f20b67173c
This commit abandons the way the specifications state to quantize the coefficients, makes use of the new LPC float functions and is much better. The original way of converting non-normalized float samples to int32_t which out LPC system expects was wrong and it was wrong to assume the coefficients that are generated are also valid. It was essentially a full garbage-in, garbage-out system and it definitely shows when looking at spectrals and listening. The high frequencies were very overattenuated. The new LPC function performs the analysis directly. The specifications state to quantize the coefficients into four bit index values using an asin() function which of course had to have ugly ternary operators because the function turns negative if the coefficients are negative which when encoding causes invalid bitstream to get generated. This deviates from this by using the direct TNS tables, which are fairly small since you only have 4 bits at most for index values. The LPC values are directly quantized against the tables and are then used to perform filtering after the requantization, which simply fetches the array values. The end result is that TNS works much better now and doesn't attenuate anything but the actual signal, e.g. TNS removes quantization errors and does it's job correctly now. It might be enabled by default soon since it doesn't hurt and helps reduce nastyness at low bitrates. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
1024 lines
40 KiB
C
1024 lines
40 KiB
C
/*
|
|
* AAC coefficients encoder
|
|
* Copyright (C) 2008-2009 Konstantin Shishkov
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* AAC coefficients encoder
|
|
*/
|
|
|
|
/***********************************
|
|
* TODOs:
|
|
* speedup quantizer selection
|
|
* add sane pulse detection
|
|
***********************************/
|
|
|
|
#include "libavutil/libm.h" // brought forward to work around cygwin header breakage
|
|
|
|
#include <float.h>
|
|
#include "libavutil/mathematics.h"
|
|
#include "avcodec.h"
|
|
#include "put_bits.h"
|
|
#include "aac.h"
|
|
#include "aacenc.h"
|
|
#include "aactab.h"
|
|
#include "aacenctab.h"
|
|
#include "aacenc_utils.h"
|
|
#include "aacenc_quantization.h"
|
|
#include "aac_tablegen_decl.h"
|
|
|
|
#include "aacenc_is.h"
|
|
#include "aacenc_tns.h"
|
|
#include "aacenc_pred.h"
|
|
|
|
/** Frequency in Hz for lower limit of noise substitution **/
|
|
#define NOISE_LOW_LIMIT 4500
|
|
|
|
/* Energy spread threshold value below which no PNS is used, this corresponds to
|
|
* typically around 17Khz, after which PNS usage decays ending at 19Khz */
|
|
#define NOISE_SPREAD_THRESHOLD 0.5f
|
|
|
|
/* This constant gets divided by lambda to return ~1.65 which when multiplied
|
|
* by the band->threshold and compared to band->energy is the boundary between
|
|
* excessive PNS and little PNS usage. */
|
|
#define NOISE_LAMBDA_NUMERATOR 252.1f
|
|
|
|
/**
|
|
* structure used in optimal codebook search
|
|
*/
|
|
typedef struct BandCodingPath {
|
|
int prev_idx; ///< pointer to the previous path point
|
|
float cost; ///< path cost
|
|
int run;
|
|
} BandCodingPath;
|
|
|
|
/**
|
|
* Encode band info for single window group bands.
