googletest/include/gmock/gmock-actions.h

970 lines
33 KiB
C
Raw Normal View History

// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used actions.
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#include <algorithm>
#include <string>
2009-03-11 23:37:56 +00:00
#ifndef _WIN32_WCE
#include <errno.h>
2009-03-11 23:37:56 +00:00
#endif
#include <gmock/gmock-printers.h>
#include <gmock/internal/gmock-internal-utils.h>
#include <gmock/internal/gmock-port.h>
namespace testing {
// To implement an action Foo, define:
// 1. a class FooAction that implements the ActionInterface interface, and
// 2. a factory function that creates an Action object from a
// const FooAction*.
//
// The two-level delegation design follows that of Matcher, providing
// consistency for extension developers. It also eases ownership
// management as Action objects can now be copied like plain values.
namespace internal {
template <typename F>
class MonomorphicDoDefaultActionImpl;
template <typename F1, typename F2>
class ActionAdaptor;
// BuiltInDefaultValue<T>::Get() returns the "built-in" default
// value for type T, which is NULL when T is a pointer type, 0 when T
// is a numeric type, false when T is bool, or "" when T is string or
// std::string. For any other type T, this value is undefined and the
// function will abort the process.
template <typename T>
class BuiltInDefaultValue {
public:
// This function returns true iff type T has a built-in default value.
static bool Exists() { return false; }
static T Get() {
Assert(false, __FILE__, __LINE__,
"Default action undefined for the function return type.");
return internal::Invalid<T>();
// The above statement will never be reached, but is required in
// order for this function to compile.
}
};
// This partial specialization says that we use the same built-in
// default value for T and const T.
template <typename T>
class BuiltInDefaultValue<const T> {
public:
static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
static T Get() { return BuiltInDefaultValue<T>::Get(); }
};
// This partial specialization defines the default values for pointer
// types.
template <typename T>
class BuiltInDefaultValue<T*> {
public:
static bool Exists() { return true; }
static T* Get() { return NULL; }
};
// The following specializations define the default values for
// specific types we care about.
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
template <> \
class BuiltInDefaultValue<type> { \
public: \
static bool Exists() { return true; } \
static type Get() { return value; } \
}
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
#if GTEST_HAS_GLOBAL_STRING
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
#endif // GTEST_HAS_GLOBAL_STRING
#if GTEST_HAS_STD_STRING
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
#endif // GTEST_HAS_STD_STRING
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
// signed wchar_t and unsigned wchar_t are NOT in the C++ standard.
// Using them is a bad practice and not portable. So don't use them.
//
// Still, Google Mock is designed to work even if the user uses signed
// wchar_t or unsigned wchar_t (obviously, assuming the compiler
// supports them).
//
// To gcc,
//
// wchar_t == signed wchar_t != unsigned wchar_t == unsigned int
//
// MSVC does not recognize signed wchar_t or unsigned wchar_t. It
// treats wchar_t as a native type usually, but treats it as the same
// as unsigned short when the compiler option /Zc:wchar_t- is
// specified.
//
// Therefore we provide a default action for wchar_t when compiled
// with gcc or _NATIVE_WCHAR_T_DEFINED is defined.
//
// There's no need for a default action for signed wchar_t, as that
// type is the same as wchar_t for gcc, and invalid for MSVC.
//
// There's also no need for a default action for unsigned wchar_t, as
// that type is the same as unsigned int for gcc, and invalid for
// MSVC.
#if defined(__GNUC__) || defined(_NATIVE_WCHAR_T_DEFINED)
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
#endif
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
} // namespace internal
// When an unexpected function call is encountered, Google Mock will
// let it return a default value if the user has specified one for its
// return type, or if the return type has a built-in default value;
// otherwise Google Mock won't know what value to return and will have
// to abort the process.
//
// The DefaultValue<T> class allows a user to specify the
// default value for a type T that is both copyable and publicly
// destructible (i.e. anything that can be used as a function return
// type). The usage is:
//
// // Sets the default value for type T to be foo.
