ffmpeg/libavcodec/exr.c
Paul B Mahol 256b986c04 avcodec/exr: stop using deprecated avcodec_set_dimensions()
Signed-off-by: Paul B Mahol <onemda@gmail.com>
2013-11-01 19:05:35 +00:00

1279 lines
37 KiB
C

/*
* OpenEXR (.exr) image decoder
* Copyright (c) 2009 Jimmy Christensen
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* OpenEXR decoder
* @author Jimmy Christensen
*
* For more information on the OpenEXR format, visit:
* http://openexr.com/
*
* exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger
*/
#include <zlib.h>
#include "get_bits.h"
#include "avcodec.h"
#include "bytestream.h"
#include "internal.h"
#include "mathops.h"
#include "thread.h"
#include "libavutil/imgutils.h"
#include "libavutil/avassert.h"
enum ExrCompr {
EXR_RAW = 0,
EXR_RLE = 1,
EXR_ZIP1 = 2,
EXR_ZIP16 = 3,
EXR_PIZ = 4,
EXR_PXR24 = 5,
EXR_B44 = 6,
EXR_B44A = 7,
};
enum ExrPixelType {
EXR_UINT,
EXR_HALF,
EXR_FLOAT
};
typedef struct EXRChannel {
int xsub, ysub;
enum ExrPixelType pixel_type;
} EXRChannel;
typedef struct EXRThreadData {
uint8_t *uncompressed_data;
int uncompressed_size;
uint8_t *tmp;
int tmp_size;
uint8_t *bitmap;
uint16_t *lut;
} EXRThreadData;
typedef struct EXRContext {
AVFrame *picture;
int compr;
enum ExrPixelType pixel_type;
int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
const AVPixFmtDescriptor *desc;
uint32_t xmax, xmin;
uint32_t ymax, ymin;
uint32_t xdelta, ydelta;
int ysize;
uint64_t scan_line_size;
int scan_lines_per_block;
const uint8_t *buf, *table;
int buf_size;
EXRChannel *channels;
int nb_channels;
EXRThreadData *thread_data;
int thread_data_size;
} EXRContext;
/**
* Converts from 32-bit float as uint32_t to uint16_t
*
* @param v 32-bit float
* @return normalized 16-bit unsigned int
*/
static inline uint16_t exr_flt2uint(uint32_t v)
{
unsigned int exp = v >> 23;
// "HACK": negative values result in exp< 0, so clipping them to 0
// is also handled by this condition, avoids explicit check for sign bit.
if (exp<= 127 + 7 - 24) // we would shift out all bits anyway
return 0;
if (exp >= 127)
return 0xffff;
v &= 0x007fffff;
return (v + (1 << 23)) >> (127 + 7 - exp);
}
/**
* Converts from 16-bit float as uint16_t to uint16_t
*
* @param v 16-bit float
* @return normalized 16-bit unsigned int
*/
static inline uint16_t exr_halflt2uint(uint16_t v)
{
unsigned exp = 14 - (v >> 10);
if (exp >= 14) {
if (exp == 14) return (v >> 9) & 1;
else return (v & 0x8000) ? 0 : 0xffff;
}
v <<= 6;
return (v + (1 << 16)) >> (exp + 1);
}
/**
* Gets the size of the header variable
*
* @param **buf the current pointer location in the header where
* the variable data starts
* @param *buf_end pointer location of the end of the buffer
* @return size of variable data
*/
static unsigned int get_header_variable_length(const uint8_t **buf,
const uint8_t *buf_end)
{
unsigned int variable_buffer_data_size = bytestream_get_le32(buf);
if (variable_buffer_data_size >= buf_end - *buf)
return 0;
return variable_buffer_data_size;
}
/**
* Checks if the variable name corresponds with it's data type
*
* @param *avctx the AVCodecContext
* @param **buf the current pointer location in the header where
* the variable name starts