|
|
*/
|
|
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
|
|
int win, int group_len, const float lambda)
|
|
{
|
|
BandCodingPath path[120][CB_TOT_ALL];
|
|
int w, swb, cb, start, size;
|
|
int i, j;
|
|
const int max_sfb = sce->ics.max_sfb;
|
|
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
|
|
const int run_esc = (1 << run_bits) - 1;
|
|
int idx, ppos, count;
|
|
int stackrun[120], stackcb[120], stack_len;
|
|
float next_minrd = INFINITY;
|
|
int next_mincb = 0;
|
|
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
start = win*128;
|
|
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
|
path[0][cb].cost = 0.0f;
|
|
path[0][cb].prev_idx = -1;
|
|
path[0][cb].run = 0;
|
|
}
|
|
for (swb = 0; swb < max_sfb; swb++) {
|
|
size = sce->ics.swb_sizes[swb];
|
|
if (sce->zeroes[win*16 + swb]) {
|
|
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
|
path[swb+1][cb].prev_idx = cb;
|
|
path[swb+1][cb].cost = path[swb][cb].cost;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
}
|
|
} else {
|
|
float minrd = next_minrd;
|
|
int mincb = next_mincb;
|
|
next_minrd = INFINITY;
|
|
next_mincb = 0;
|
|
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
|
float cost_stay_here, cost_get_here;
|
|
float rd = 0.0f;
|
|
if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] ||
|
|
cb < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) {
|
|
path[swb+1][cb].prev_idx = -1;
|
|
path[swb+1][cb].cost = INFINITY;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
continue;
|
|
}
|
|
for (w = 0; w < group_len; w++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
|
|
rd += quantize_band_cost(s, &sce->coeffs[start + w*128],
|
|
&s->scoefs[start + w*128], size,
|
|
sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
|
|
lambda / band->threshold, INFINITY, NULL, 0);
|
|
}
|
|
cost_stay_here = path[swb][cb].cost + rd;
|
|
cost_get_here = minrd + rd + run_bits + 4;
|
|
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
|
|
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
|
|
cost_stay_here += run_bits;
|
|
if (cost_get_here < cost_stay_here) {
|
|
path[swb+1][cb].prev_idx = mincb;
|
|
path[swb+1][cb].cost = cost_get_here;
|
|
path[swb+1][cb].run = 1;
|
|
} else {
|
|
path[swb+1][cb].prev_idx = cb;
|
|
path[swb+1][cb].cost = cost_stay_here;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
}
|
|
if (path[swb+1][cb].cost < next_minrd) {
|
|
next_minrd = path[swb+1][cb].cost;
|
|
next_mincb = cb;
|
|
}
|
|
}
|
|
}
|
|
start += sce->ics.swb_sizes[swb];
|
|
}
|
|
|
|
//convert resulting path from backward-linked list
|
|
stack_len = 0;
|
|
idx = 0;
|
|
for (cb = 1; cb < CB_TOT_ALL; cb++)
|
|
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
|
|
idx = cb;
|
|
ppos = max_sfb;
|
|
while (ppos > 0) {
|
|
av_assert1(idx >= 0);
|
|
cb = idx;
|
|
stackrun[stack_len] = path[ppos][cb].run;
|
|
stackcb [stack_len] = cb;
|
|
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
|
|
ppos -= path[ppos][cb].run;
|
|
stack_len++;
|
|
}
|
|
//perform actual band info encoding
|
|
start = 0;
|
|
for (i = stack_len - 1; i >= 0; i--) {
|
|
cb = aac_cb_out_map[stackcb[i]];
|
|
put_bits(&s->pb, 4, cb);
|
|
count = stackrun[i];
|
|
memset(sce->zeroes + win*16 + start, !cb, count);
|
|
//XXX: memset when band_type is also uint8_t
|
|
for (j = 0; j < count; j++) {
|
|
sce->band_type[win*16 + start] = cb;
|
|
start++;
|
|
}
|
|
while (count >= run_esc) {
|
|
put_bits(&s->pb, run_bits, run_esc);
|
|
count -= run_esc;
|
|
}
|
|
put_bits(&s->pb, run_bits, count);
|
|
}
|
|
}
|
|
|
|
static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
|
|
int win, int group_len, const float lambda)
|
|
{
|
|
BandCodingPath path[120][CB_TOT_ALL];
|
|
int w, swb, cb, start, size;
|
|
int i, j;
|
|
const int max_sfb = sce->ics.max_sfb;
|
|
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