// DefaultValue<T>::Set(foo);
template <typename T>
class DefaultValue {
public:
// Sets the default value for type T; requires T to be
// copy-constructable and have a public destructor.
static void Set(T x) {
delete value_;
value_ = new T(x);
}
// Unsets the default value for type T.
static void Clear() {
delete value_;
value_ = NULL;
}
// Returns true iff the user has set the default value for type T.
static bool IsSet() { return value_ != NULL; }
// Returns true if T has a default return value set by the user or there
// exists a built-in default value.
static bool Exists() {
return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
}
// Returns the default value for type T if the user has set one;
// otherwise returns the built-in default value if there is one;
// otherwise aborts the process.
static T Get() {
return value_ == NULL ?
internal::BuiltInDefaultValue<T>::Get() : *value_;
}
private:
static const T* value_;
};
// This partial specialization allows a user to set default values for
// reference types.
template <typename T>
class DefaultValue<T&> {
public:
// Sets the default value for type T&.
static void Set(T& x) { // NOLINT
address_ = &x;
}
// Unsets the default value for type T&.
static void Clear() {
address_ = NULL;
}
// Returns true iff the user has set the default value for type T&.
static bool IsSet() { return address_ != NULL; }
// Returns true if T has a default return value set by the user or there
// exists a built-in default value.
static bool Exists() {
return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
}
// Returns the default value for type T& if the user has set one;
// otherwise returns the built-in default value if there is one;
// otherwise aborts the process.
static T& Get() {
return address_ == NULL ?
internal::BuiltInDefaultValue<T&>::Get() : *address_;
}
private:
static T* address_;
};
// This specialization allows DefaultValue<void>::Get() to
// compile.
template <>
class DefaultValue<void> {
public:
static bool Exists() { return true; }
static void Get() {}
};
// Points to the user-set default value for type T.
template <typename T>
const T* DefaultValue<T>::value_ = NULL;
// Points to the user-set default value for type T&.
template <typename T>
T* DefaultValue<T&>::address_ = NULL;
// Implement this interface to define an action for function type F.
template <typename F>
class ActionInterface {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
ActionInterface() : is_do_default_(false) {}
virtual ~ActionInterface() {}
// Performs the action. This method is not const, as in general an
// action can have side effects and be stateful. For example, a
// get-the-next-element-from-the-collection action will need to
// remember the current element.
virtual Result Perform(const ArgumentTuple& args) = 0;
// Returns true iff this is the DoDefault() action.
bool IsDoDefault() const { return is_do_default_; }
private:
template <typename Function>
friend class internal::MonomorphicDoDefaultActionImpl;
// This private constructor is reserved for implementing
// DoDefault(), the default action for a given mock function.
explicit ActionInterface(bool is_do_default)
: is_do_default_(is_do_default) {}
// True iff this action is DoDefault().
const bool is_do_default_;
};
// An Action<F> is a copyable and IMMUTABLE (except by assignment)
// object that represents an action to be taken when a mock function
// of type F is called. The implementation of Action<T> is just a
// linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
// Don't inherit from Action!
//
// You can view an object implementing ActionInterface<F> as a
// concrete action (including its current state), and an Action<F>
// object as a handle to it.
template <typename F>
class Action {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
// Constructs a null Action. Needed for storing Action objects in
// STL containers.
Action() : impl_(NULL) {}
// Constructs an Action from its implementation.
explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
// Copy constructor.
Action(const Action& action) : impl_(action.impl_) {}
// This constructor allows us to turn an Action<Func> object into an
// Action<F>, as long as F's arguments can be implicitly converted
// to Func's and Func's return type cann be implicitly converted to
// F's.
template <typename Func>
explicit Action(const Action<Func>& action);
// Returns true iff this is the DoDefault() action.
bool IsDoDefault() const { return impl_->IsDoDefault(); }
// Performs the action. Note that this method is const even though
// the corresponding method in ActionInterface is not. The reason
// is that a const Action<F> means that it cannot be re-bound to
// another concrete action, not that the concrete action it binds to
// cannot change state. (Think of the difference between a const
// pointer and a pointer to const.)
Result Perform(const ArgumentTuple& args) const {
return impl_->Perform(args);
}
private:
template <typename F1, typename F2>
friend class internal::ActionAdaptor;
internal::linked_ptr<ActionInterface<F> > impl_;
};
// The PolymorphicAction class template makes it easy to implement a
// polymorphic action (i.e. an action that can be used in mock
// functions of than one type, e.g. Return()).