* @param *buf_end pointer location of the end of the buffer
* @param *value_name name of the varible to check
* @param *value_type type of the varible to check
* @param minimum_length minimum length of the variable data
* @param variable_buffer_data_size variable length read from the header
* after it's checked
* @return negative if variable is invalid
*/
static int check_header_variable(AVCodecContext *avctx,
const uint8_t **buf,
const uint8_t *buf_end,
const char *value_name,
const char *value_type,
unsigned int minimum_length,
unsigned int *variable_buffer_data_size)
{
if (buf_end - *buf >= minimum_length && !strcmp(*buf, value_name)) {
*buf += strlen(value_name)+1;
if (!strcmp(*buf, value_type)) {
*buf += strlen(value_type)+1;
*variable_buffer_data_size = get_header_variable_length(buf, buf_end);
if (!*variable_buffer_data_size)
av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
return 1;
}
*buf -= strlen(value_name)+1;
av_log(avctx, AV_LOG_WARNING, "Unknown data type for header variable %s\n", value_name);
}
return -1;
}
static void predictor(uint8_t *src, int size)
{
uint8_t *t = src + 1;
uint8_t *stop = src + size;
while (t < stop) {
int d = (int)t[-1] + (int)t[0] - 128;
t[0] = d;
++t;
}
}
static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
{
const int8_t *t1 = src;
const int8_t *t2 = src + (size + 1) / 2;
int8_t *s = dst;
int8_t *stop = s + size;
while (1) {
if (s < stop)
*(s++) = *(t1++);
else
break;
if (s < stop)
*(s++) = *(t2++);
else
break;
}
}
static int zip_uncompress(const uint8_t *src, int compressed_size,
int uncompressed_size, EXRThreadData *td)
{
unsigned long dest_len = uncompressed_size;
if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
dest_len != uncompressed_size)
return AVERROR(EINVAL);
predictor(td->tmp, uncompressed_size);
reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
return 0;
}
static int rle_uncompress(const uint8_t *src, int compressed_size,
int uncompressed_size, EXRThreadData *td)
{
int8_t *d = (int8_t *)td->tmp;
const int8_t *s = (const int8_t *)src;
int ssize = compressed_size;
int dsize = uncompressed_size;
int8_t *dend = d + dsize;
int count;
while (ssize > 0) {
count = *s++;
if (count < 0) {
count = -count;
if ((dsize -= count ) < 0 ||
(ssize -= count + 1) < 0)
return -1;
while (count--)
*d++ = *s++;
} else {
count++;
if ((dsize -= count) < 0 ||
(ssize -= 2 ) < 0)
return -1;
while (count--)
*d++ = *s;
s++;
}
}
if (dend != d)
return AVERROR_INVALIDDATA;
predictor(td->tmp, uncompressed_size);
reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
return 0;
}
#define USHORT_RANGE (1 << 16)
#define BITMAP_SIZE (1 << 13)
static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
{
int i, k = 0;
for (i = 0; i < USHORT_RANGE; i++) {
if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
lut[k++] = i;
}
i = k - 1;
memset(lut + k, 0, (USHORT_RANGE - k) * 2);
return i;
}
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
{
int i;
for (i = 0; i < dsize; ++i)
dst[i] = lut[dst[i]];
}
#define HUF_ENCBITS 16 // literal (value) bit length
#define HUF_DECBITS 14 // decoding bit size (>= 8)
#define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