|
|
const int run_esc = (1 << run_bits) - 1;
|
|
int idx, ppos, count;
|
|
int stackrun[120], stackcb[120], stack_len;
|
|
float next_minbits = INFINITY;
|
|
int next_mincb = 0;
|
|
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
start = win*128;
|
|
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
|
path[0][cb].cost = run_bits+4;
|
|
path[0][cb].prev_idx = -1;
|
|
path[0][cb].run = 0;
|
|
}
|
|
for (swb = 0; swb < max_sfb; swb++) {
|
|
size = sce->ics.swb_sizes[swb];
|
|
if (sce->zeroes[win*16 + swb]) {
|
|
float cost_stay_here = path[swb][0].cost;
|
|
float cost_get_here = next_minbits + run_bits + 4;
|
|
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][0].run]
|
|
!= run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1])
|
|
cost_stay_here += run_bits;
|
|
if (cost_get_here < cost_stay_here) {
|
|
path[swb+1][0].prev_idx = next_mincb;
|
|
path[swb+1][0].cost = cost_get_here;
|
|
path[swb+1][0].run = 1;
|
|
} else {
|
|
path[swb+1][0].prev_idx = 0;
|
|
path[swb+1][0].cost = cost_stay_here;
|
|
path[swb+1][0].run = path[swb][0].run + 1;
|
|
}
|
|
next_minbits = path[swb+1][0].cost;
|
|
next_mincb = 0;
|
|
for (cb = 1; cb < CB_TOT_ALL; cb++) {
|
|
path[swb+1][cb].cost = 61450;
|
|
path[swb+1][cb].prev_idx = -1;
|
|
path[swb+1][cb].run = 0;
|
|
}
|
|
} else {
|
|
float minbits = next_minbits;
|
|
int mincb = next_mincb;
|
|
int startcb = sce->band_type[win*16+swb];
|
|
startcb = aac_cb_in_map[startcb];
|
|
next_minbits = INFINITY;
|
|
next_mincb = 0;
|
|
for (cb = 0; cb < startcb; cb++) {
|
|
path[swb+1][cb].cost = 61450;
|
|
path[swb+1][cb].prev_idx = -1;
|
|
path[swb+1][cb].run = 0;
|
|
}
|
|
for (cb = startcb; cb < CB_TOT_ALL; cb++) {
|
|
float cost_stay_here, cost_get_here;
|
|
float bits = 0.0f;
|
|
if (cb >= 12 && sce->band_type[win*16+swb] != aac_cb_out_map[cb]) {
|
|
path[swb+1][cb].cost = 61450;
|
|
path[swb+1][cb].prev_idx = -1;
|
|
path[swb+1][cb].run = 0;
|
|
continue;
|
|
}
|
|
for (w = 0; w < group_len; w++) {
|
|
bits += quantize_band_cost(s, &sce->coeffs[start + w*128],
|
|
&s->scoefs[start + w*128], size,
|
|
sce->sf_idx[win*16+swb],
|
|
aac_cb_out_map[cb],
|
|
0, INFINITY, NULL, 0);
|
|
}
|
|
cost_stay_here = path[swb][cb].cost + bits;
|
|
cost_get_here = minbits + bits + run_bits + 4;
|
|
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
|
|
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
|
|
cost_stay_here += run_bits;
|
|
if (cost_get_here < cost_stay_here) {
|
|
path[swb+1][cb].prev_idx = mincb;
|
|
path[swb+1][cb].cost = cost_get_here;
|
|
path[swb+1][cb].run = 1;
|
|
} else {
|
|
path[swb+1][cb].prev_idx = cb;
|
|
path[swb+1][cb].cost = cost_stay_here;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
}
|
|
if (path[swb+1][cb].cost < next_minbits) {
|
|
next_minbits = path[swb+1][cb].cost;
|
|
next_mincb = cb;
|
|
}
|
|
}
|
|
}
|
|
start += sce->ics.swb_sizes[swb];
|
|
}
|
|
|
|
//convert resulting path from backward-linked list
|
|
stack_len = 0;
|
|
idx = 0;
|
|
for (cb = 1; cb < CB_TOT_ALL; cb++)
|
|
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
|
|
idx = cb;
|
|
ppos = max_sfb;
|
|
while (ppos > 0) {
|
|
av_assert1(idx >= 0);
|
|
cb = idx;
|
|
stackrun[stack_len] = path[ppos][cb].run;
|
|
stackcb [stack_len] = cb;
|
|
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
|
|
ppos -= path[ppos][cb].run;
|
|
stack_len++;
|
|
}
|
|
//perform actual band info encoding
|
|
start = 0;
|
|
for (i = stack_len - 1; i >= 0; i--) {
|
|
cb = aac_cb_out_map[stackcb[i]];
|
|
put_bits(&s->pb, 4, cb);
|
|
count = stackrun[i];
|
|
memset(sce->zeroes + win*16 + start, !cb, count);
|
|
//XXX: memset when band_type is also uint8_t
|
|
for (j = 0; j < count; j++) {
|
|
sce->band_type[win*16 + start] = cb;
|
|
start++;
|
|
}
|
|
while (count >= run_esc) {
|
|
put_bits(&s->pb, run_bits, run_esc);
|
|