//
// To define a polymorphic action, a user first provides a COPYABLE
// implementation class that has a Perform() method template:
//
// class FooAction {
// public:
// template <typename Result, typename ArgumentTuple>
// Result Perform(const ArgumentTuple& args) const {
// // Processes the arguments and returns a result, using
// // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
// }
// ...
// };
//
// Then the user creates the polymorphic action using
// MakePolymorphicAction(object) where object has type FooAction. See
// the definition of Return(void) and SetArgumentPointee<N>(value) for
// complete examples.
template <typename Impl>
class PolymorphicAction {
public:
explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
template <typename F>
operator Action<F>() const {
return Action<F>(new MonomorphicImpl<F>(impl_));
}
private:
template <typename F>
class MonomorphicImpl : public ActionInterface<F> {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
virtual Result Perform(const ArgumentTuple& args) {
return impl_.template Perform<Result>(args);
}
private:
Impl impl_;
};
Impl impl_;
};
// Creates an Action from its implementation and returns it. The
// created Action object owns the implementation.
template <typename F>
Action<F> MakeAction(ActionInterface<F>* impl) {
return Action<F>(impl);
}
// Creates a polymorphic action from its implementation. This is
// easier to use than the PolymorphicAction<Impl> constructor as it
// doesn't require you to explicitly write the template argument, e.g.
//
// MakePolymorphicAction(foo);
// vs
// PolymorphicAction<TypeOfFoo>(foo);
template <typename Impl>
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
return PolymorphicAction<Impl>(impl);
}
namespace internal {
// Allows an Action<F2> object to pose as an Action<F1>, as long as F2
// and F1 are compatible.
template <typename F1, typename F2>
class ActionAdaptor : public ActionInterface<F1> {
public:
typedef typename internal::Function<F1>::Result Result;
typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
virtual Result Perform(const ArgumentTuple& args) {
return impl_->Perform(args);
}
private:
const internal::linked_ptr<ActionInterface<F2> > impl_;
};
// Implements the polymorphic Return(x) action, which can be used in
// any function that returns the type of x, regardless of the argument
// types.
template <typename R>
class ReturnAction {
public:
// Constructs a ReturnAction object from the value to be returned.
// 'value' is passed by value instead of by const reference in order
// to allow Return("string literal") to compile.
explicit ReturnAction(R value) : value_(value) {}
// This template type conversion operator allows Return(x) to be
// used in ANY function that returns x's type.
template <typename F>
operator Action<F>() const {
// Assert statement belongs here because this is the best place to verify
// conditions on F. It produces the clearest error messages
// in most compilers.
// Impl really belongs in this scope as a local class but can't
// because MSVC produces duplicate symbols in different translation units
// in this case. Until MS fixes that bug we put Impl into the class scope
// and put the typedef both here (for use in assert statement) and
// in the Impl class. But both definitions must be the same.
typedef typename Function<F>::Result Result;
GMOCK_COMPILE_ASSERT_(
!internal::is_reference<Result>::value,
use_ReturnRef_instead_of_Return_to_return_a_reference);
return Action<F>(new Impl<F>(value_));
}
private:
// Implements the Return(x) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(R value) : value_(value) {}
virtual Result Perform(const ArgumentTuple&) { return value_; }
private:
R value_;
};
R value_;
};
// Implements the ReturnNull() action.
class ReturnNullAction {
public:
// Allows ReturnNull() to be used in any pointer-returning function.
template <typename Result, typename ArgumentTuple>
static Result Perform(const ArgumentTuple&) {
GMOCK_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
ReturnNull_can_be_used_to_return_a_pointer_only);
return NULL;
}
};
// Implements the Return() action.
class ReturnVoidAction {
public:
// Allows Return() to be used in any void-returning function.
template <typename Result, typename ArgumentTuple>
static void Perform(const ArgumentTuple&) {
CompileAssertTypesEqual<void, Result>();
}
};
// Implements the polymorphic ReturnRef(x) action, which can be used
// in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefAction {
public:
// Constructs a ReturnRefAction object from the reference to be returned.
explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
// This template type conversion operator allows ReturnRef(x) to be
// used in ANY function that returns a reference to x's type.
template <typename F>
operator Action<F>() const {
typedef typename Function<F>::Result Result;
// Asserts that the function return type is a reference. This
// catches the user error of using ReturnRef(x) when Return(x)
// should be used, and generates some helpful error message.