#define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size
#define HUF_DECMASK (HUF_DECSIZE - 1)
typedef struct HufDec {
int len;
int lit;
int *p;
} HufDec;
static void huf_canonical_code_table(uint64_t *hcode)
{
uint64_t c, n[59] = { 0 };
int i;
for (i = 0; i < HUF_ENCSIZE; ++i)
n[hcode[i]] += 1;
c = 0;
for (i = 58; i > 0; --i) {
uint64_t nc = ((c + n[i]) >> 1);
n[i] = c;
c = nc;
}
for (i = 0; i < HUF_ENCSIZE; ++i) {
int l = hcode[i];
if (l > 0)
hcode[i] = l | (n[l]++ << 6);
}
}
#define SHORT_ZEROCODE_RUN 59
#define LONG_ZEROCODE_RUN 63
#define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
#define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
static int huf_unpack_enc_table(GetByteContext *gb,
int32_t im, int32_t iM, uint64_t *hcode)
{
GetBitContext gbit;
init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
for (; im <= iM; im++) {
uint64_t l = hcode[im] = get_bits(&gbit, 6);
if (l == LONG_ZEROCODE_RUN) {
int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
if (im + zerun > iM + 1)
return AVERROR_INVALIDDATA;
while (zerun--)
hcode[im++] = 0;
im--;
} else if (l >= (uint64_t) SHORT_ZEROCODE_RUN) {
int zerun = l - SHORT_ZEROCODE_RUN + 2;
if (im + zerun > iM + 1)
return AVERROR_INVALIDDATA;
while (zerun--)
hcode[im++] = 0;
im--;
}
}
bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
huf_canonical_code_table(hcode);
return 0;
}
static int huf_build_dec_table(const uint64_t *hcode, int im,
int iM, HufDec *hdecod)
{
for (; im <= iM; im++) {
uint64_t c = hcode[im] >> 6;
int i, l = hcode[im] & 63;
if (c >> l)
return AVERROR_INVALIDDATA;
if (l > HUF_DECBITS) {
HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
if (pl->len)
return AVERROR_INVALIDDATA;
pl->lit++;
pl->p = av_realloc_f(pl->p, pl->lit, sizeof(int));
if (!pl->p)
return AVERROR(ENOMEM);
pl->p[pl->lit - 1] = im;
} else if (l) {
HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
if (pl->len || pl->p)
return AVERROR_INVALIDDATA;
pl->len = l;
pl->lit = im;
}
}
}
return 0;
}
#define get_char(c, lc, gb) { \
c = (c << 8) | bytestream2_get_byte(gb); \
lc += 8; \
}
#define get_code(po, rlc, c, lc, gb, out, oe) { \
if (po == rlc) { \
if (lc < 8) \
get_char(c, lc, gb); \
lc -= 8; \
\
cs = c >> lc; \
\
if (out + cs > oe) \
return AVERROR_INVALIDDATA; \
\
s = out[-1]; \
\
while (cs-- > 0) \
*out++ = s; \
} else if (out < oe) { \
*out++ = po; \
} else { \
return AVERROR_INVALIDDATA; \
} \
}
static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
GetByteContext *gb, int nbits,
int rlc, int no, uint16_t *out)
{
uint64_t c = 0;
uint16_t *outb = out;
uint16_t *oe = out + no;
const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
uint8_t cs, s;
int i, lc = 0;
while (gb->buffer < ie) {
get_char(c, lc, gb);
while (lc >= HUF_DECBITS) {
const HufDec pl = hdecod[(c >> (lc-HUF_DECBITS)) & HUF_DECMASK];
if (pl.len) {
lc -= pl.len;
get_code(pl.lit, rlc, c, lc, gb, out, oe);
} else {
int j;
if (!pl.p)
return AVERROR_INVALIDDATA;
for (j = 0; j < pl.lit; j++) {
int l = hcode[pl.p[j]] & 63;
while (lc < l && bytestream2_get_bytes_left(gb) > 0)
get_char(c, lc, gb);
if (lc >= l) {
if ((hcode[pl.p[j]] >> 6) ==
((c >> (lc - l)) & ((1LL << l) - 1))) {
lc -= l;
get_code(pl.p[j], rlc, c, lc, gb, out, oe);