count -= run_esc;
|
|
}
|
|
put_bits(&s->pb, run_bits, count);
|
|
}
|
|
}
|
|
|
|
typedef struct TrellisPath {
|
|
float cost;
|
|
int prev;
|
|
} TrellisPath;
|
|
|
|
#define TRELLIS_STAGES 121
|
|
#define TRELLIS_STATES (SCALE_MAX_DIFF+1)
|
|
|
|
static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
|
|
{
|
|
int w, g, start = 0;
|
|
int minscaler_n = sce->sf_idx[0], minscaler_i = sce->sf_idx[0];
|
|
int bands = 0;
|
|
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = 0;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
|
|
sce->sf_idx[w*16+g] = av_clip(ceilf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
|
|
minscaler_i = FFMIN(minscaler_i, sce->sf_idx[w*16+g]);
|
|
bands++;
|
|
} else if (sce->band_type[w*16+g] == NOISE_BT) {
|
|
sce->sf_idx[w*16+g] = av_clip(4+log2f(sce->pns_ener[w*16+g])*2, -100, 155);
|
|
minscaler_n = FFMIN(minscaler_n, sce->sf_idx[w*16+g]);
|
|
bands++;
|
|
}
|
|
start += sce->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
|
|
if (!bands)
|
|
return;
|
|
|
|
/* Clip the scalefactor indices */
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
|
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_i, minscaler_i + SCALE_MAX_DIFF);
|
|
} else if (sce->band_type[w*16+g] == NOISE_BT) {
|
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_n, minscaler_n + SCALE_MAX_DIFF);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int q, w, w2, g, start = 0;
|
|
int i, j;
|
|
int idx;
|
|
TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
|
|
int bandaddr[TRELLIS_STAGES];
|
|
int minq;
|
|
float mincost;
|
|
float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
|
|
int q0, q1, qcnt = 0;
|
|
|
|
for (i = 0; i < 1024; i++) {
|
|
float t = fabsf(sce->coeffs[i]);
|
|
if (t > 0.0f) {
|
|
q0f = FFMIN(q0f, t);
|
|
q1f = FFMAX(q1f, t);
|
|
qnrgf += t*t;
|
|
qcnt++;
|
|
}
|
|
}
|
|
|
|
if (!qcnt) {
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
|
memset(sce->zeroes, 1, sizeof(sce->zeroes));
|
|
return;
|
|
}
|
|
|
|
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
|
|
q0 = coef2minsf(q0f);
|
|
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
|
|
q1 = coef2maxsf(q1f);
|
|
if (q1 - q0 > 60) {
|
|
int q0low = q0;
|
|
int q1high = q1;
|
|
//minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
|
|
int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
|
|
q1 = qnrg + 30;
|
|
q0 = qnrg - 30;
|
|
if (q0 < q0low) {
|
|
q1 += q0low - q0;
|
|
q0 = q0low;
|
|
} else if (q1 > q1high) {
|
|
q0 -= q1 - q1high;
|
|
q1 = q1high;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < TRELLIS_STATES; i++) {
|
|
paths[0][i].cost = 0.0f;
|
|
paths[0][i].prev = -1;
|
|
}
|
|
for (j = 1; j < TRELLIS_STAGES; j++) {
|
|
for (i = 0; i < TRELLIS_STATES; i++) {
|
|
paths[j][i].cost = INFINITY;
|
|
paths[j][i].prev = -2;
|
|
}
|
|
}
|
|
idx = 1;
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *coefs = &sce->coeffs[start];
|
|
float qmin, qmax;
|
|
int nz = 0;
|
|
|
|
bandaddr[idx] = w * 16 + g;
|
|
qmin = INT_MAX;
|
|
qmax = 0.0f;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
if (band->energy <= band->threshold || band->threshold == 0.0f) {
|
|
sce->zeroes[(w+w2)*16+g] = 1;
|
|
continue;
|
|
}
|
|
sce->zeroes[(w+w2)*16+g] = 0;
|
|
nz = 1;
|
|
for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
|
|
float t = fabsf(coefs[w2*128+i]);
|
|
if (t > 0.0f)
|
|
qmin = FFMIN(qmin, t);
|
|
qmax = FFMAX(qmax, t);
|
|
}
|
|
}
|
|
if (nz) {
|
|
int minscale, maxscale;
|
|
float minrd = INFINITY;
|
|
float maxval;
|
|
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
|
|
minscale = coef2minsf(qmin);
|
|
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
|
|
maxscale = coef2maxsf(qmax);
|
|
minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
|
|
maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
|
|
maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
|
|
for (q = minscale; q < maxscale; q++) {
|
|
float dist = 0;
|
|
int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
|
|
q + q0, cb, lambda / band->threshold, INFINITY, NULL, 0);
|
|
}
|
|
minrd = FFMIN(minrd, dist);
|
|
|
|
for (i = 0; i < q1 - q0; i++) {
|
|
float cost;
|
|
cost = paths[idx - 1][i].cost + dist
|
|
+ ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
|
|
if (cost < paths[idx][q].cost) {
|
|
paths[idx][q].cost = cost;
|
|
paths[idx][q].prev = i;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (q = 0; q < q1 - q0; q++) {
|
|
paths[idx][q].cost = paths[idx - 1][q].cost + 1;
|
|
paths[idx][q].prev = q;
|
|
}
|
|
}
|
|
sce->zeroes[w*16+g] = !nz;
|
|
start += sce->ics.swb_sizes[g];
|
|
idx++;
|
|
}
|
|
}
|
|
idx--;
|
|
mincost = paths[idx][0].cost;
|
|
minq = 0;
|
|
for (i = 1; i < TRELLIS_STATES; i++) {
|
|
if (paths[idx][i].cost < mincost) {
|
|
mincost = paths[idx][i].cost;
|
|
minq = i;
|
|
}
|
|
}
|
|
while (idx) {
|
|
sce->sf_idx[bandaddr[idx]] = minq + q0;
|
|
minq = paths[idx][minq].prev;
|
|
idx--;
|
|
}
|
|
//set the same quantizers inside window groups
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
|
|
for (g = 0; g < sce->ics.num_swb; g++)
|
|
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
|
|
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
|
|
}
|
|
|
|
/**
|
|
* two-loop quantizers search taken from ISO 13818-7 Appendix C
|
|
*/
|
|
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
|
|
AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int start = 0, i, w, w2, g;
|
|
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
|
|
float dists[128] = { 0 }, uplims[128] = { 0 };
|
|
float maxvals[128];
|
|
int fflag, minscaler;
|
|
int its = 0;
|
|
int allz = 0;
|
|
float minthr = INFINITY;
|
|
|
|
// for values above this the decoder might end up in an endless loop
|
|
// due to always having more bits than what can be encoded.
|
|
destbits = FFMIN(destbits, 5800);
|
|
//XXX: some heuristic to determine initial quantizers will reduce search time
|
|
//determine zero bands and upper limits
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
int nz = 0;
|
|
float uplim = 0.0f, energy = 0.0f;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
uplim += band->threshold;
|
|
energy += band->energy;
|
|
if (band->energy <= band->threshold || band->threshold == 0.0f) {
|
|
sce->zeroes[(w+w2)*16+g] = 1;
|
|
continue;
|
|
}
|
|
nz = 1;
|
|
}
|
|
uplims[w*16+g] = uplim *512;
|
|
sce->zeroes[w*16+g] = !nz;
|
|
if (nz)
|
|
minthr = FFMIN(minthr, uplim);
|
|
allz |= nz;
|
|
}
|
|
}
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
if (sce->zeroes[w*16+g]) {
|
|
sce->sf_idx[w*16+g] = SCALE_ONE_POS;
|
|
continue;
|
|
}
|
|
sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
|
|
}
|
|
}
|
|
|
|
if (!allz)
|
|
return;
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *scaled = s->scoefs + start;
|
|
maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
|
|
start += sce->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
|
|
//perform two-loop search
|
|
//outer loop - improve quality
|
|
do {
|
|
int tbits, qstep;
|
|
minscaler = sce->sf_idx[0];
|
|
//inner loop - quantize spectrum to fit into given number of bits
|
|
qstep = its ? 1 : 32;
|
|
do {
|
|
int prev = -1;
|
|
tbits = 0;
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *coefs = &sce->coeffs[start];
|
|
const float *scaled = &s->scoefs[start];
|
|
int bits = 0;
|
|
int cb;
|
|
float dist = 0.0f;
|
|
|
|
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
|
|
start += sce->ics.swb_sizes[g];
|
|
continue;
|
|
}
|
|
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
|
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
int b;
|
|
dist += quantize_band_cost(s, coefs + w2*128,
|
|
scaled + w2*128,
