg0_type>::value,
SetArgReferee_must_be_used_with_a_reference_argument);
arg0 = value;
}
} // namespace internal
// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
// mock function to *pointer.
template <int k, typename Pointer>
inline internal::WithArgsAction<internal::SaveArg0ActionP<Pointer>, k>
SaveArg(const Pointer& pointer) {
return WithArg<k>(internal::SaveArg0(pointer));
}
// Action SetArgReferee<k>(value) assigns 'value' to the variable
// referenced by the k-th (0-based) argument of the mock function.
template <int k, typename Value>
inline internal::WithArgsAction<internal::SetArg0RefereeActionP<Value>, k>
SetArgReferee(const Value& value) {
return WithArg<k>(internal::SetArg0Referee(value));
}
2009-02-06 02:09:43 +01:00
// Action Throw(exception) can be used in a mock function of any type
// to throw the given exception. Any copyable value can be thrown.
#if GTEST_HAS_EXCEPTIONS
ACTION_P(Throw, exception) { throw exception; }
#endif // GTEST_HAS_EXCEPTIONS
} // namespace testing
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_