break;
}
}
}
if (j == pl.lit)
return AVERROR_INVALIDDATA;
}
}
}
i = (8 - nbits) & 7;
c >>= i;
lc -= i;
while (lc > 0) {
const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
if (pl.len) {
lc -= pl.len;
get_code(pl.lit, rlc, c, lc, gb, out, oe);
} else {
return AVERROR_INVALIDDATA;
}
}
if (out - outb != no)
return AVERROR_INVALIDDATA;
return 0;
}
static int huf_uncompress(GetByteContext *gb,
uint16_t *dst, int dst_size)
{
int32_t src_size, im, iM;
uint32_t nBits;
uint64_t *freq;
HufDec *hdec;
int ret, i;
src_size = bytestream2_get_le32(gb);
im = bytestream2_get_le32(gb);
iM = bytestream2_get_le32(gb);
bytestream2_skip(gb, 4);
nBits = bytestream2_get_le32(gb);
if (im < 0 || im >= HUF_ENCSIZE ||
iM < 0 || iM >= HUF_ENCSIZE ||
src_size < 0)
return AVERROR_INVALIDDATA;
bytestream2_skip(gb, 4);
freq = av_calloc(HUF_ENCSIZE, sizeof(*freq));
hdec = av_calloc(HUF_DECSIZE, sizeof(*hdec));
if (!freq || !hdec) {
ret = AVERROR(ENOMEM);
goto fail;
}
if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
goto fail;
if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
ret = AVERROR_INVALIDDATA;
goto fail;
}
if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
goto fail;
ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
fail:
for (i = 0; i < HUF_DECSIZE; i++) {
if (hdec)
av_freep(&hdec[i].p);
}
av_free(freq);
av_free(hdec);
return ret;
}
static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
{
int16_t ls = l;
int16_t hs = h;
int hi = hs;
int ai = ls + (hi & 1) + (hi >> 1);
int16_t as = ai;
int16_t bs = ai - hi;
*a = as;
*b = bs;
}
#define NBITS 16
#define A_OFFSET (1 << (NBITS - 1))
#define MOD_MASK ((1 << NBITS) - 1)
static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
{
int m = l;
int d = h;
int bb = (m - (d >> 1)) & MOD_MASK;
int aa = (d + bb - A_OFFSET) & MOD_MASK;
*b = bb;
*a = aa;
}
static void wav_decode(uint16_t *in, int nx, int ox,
int ny, int oy, uint16_t mx)
{
int w14 = (mx < (1 << 14));
int n = (nx > ny) ? ny: nx;
int p = 1;
int p2;
while (p <= n)
p <<= 1;
p >>= 1;
p2 = p;
p >>= 1;
while (p >= 1) {
uint16_t *py = in;
uint16_t *ey = in + oy * (ny - p2);
uint16_t i00, i01, i10, i11;
int oy1 = oy * p;
int oy2 = oy * p2;
int ox1 = ox * p;
int ox2 = ox * p2;
for (; py <= ey; py += oy2) {
uint16_t *px = py;
uint16_t *ex = py + ox * (nx - p2);
for (; px <= ex; px += ox2) {
uint16_t *p01 = px + ox1;
uint16_t *p10 = px + oy1;
uint16_t *p11 = p10 + ox1;
if (w14) {
wdec14(*px, *p10, &i00, &i10);
wdec14(*p01, *p11, &i01, &i11);
wdec14(i00, i01, px, p01);
wdec14(i10, i11, p10, p11);
} else {
wdec16(*px, *p10, &i00, &i10);
wdec16(*p01, *p11, &i01, &i11);
wdec16(i00, i01, px, p01);
wdec16(i10, i11, p10, p11);
}
}
if (nx & p) {
uint16_t *p10 = px + oy1;
if (w14)
wdec14(*px, *p10, &i00, p10);
else
wdec16(*px, *p10, &i00, p10);
*px = i00;
}
}
if (ny & p) {
uint16_t *px = py;
uint16_t *ex = py + ox * (nx - p2);
for (; px <= ex; px += ox2) {
uint16_t *p01 = px + ox1;
if (w14)
wdec14(*px, *p01, &i00, p01);
else
wdec16(*px, *p01, &i00, p01);
*px = i00;
}
}
p2 = p;
p >>= 1;
}
}
static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize, int dsize, EXRThreadData *td)
{
GetByteContext gb;