|
|
sce->ics.swb_sizes[g],
|
|
sce->sf_idx[w*16+g],
|
|
cb,
|
|
1.0f,
|
|
INFINITY,
|
|
&b,
|
|
0);
|
|
bits += b;
|
|
}
|
|
dists[w*16+g] = dist - bits;
|
|
if (prev != -1) {
|
|
bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
|
|
}
|
|
tbits += bits;
|
|
start += sce->ics.swb_sizes[g];
|
|
prev = sce->sf_idx[w*16+g];
|
|
}
|
|
}
|
|
if (tbits > destbits) {
|
|
for (i = 0; i < 128; i++)
|
|
if (sce->sf_idx[i] < 218 - qstep)
|
|
sce->sf_idx[i] += qstep;
|
|
} else {
|
|
for (i = 0; i < 128; i++)
|
|
if (sce->sf_idx[i] > 60 - qstep)
|
|
sce->sf_idx[i] -= qstep;
|
|
}
|
|
qstep >>= 1;
|
|
if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
|
|
qstep = 1;
|
|
} while (qstep);
|
|
|
|
fflag = 0;
|
|
minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
|
|
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
int prevsc = sce->sf_idx[w*16+g];
|
|
if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
|
|
if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
|
|
sce->sf_idx[w*16+g]--;
|
|
else //Try to make sure there is some energy in every band
|
|
sce->sf_idx[w*16+g]-=2;
|
|
}
|
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
|
|
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
|
|
if (sce->sf_idx[w*16+g] != prevsc)
|
|
fflag = 1;
|
|
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
|
}
|
|
}
|
|
its++;
|
|
} while (fflag && its < 10);
|
|
}
|
|
|
|
static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int start = 0, i, w, w2, g;
|
|
float uplim[128], maxq[128];
|
|
int minq, maxsf;
|
|
float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
|
|
int last = 0, lastband = 0, curband = 0;
|
|
float avg_energy = 0.0;
|
|
if (sce->ics.num_windows == 1) {
|
|
start = 0;
|
|
for (i = 0; i < 1024; i++) {
|
|
if (i - start >= sce->ics.swb_sizes[curband]) {
|
|
start += sce->ics.swb_sizes[curband];
|
|
curband++;
|
|
}
|
|
if (sce->coeffs[i]) {
|
|
avg_energy += sce->coeffs[i] * sce->coeffs[i];
|
|
last = i;
|
|
lastband = curband;
|
|
}
|
|
}
|
|
} else {
|
|
for (w = 0; w < 8; w++) {
|
|
const float *coeffs = &sce->coeffs[w*128];
|
|
curband = start = 0;
|
|
for (i = 0; i < 128; i++) {
|
|
if (i - start >= sce->ics.swb_sizes[curband]) {
|
|
start += sce->ics.swb_sizes[curband];
|
|
curband++;
|
|
}
|
|
if (coeffs[i]) {
|
|
avg_energy += coeffs[i] * coeffs[i];
|
|
last = FFMAX(last, i);
|
|
lastband = FFMAX(lastband, curband);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
last++;
|
|
avg_energy /= last;
|
|
if (avg_energy == 0.0f) {
|
|
for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
|
|
sce->sf_idx[i] = SCALE_ONE_POS;
|
|
return;
|
|
}
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
float *coefs = &sce->coeffs[start];
|
|
const int size = sce->ics.swb_sizes[g];
|
|
int start2 = start, end2 = start + size, peakpos = start;
|
|
float maxval = -1, thr = 0.0f, t;
|
|
maxq[w*16+g] = 0.0f;
|
|
if (g > lastband) {
|
|
maxq[w*16+g] = 0.0f;
|
|
start += size;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
|
|
memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
|
|
continue;
|
|
}
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
for (i = 0; i < size; i++) {
|
|
float t = coefs[w2*128+i]*coefs[w2*128+i];
|
|
maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
|
|
thr += t;
|
|
if (sce->ics.num_windows == 1 && maxval < t) {
|
|
maxval = t;
|
|
peakpos = start+i;
|
|
}
|
|
}
|
|
}
|
|
if (sce->ics.num_windows == 1) {
|
|
start2 = FFMAX(peakpos - 2, start2);
|
|
end2 = FFMIN(peakpos + 3, end2);
|
|
} else {
|
|
start2 -= start;
|
|
end2 -= start;
|
|
}
|
|
start += size;
|
|
thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
|
|
t = 1.0 - (1.0 * start2 / last);
|
|
uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
|
|
}
|
|
}
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *coefs = &sce->coeffs[start];