GMOCK_COMPILE_ASSERT_(internal::is_reference<Result>::value,
use_Return_instead_of_ReturnRef_to_return_a_value);
return Action<F>(new Impl<F>(ref_));
}
private:
// Implements the ReturnRef(x) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(T& ref) : ref_(ref) {} // NOLINT
virtual Result Perform(const ArgumentTuple&) {
return ref_;
}
private:
T& ref_;
};
T& ref_;
};
// Implements the DoDefault() action for a particular function type F.
template <typename F>
class MonomorphicDoDefaultActionImpl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
MonomorphicDoDefaultActionImpl() : ActionInterface<F>(true) {}
// For technical reasons, DoDefault() cannot be used inside a
// composite action (e.g. DoAll(...)). It can only be used at the
// top level in an EXPECT_CALL(). If this function is called, the
// user must be using DoDefault() inside a composite action, and we
// have to generate a run-time error.
virtual Result Perform(const ArgumentTuple&) {
Assert(false, __FILE__, __LINE__,
"You are using DoDefault() inside a composite action like "
"DoAll() or WithArgs(). This is not supported for technical "
"reasons. Please instead spell out the default action, or "
"assign the default action to an Action variable and use "
"the variable in various places.");
return internal::Invalid<Result>();
// The above statement will never be reached, but is required in
// order for this function to compile.
}
};
// Implements the polymorphic DoDefault() action.
class DoDefaultAction {
public:
// This template type conversion operator allows DoDefault() to be
// used in any function.
template <typename F>
operator Action<F>() const {
return Action<F>(new MonomorphicDoDefaultActionImpl<F>);
}
};
// Implements the Assign action to set a given pointer referent to a
// particular value.
template <typename T1, typename T2>
class AssignAction {
public:
AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
template <typename Result, typename ArgumentTuple>
void Perform(const ArgumentTuple& /* args */) const {
*ptr_ = value_;
}
private:
T1* const ptr_;
const T2 value_;
};
#if !GTEST_OS_WINDOWS_MOBILE
2009-03-11 23:37:56 +00:00
// Implements the SetErrnoAndReturn action to simulate return from
// various system calls and libc functions.
template <typename T>
class SetErrnoAndReturnAction {
public:
SetErrnoAndReturnAction(int errno_value, T result)
: errno_(errno_value),
result_(result) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) const {
errno = errno_;
return result_;
}
private:
const int errno_;
const T result_;
};
#endif // !GTEST_OS_WINDOWS_MOBILE
2009-03-11 23:37:56 +00:00
// Implements the SetArgumentPointee<N>(x) action for any function
// whose N-th argument (0-based) is a pointer to x's type. The
// template parameter kIsProto is true iff type A is ProtocolMessage,
// proto2::Message, or a sub-class of those.
template <size_t N, typename A, bool kIsProto>
class SetArgumentPointeeAction {
public:
// Constructs an action that sets the variable pointed to by the
// N-th function argument to 'value'.
explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
template <typename Result, typename ArgumentTuple>
void Perform(const ArgumentTuple& args) const {
CompileAssertTypesEqual<void, Result>();
*::std::tr1::get<N>(args) = value_;
}
private:
const A value_;
};
template <size_t N, typename Proto>
class SetArgumentPointeeAction<N, Proto, true> {
public:
// Constructs an action that sets the variable pointed to by the
// N-th function argument to 'proto'. Both ProtocolMessage and
// proto2::Message have the CopyFrom() method, so the same
// implementation works for both.
explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
proto_->CopyFrom(proto);
}
template <typename Result, typename ArgumentTuple>
void Perform(const ArgumentTuple& args) const {
CompileAssertTypesEqual<void, Result>();
::std::tr1::get<N>(args)->CopyFrom(*proto_);
}
private:
const internal::linked_ptr<Proto> proto_;
};
// Implements the InvokeWithoutArgs(f) action. The template argument
// FunctionImpl is the implementation type of f, which can be either a
// function pointer or a functor. InvokeWithoutArgs(f) can be used as an
// Action<F> as long as f's type is compatible with F (i.e. f can be
// assigned to a tr1::function<F>).
template <typename FunctionImpl>
class InvokeWithoutArgsAction {
public:
// The c'tor makes a copy of function_impl (either a function
// pointer or a functor).
explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
: function_impl_(function_impl) {}
// Allows InvokeWithoutArgs(f) to be used as any action whose type is
// compatible with f.
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple&) { return function_impl_(); }
private:
FunctionImpl function_impl_;
};
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr>
class InvokeMethodWithoutArgsAction {
public:
InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
: obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple&) const {
return (obj_ptr_->*method_ptr_)();
}
private:
Class* const obj_ptr_;
const MethodPtr method_ptr_;
};
// Implements the IgnoreResult(action) action.
template <typename A>
class IgnoreResultAction {
public:
explicit IgnoreResultAction(const A& action) : action_(action) {}
template <typename F>
operator Action<F>() const {
// Assert statement belongs here because this is the best place to verify
// conditions on F. It produces the clearest error messages
// in most compilers.
// Impl really belongs in this scope as a local class but can't
// because MSVC produces duplicate symbols in different translation units
// in this case. Until MS fixes that bug we put Impl into the class scope
// and put the typedef both here (for use in assert statement) and
// in the Impl class. But both definitions must be the same.
typedef typename internal::Function<F>::Result Result;
// Asserts at compile time that F returns void.
CompileAssertTypesEqual<void, Result>();
return Action<F>(new Impl<F>(action_));
}
private:
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const A& action) : action_(action) {}
virtual void Perform(const ArgumentTuple& args) {
// Performs the action and ignores its result.
action_.Perform(args);
}
private:
// Type OriginalFunction is the same as F except that its return
// type is IgnoredValue.
typedef typename internal::Function<F>::MakeResultIgnoredValue
OriginalFunction;
const Action<OriginalFunction> action_;
};
const A action_;
};
// A ReferenceWrapper<T> object represents a reference to type T,
// which can be either const or not. It can be explicitly converted
// from, and implicitly converted to, a T&. Unlike a reference,
// ReferenceWrapper<T> can be copied and can survive template type
// inference. This is used to support by-reference arguments in the
// InvokeArgument<N>(...) action. The idea was from "reference
// wrappers" in tr1, which we don't have in our source tree yet.
template <typename T>
class ReferenceWrapper {
public:
// Constructs a ReferenceWrapper<T> object from a T&.
explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT
// Allows a ReferenceWrapper<T> object to be implicitly converted to
// a T&.
operator T&() const { return *pointer_; }
private:
T* pointer_;
};
// Allows the expression ByRef(x) to be printed as a reference to x.
template <typename T>
void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
T& value = ref;
UniversalPrinter<T&>::Print(value, os);
}
// Does two actions sequentially. Used for implementing the DoAll(a1,
// a2, ...) action.
template <typename Action1, typename Action2>
class DoBothAction {
public:
DoBothAction(Action1 action1, Action2 action2)
: action1_(action1), action2_(action2) {}
// This template type conversion operator allows DoAll(a1, ..., a_n)
// to be used in ANY function of compatible type.
template <typename F>
operator Action<F>() const {
return Action<F>(new Impl<F>(action1_, action2_));
}
private:
// Implements the DoAll(...) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
typedef typename Function<F>::MakeResultVoid VoidResult;
Impl(const Action<VoidResult>& action1, const Action<F>& action2)
: action1_(action1), action2_(action2) {}
virtual Result Perform(const ArgumentTuple& args) {
action1_.Perform(args);
return action2_.Perform(args);
}
private:
const Action<VoidResult> action1_;
const Action<F> action2_;
};
Action1 action1_;
Action2 action2_;
};
} // namespace internal
// An Unused object can be implicitly constructed from ANY value.