uint16_t maxval, min_non_zero, max_non_zero;
uint16_t *ptr, *tmp = (uint16_t *)td->tmp;
int8_t *out;
int ret, i, j;
if (!td->bitmap)
td->bitmap = av_malloc(BITMAP_SIZE);
if (!td->lut)
td->lut = av_malloc(1 << 17);
if (!td->bitmap || !td->lut)
return AVERROR(ENOMEM);
bytestream2_init(&gb, src, ssize);
min_non_zero = bytestream2_get_le16(&gb);
max_non_zero = bytestream2_get_le16(&gb);
if (max_non_zero >= BITMAP_SIZE)
return AVERROR_INVALIDDATA;
memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
if (min_non_zero <= max_non_zero)
bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
max_non_zero - min_non_zero + 1);
memset(td->bitmap + max_non_zero, 0, BITMAP_SIZE - max_non_zero);
maxval = reverse_lut(td->bitmap, td->lut);
ret = huf_uncompress(&gb, tmp, dsize / sizeof(int16_t));
if (ret)
return ret;
ptr = tmp;
for (i = 0; i < s->nb_channels; i++) {
EXRChannel *channel = &s->channels[i];
int size = channel->pixel_type;
for (j = 0; j < size; j++)
wav_decode(ptr + j, s->xdelta, size, s->ysize, s->xdelta * size, maxval);
ptr += s->xdelta * s->ysize * size;
}
apply_lut(td->lut, tmp, dsize / sizeof(int16_t));
out = td->uncompressed_data;
for (i = 0; i < s->ysize; i++) {
for (j = 0; j < s->nb_channels; j++) {
uint16_t *in = tmp + j * s->xdelta * s->ysize + i * s->xdelta;
memcpy(out, in, s->xdelta * 2);
out += s->xdelta * 2;
}
}
return 0;
}
static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
int compressed_size, int uncompressed_size,
EXRThreadData *td)
{
unsigned long dest_len = uncompressed_size;
const uint8_t *in = td->tmp;
uint8_t *out;
int c, i, j;
if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
dest_len != uncompressed_size)
return AVERROR(EINVAL);
out = td->uncompressed_data;
for (i = 0; i < s->ysize; i++) {
for (c = 0; c < s->nb_channels; c++) {
EXRChannel *channel = &s->channels[c];
const uint8_t *ptr[4];
uint32_t pixel = 0;
switch (channel->pixel_type) {
case EXR_FLOAT:
ptr[0] = in;
ptr[1] = ptr[0] + s->xdelta;
ptr[2] = ptr[1] + s->xdelta;
in = ptr[2] + s->xdelta;
for (j = 0; j < s->xdelta; ++j) {
uint32_t diff = (*(ptr[0]++) << 24) |
(*(ptr[1]++) << 16) |
(*(ptr[2]++) << 8);
pixel += diff;
bytestream_put_le32(&out, pixel);
}
break;
case EXR_HALF:
ptr[0] = in;
ptr[1] = ptr[0] + s->xdelta;
in = ptr[1] + s->xdelta;
for (j = 0; j < s->xdelta; j++) {
uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
pixel += diff;
bytestream_put_le16(&out, pixel);
}
break;
default:
av_assert1(0);
}
}
}
return 0;
}
static int decode_block(AVCodecContext *avctx, void *tdata,
int jobnr, int threadnr)
{
EXRContext *s = avctx->priv_data;
AVFrame *const p = s->picture;
EXRThreadData *td = &s->thread_data[threadnr];
const uint8_t *channel_buffer[4] = { 0 };
const uint8_t *buf = s->buf;
uint64_t line_offset, uncompressed_size;
uint32_t xdelta = s->xdelta;
uint16_t *ptr_x;
uint8_t *ptr;
int32_t data_size, line;
const uint8_t *src;
int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components;
int bxmin = s->xmin * 2 * s->desc->nb_components;
int i, x, buf_size = s->buf_size;
int av_unused ret;
line_offset = AV_RL64(s->table + jobnr * 8);
// Check if the buffer has the required bytes needed from the offset