|
|
const float *scaled = &s->scoefs[start];
|
|
const int size = sce->ics.swb_sizes[g];
|
|
int scf, prev_scf, step;
|
|
int min_scf = -1, max_scf = 256;
|
|
float curdiff;
|
|
if (maxq[w*16+g] < 21.544) {
|
|
sce->zeroes[w*16+g] = 1;
|
|
start += size;
|
|
continue;
|
|
}
|
|
sce->zeroes[w*16+g] = 0;
|
|
scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
|
|
for (;;) {
|
|
float dist = 0.0f;
|
|
int quant_max;
|
|
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
int b;
|
|
dist += quantize_band_cost(s, coefs + w2*128,
|
|
scaled + w2*128,
|
|
sce->ics.swb_sizes[g],
|
|
scf,
|
|
ESC_BT,
|
|
lambda,
|
|
INFINITY,
|
|
&b,
|
|
0);
|
|
dist -= b;
|
|
}
|
|
dist *= 1.0f / 512.0f / lambda;
|
|
quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512], ROUND_STANDARD);
|
|
if (quant_max >= 8191) { // too much, return to the previous quantizer
|
|
sce->sf_idx[w*16+g] = prev_scf;
|
|
break;
|
|
}
|
|
prev_scf = scf;
|
|
curdiff = fabsf(dist - uplim[w*16+g]);
|
|
if (curdiff <= 1.0f)
|
|
step = 0;
|
|
else
|
|
step = log2f(curdiff);
|
|
if (dist > uplim[w*16+g])
|
|
step = -step;
|
|
scf += step;
|
|
scf = av_clip_uint8(scf);
|
|
step = scf - prev_scf;
|
|
if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
|
|
sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
|
|
break;
|
|
}
|
|
if (step > 0)
|
|
min_scf = prev_scf;
|
|
else
|
|
max_scf = prev_scf;
|
|
}
|
|
start += size;
|
|
}
|
|
}
|
|
minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
|
|
for (i = 1; i < 128; i++) {
|
|
if (!sce->sf_idx[i])
|
|
sce->sf_idx[i] = sce->sf_idx[i-1];
|
|
else
|
|
minq = FFMIN(minq, sce->sf_idx[i]);
|
|
}
|
|
if (minq == INT_MAX)
|
|
minq = 0;
|
|
minq = FFMIN(minq, SCALE_MAX_POS);
|
|
maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
|
|
for (i = 126; i >= 0; i--) {
|
|
if (!sce->sf_idx[i])
|
|
sce->sf_idx[i] = sce->sf_idx[i+1];
|
|
sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
|
|
}
|
|
}
|
|
|
|
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int i, w, w2, g;
|
|
int minq = 255;
|
|
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
if (band->energy <= band->threshold) {
|
|
sce->sf_idx[(w+w2)*16+g] = 218;
|
|
sce->zeroes[(w+w2)*16+g] = 1;
|
|
} else {
|
|
sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
|
|
sce->zeroes[(w+w2)*16+g] = 0;
|
|
}
|
|
minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < 128; i++) {
|
|
sce->sf_idx[i] = 140;
|
|
//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
|
|
}
|
|
//set the same quantizers inside window groups
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
|
|
for (g = 0; g < sce->ics.num_swb; g++)
|
|
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
|
|
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
|
|
}
|
|
|
|
static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
|
|
{
|
|
int start = 0, w, w2, g;
|
|
const float lambda = s->lambda;
|
|
const float freq_mult = avctx->sample_rate/(1024.0f/sce->ics.num_windows)/2.0f;
|
|
const float spread_threshold = NOISE_SPREAD_THRESHOLD*(lambda/120.f);
|
|
const float thr_mult = NOISE_LAMBDA_NUMERATOR/lambda;
|
|
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = 0;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
if (start*freq_mult > NOISE_LOW_LIMIT*(lambda/170.0f)) {
|
|
float energy = 0.0f, threshold = 0.0f, spread = 0.0f;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
|
|
energy += band->energy;
|
|
threshold += band->threshold;
|
|
spread += band->spread;
|
|
}
|
|
if (spread > spread_threshold*sce->ics.group_len[w] &&
|
|
((sce->zeroes[w*16+g] && energy >= threshold) ||
|
|
energy < threshold*thr_mult*sce->ics.group_len[w])) {
|
|
sce->band_type[w*16+g] = NOISE_BT;
|
|
sce->pns_ener[w*16+g] = energy / sce->ics.group_len[w];
|
|
sce->zeroes[w*16+g] = 0;
|
|
}
|
|
}
|
|