// This is handy when defining actions that ignore some or all of the
// mock function arguments. For example, given
//
// MOCK_METHOD3(Foo, double(const string& label, double x, double y));
// MOCK_METHOD3(Bar, double(int index, double x, double y));
//
// instead of
//
// double DistanceToOriginWithLabel(const string& label, double x, double y) {
// return sqrt(x*x + y*y);
// }
// double DistanceToOriginWithIndex(int index, double x, double y) {
// return sqrt(x*x + y*y);
// }
// ...
// EXEPCT_CALL(mock, Foo("abc", _, _))
// .WillOnce(Invoke(DistanceToOriginWithLabel));
// EXEPCT_CALL(mock, Bar(5, _, _))
// .WillOnce(Invoke(DistanceToOriginWithIndex));
//
// you could write
//
// // We can declare any uninteresting argument as Unused.
// double DistanceToOrigin(Unused, double x, double y) {
// return sqrt(x*x + y*y);
// }
// ...
// EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
// EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
typedef internal::IgnoredValue Unused;
// This constructor allows us to turn an Action<From> object into an
// Action<To>, as long as To's arguments can be implicitly converted
// to From's and From's return type cann be implicitly converted to
// To's.
template <typename To>
template <typename From>
Action<To>::Action(const Action<From>& from)
: impl_(new internal::ActionAdaptor<To, From>(from)) {}
// Creates an action that returns 'value'. 'value' is passed by value
// instead of const reference - otherwise Return("string literal")
// will trigger a compiler error about using array as initializer.
template <typename R>
internal::ReturnAction<R> Return(R value) {
return internal::ReturnAction<R>(value);
}
// Creates an action that returns NULL.
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
return MakePolymorphicAction(internal::ReturnNullAction());
}
// Creates an action that returns from a void function.
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
return MakePolymorphicAction(internal::ReturnVoidAction());
}
// Creates an action that returns the reference to a variable.
template <typename R>
inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
return internal::ReturnRefAction<R>(x);
}
// Creates an action that does the default action for the give mock function.
inline internal::DoDefaultAction DoDefault() {
return internal::DoDefaultAction();
}
// Creates an action that sets the variable pointed by the N-th
// (0-based) function argument to 'value'.
template <size_t N, typename T>
PolymorphicAction<
internal::SetArgumentPointeeAction<
N, T, internal::IsAProtocolMessage<T>::value> >
SetArgumentPointee(const T& x) {
return MakePolymorphicAction(internal::SetArgumentPointeeAction<
N, T, internal::IsAProtocolMessage<T>::value>(x));
}
// Creates an action that sets a pointer referent to a given value.
template <typename T1, typename T2>
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
}
#if !GTEST_OS_WINDOWS_MOBILE
2009-03-11 23:37:56 +00:00
// Creates an action that sets errno and returns the appropriate error.
template <typename T>
PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
SetErrnoAndReturn(int errval, T result) {
return MakePolymorphicAction(
internal::SetErrnoAndReturnAction<T>(errval, result));
}
#endif // !GTEST_OS_WINDOWS_MOBILE
2009-03-11 23:37:56 +00:00
// Various overloads for InvokeWithoutArgs().
// Creates an action that invokes 'function_impl' with no argument.
template <typename FunctionImpl>
PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
InvokeWithoutArgs(FunctionImpl function_impl) {
return MakePolymorphicAction(
internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
}
// Creates an action that invokes the given method on the given object
// with no argument.
template <class Class, typename MethodPtr>
PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
return MakePolymorphicAction(
internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
obj_ptr, method_ptr));
}
// Creates an action that performs an_action and throws away its
// result. In other words, it changes the return type of an_action to
// void. an_action MUST NOT return void, or the code won't compile.
template <typename A>
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
return internal::IgnoreResultAction<A>(an_action);
}
// Creates a reference wrapper for the given L-value. If necessary,
// you can explicitly specify the type of the reference. For example,
// suppose 'derived' is an object of type Derived, ByRef(derived)
// would wrap a Derived&. If you want to wrap a const Base& instead,
// where Base is a base class of Derived, just write:
//
// ByRef<const Base>(derived)
template <typename T>
inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT
return internal::ReferenceWrapper<T>(l_value);
}
} // namespace testing
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_