if (line_offset > buf_size - 8)
return AVERROR_INVALIDDATA;
src = buf + line_offset + 8;
line = AV_RL32(src - 8);
if (line < s->ymin || line > s->ymax)
return AVERROR_INVALIDDATA;
data_size = AV_RL32(src - 4);
if (data_size <= 0 || data_size > buf_size)
return AVERROR_INVALIDDATA;
s->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1);
uncompressed_size = s->scan_line_size * s->ysize;
if ((s->compr == EXR_RAW && (data_size != uncompressed_size ||
line_offset > buf_size - uncompressed_size)) ||
(s->compr != EXR_RAW && (data_size > uncompressed_size ||
line_offset > buf_size - data_size))) {
return AVERROR_INVALIDDATA;
}
if (data_size < uncompressed_size) {
av_fast_padded_malloc(&td->uncompressed_data, &td->uncompressed_size, uncompressed_size);
av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
if (!td->uncompressed_data || !td->tmp)
return AVERROR(ENOMEM);
switch (s->compr) {
case EXR_ZIP1:
case EXR_ZIP16:
ret = zip_uncompress(src, data_size, uncompressed_size, td);
break;
case EXR_PIZ:
ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
break;
case EXR_PXR24:
ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
break;
case EXR_RLE:
ret = rle_uncompress(src, data_size, uncompressed_size, td);
}
src = td->uncompressed_data;
}
channel_buffer[0] = src + xdelta * s->channel_offsets[0];
channel_buffer[1] = src + xdelta * s->channel_offsets[1];
channel_buffer[2] = src + xdelta * s->channel_offsets[2];
if (s->channel_offsets[3] >= 0)
channel_buffer[3] = src + xdelta * s->channel_offsets[3];
ptr = p->data[0] + line * p->linesize[0];
for (i = 0; i < s->scan_lines_per_block && line + i <= s->ymax; i++, ptr += p->linesize[0]) {
const uint8_t *r, *g, *b, *a;
r = channel_buffer[0];
g = channel_buffer[1];
b = channel_buffer[2];
if (channel_buffer[3])
a = channel_buffer[3];
ptr_x = (uint16_t *)ptr;
// Zero out the start if xmin is not 0
memset(ptr_x, 0, bxmin);
ptr_x += s->xmin * s->desc->nb_components;
if (s->pixel_type == EXR_FLOAT) {
// 32-bit
for (x = 0; x < xdelta; x++) {
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&r));
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&g));
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&b));
if (channel_buffer[3])
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
}
} else {
// 16-bit
for (x = 0; x < xdelta; x++) {
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&r));
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&g));
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&b));
if (channel_buffer[3])
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
}
}
// Zero out the end if xmax+1 is not w
memset(ptr_x, 0, axmax);
channel_buffer[0] += s->scan_line_size;
channel_buffer[1] += s->scan_line_size;
channel_buffer[2] += s->scan_line_size;
if (channel_buffer[3])
channel_buffer[3] += s->scan_line_size;
}
return 0;
}
static int decode_frame(AVCodecContext *avctx,
void *data,
int *got_frame,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
unsigned int buf_size = avpkt->size;
const uint8_t *buf_end = buf + buf_size;
EXRContext *const s = avctx->priv_data;
ThreadFrame frame = { .f = data };
AVFrame *picture = data;
uint8_t *ptr;
int i, y, magic_number, version, flags, ret;