start += sce->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
}
|
|
|
|
static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
|
|
{
|
|
int start = 0, i, w, w2, g;
|
|
float M[128], S[128];
|
|
float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
|
|
const float lambda = s->lambda;
|
|
SingleChannelElement *sce0 = &cpe->ch[0];
|
|
SingleChannelElement *sce1 = &cpe->ch[1];
|
|
if (!cpe->common_window)
|
|
return;
|
|
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
|
|
start = 0;
|
|
for (g = 0; g < sce0->ics.num_swb; g++) {
|
|
if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
|
|
float dist1 = 0.0f, dist2 = 0.0f;
|
|
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
|
|
FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
|
|
float minthr = FFMIN(band0->threshold, band1->threshold);
|
|
float maxthr = FFMAX(band0->threshold, band1->threshold);
|
|
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
|
|
M[i] = (sce0->coeffs[start+(w+w2)*128+i]
|
|
+ sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
|
|
S[i] = M[i]
|
|
- sce1->coeffs[start+(w+w2)*128+i];
|
|
}
|
|
abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
|
|
dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
|
|
L34,
|
|
sce0->ics.swb_sizes[g],
|
|
sce0->sf_idx[(w+w2)*16+g],
|
|
sce0->band_type[(w+w2)*16+g],
|
|
lambda / band0->threshold, INFINITY, NULL, 0);
|
|
dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
|
|
R34,
|
|
sce1->ics.swb_sizes[g],
|
|
sce1->sf_idx[(w+w2)*16+g],
|
|
sce1->band_type[(w+w2)*16+g],
|
|
lambda / band1->threshold, INFINITY, NULL, 0);
|
|
dist2 += quantize_band_cost(s, M,
|
|
M34,
|
|
sce0->ics.swb_sizes[g],
|
|
sce0->sf_idx[(w+w2)*16+g],
|
|
sce0->band_type[(w+w2)*16+g],
|
|
lambda / maxthr, INFINITY, NULL, 0);
|
|
dist2 += quantize_band_cost(s, S,
|
|
S34,
|
|
sce1->ics.swb_sizes[g],
|
|
sce1->sf_idx[(w+w2)*16+g],
|
|
sce1->band_type[(w+w2)*16+g],
|
|
lambda / minthr, INFINITY, NULL, 0);
|
|
}
|
|
cpe->ms_mask[w*16+g] = dist2 < dist1;
|
|
}
|
|
start += sce0->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
}
|
|
|
|
AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
|
|
[AAC_CODER_FAAC] = {
|
|
search_for_quantizers_faac,
|
|
encode_window_bands_info,
|
|
quantize_and_encode_band,
|
|
ff_aac_encode_tns_info,
|
|
ff_aac_encode_main_pred,
|
|
ff_aac_adjust_common_prediction,
|
|
ff_aac_apply_main_pred,
|
|
ff_aac_apply_tns,
|
|
set_special_band_scalefactors,
|
|
search_for_pns,
|
|
ff_aac_search_for_tns,
|
|
search_for_ms,
|
|
ff_aac_search_for_is,
|
|
ff_aac_search_for_pred,
|
|
},
|
|
[AAC_CODER_ANMR] = {
|
|
search_for_quantizers_anmr,
|
|
encode_window_bands_info,
|
|
quantize_and_encode_band,
|
|
ff_aac_encode_tns_info,
|
|
ff_aac_encode_main_pred,
|
|
ff_aac_adjust_common_prediction,
|
|
ff_aac_apply_main_pred,
|
|
ff_aac_apply_tns,
|
|
set_special_band_scalefactors,
|
|
search_for_pns,
|
|
ff_aac_search_for_tns,
|
|
search_for_ms,
|
|
ff_aac_search_for_is,
|
|
ff_aac_search_for_pred,
|
|
},
|
|
[AAC_CODER_TWOLOOP] = {
|
|
search_for_quantizers_twoloop,
|
|
codebook_trellis_rate,
|
|
quantize_and_encode_band,
|
|
ff_aac_encode_tns_info,
|
|
ff_aac_encode_main_pred,
|
|
ff_aac_adjust_common_prediction,
|
|
ff_aac_apply_main_pred,
|
|
ff_aac_apply_tns,
|
|
set_special_band_scalefactors,
|
|
search_for_pns,
|
|
ff_aac_search_for_tns,
|
|
search_for_ms,
|
|
ff_aac_search_for_is,
|
|
ff_aac_search_for_pred,
|
|
},
|
|
[AAC_CODER_FAST] = {
|
|
search_for_quantizers_fast,
|
|
encode_window_bands_info,
|
|
quantize_and_encode_band,
|
|
ff_aac_encode_tns_info,
|
|
ff_aac_encode_main_pred,
|
|
ff_aac_adjust_common_prediction,
|
|
ff_aac_apply_main_pred,
|
|
ff_aac_apply_tns,
|
|
set_special_band_scalefactors,
|
|
search_for_pns,
|
|
ff_aac_search_for_tns,
|
|
search_for_ms,
|
|
ff_aac_search_for_is,
|
|
ff_aac_search_for_pred,
|
|
},
|
|
};
|