int w = 0;
int h = 0;
int out_line_size;
int scan_line_blocks;
unsigned int current_channel_offset = 0;
s->xmin = ~0;
s->xmax = ~0;
s->ymin = ~0;
s->ymax = ~0;
s->xdelta = ~0;
s->ydelta = ~0;
s->channel_offsets[0] = -1;
s->channel_offsets[1] = -1;
s->channel_offsets[2] = -1;
s->channel_offsets[3] = -1;
s->pixel_type = -1;
s->nb_channels = 0;
s->compr = -1;
s->buf = buf;
s->buf_size = buf_size;
if (buf_size < 10) {
av_log(avctx, AV_LOG_ERROR, "Too short header to parse\n");
return AVERROR_INVALIDDATA;
}
magic_number = bytestream_get_le32(&buf);
if (magic_number != 20000630) { // As per documentation of OpenEXR it's supposed to be int 20000630 little-endian
av_log(avctx, AV_LOG_ERROR, "Wrong magic number %d\n", magic_number);
return AVERROR_INVALIDDATA;
}
version = bytestream_get_byte(&buf);
if (version != 2) {
avpriv_report_missing_feature(avctx, "Version %d", version);
return AVERROR_PATCHWELCOME;
}
flags = bytestream_get_le24(&buf);
if (flags & 0x2) {
avpriv_report_missing_feature(avctx, "Tile support");
return AVERROR_PATCHWELCOME;
}
// Parse the header
while (buf < buf_end && buf[0]) {
unsigned int variable_buffer_data_size;
// Process the channel list
if (check_header_variable(avctx, &buf, buf_end, "channels", "chlist", 38, &variable_buffer_data_size) >= 0) {
const uint8_t *channel_list_end;
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
channel_list_end = buf + variable_buffer_data_size;
while (channel_list_end - buf >= 19) {
EXRChannel *channel;
enum ExrPixelType current_pixel_type;
int channel_index = -1;
int xsub, ysub;
if (!strcmp(buf, "R"))
channel_index = 0;
else if (!strcmp(buf, "G"))
channel_index = 1;
else if (!strcmp(buf, "B"))
channel_index = 2;
else if (!strcmp(buf, "A"))
channel_index = 3;
else
av_log(avctx, AV_LOG_WARNING, "Unsupported channel %.256s\n", buf);
while (bytestream_get_byte(&buf) && buf < channel_list_end)
continue; /* skip */
if (channel_list_end - * &buf < 4) {
av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
return AVERROR_INVALIDDATA;
}
current_pixel_type = bytestream_get_le32(&buf);
if (current_pixel_type > 2) {
av_log(avctx, AV_LOG_ERROR, "Unknown pixel type\n");
return AVERROR_INVALIDDATA;
}
buf += 4;
xsub = bytestream_get_le32(&buf);
ysub = bytestream_get_le32(&buf);
if (xsub != 1 || ysub != 1) {
avpriv_report_missing_feature(avctx, "Subsampling %dx%d", xsub, ysub);
return AVERROR_PATCHWELCOME;
}
if (channel_index >= 0) {
if (s->pixel_type != -1 && s->pixel_type != current_pixel_type) {
av_log(avctx, AV_LOG_ERROR, "RGB channels not of the same depth\n");
return AVERROR_INVALIDDATA;
}
s->pixel_type = current_pixel_type;
s->channel_offsets[channel_index] = current_channel_offset;
}
s->channels = av_realloc_f(s->channels, ++s->nb_channels, sizeof(EXRChannel));
if (!s->channels)
return AVERROR(ENOMEM);
channel = &s->channels[s->nb_channels - 1];
channel->pixel_type = current_pixel_type;
channel->xsub = xsub;
channel->ysub = ysub;
current_channel_offset += 1 << current_pixel_type;
}
/* Check if all channels are set with an offset or if the channels
* are causing an overflow */
if (FFMIN3(s->channel_offsets[0],
s->channel_offsets[1],
s->channel_offsets[2]) < 0) {
if (s->channel_offsets[0] < 0)
av_log(avctx, AV_LOG_ERROR, "Missing red channel\n");
if (s->channel_offsets[1] < 0)
av_log(avctx, AV_LOG_ERROR, "Missing green channel\n");
if (s->channel_offsets[2] < 0)
av_log(avctx, AV_LOG_ERROR, "Missing blue channel\n");
return AVERROR_INVALIDDATA;
}
buf = channel_list_end;
continue;
} else if (check_header_variable(avctx, &buf, buf_end, "dataWindow", "box2i", 31, &variable_buffer_data_size) >= 0) {
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
s->xmin = AV_RL32(buf);
s->ymin = AV_RL32(buf + 4);
s->xmax = AV_RL32(buf + 8);
s->ymax = AV_RL32(buf + 12);
s->xdelta = (s->xmax - s->xmin) + 1;
s->ydelta = (s->ymax - s->ymin) + 1;
buf += variable_buffer_data_size;
continue;
} else if (check_header_variable(avctx, &buf, buf_end, "displayWindow", "box2i", 34, &variable_buffer_data_size) >= 0) {
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
w = AV_RL32(buf + 8) + 1;
h = AV_RL32(buf + 12) + 1;
buf += variable_buffer_data_size;
continue;
} else if (check_header_variable(avctx, &buf, buf_end, "lineOrder", "lineOrder", 25, &variable_buffer_data_size) >= 0) {
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
av_log(avctx, AV_LOG_DEBUG, "line order : %d\n", *buf);
if (*buf > 2) {
av_log(avctx, AV_LOG_ERROR, "Unknown line order\n");
return AVERROR_INVALIDDATA;
}
buf += variable_buffer_data_size;
continue;
} else if (check_header_variable(avctx, &buf, buf_end, "pixelAspectRatio", "float", 31, &variable_buffer_data_size) >= 0) {
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
avctx->sample_aspect_ratio = av_d2q(av_int2float(AV_RL32(buf)), 255);
buf += variable_buffer_data_size;
continue;
} else if (check_header_variable(avctx, &buf, buf_end, "compression", "compression", 29, &variable_buffer_data_size) >= 0) {
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
if (s->compr == -1)
s->compr = *buf;
else
av_log(avctx, AV_LOG_WARNING, "Found more than one compression attribute\n");
buf += variable_buffer_data_size;
continue;
}
// Check if there is enough bytes for a header
if (buf_end - buf <= 9) {
av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
return AVERROR_INVALIDDATA;
}
// Process unknown variables
for (i = 0; i < 2; i++) {
// Skip variable name/type
while (++buf < buf_end)
if (buf[0] == 0x0)
break;
}
buf++;
// Skip variable length
if (buf_end - buf >= 5) {
variable_buffer_data_size = get_header_variable_length(&buf, buf_end);
if (!variable_buffer_data_size) {
av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
return AVERROR_INVALIDDATA;
}
buf += variable_buffer_data_size;
}
}
if (s->compr == -1) {
av_log(avctx, AV_LOG_ERROR, "Missing compression attribute\n");
return AVERROR_INVALIDDATA;
}
if (buf >= buf_end) {
av_log(avctx, AV_LOG_ERROR, "Incomplete frame\n");
return AVERROR_INVALIDDATA;
}
buf++;
switch (s->pixel_type) {
case EXR_FLOAT:
case EXR_HALF:
if (s->channel_offsets[3] >= 0)
avctx->pix_fmt = AV_PIX_FMT_RGBA64;
else
avctx->pix_fmt = AV_PIX_FMT_RGB48;
break;
case EXR_UINT:
avpriv_request_sample(avctx, "32-bit unsigned int");
return AVERROR_PATCHWELCOME;
default:
av_log(avctx, AV_LOG_ERROR, "Missing channel list\n");
return AVERROR_INVALIDDATA;
}
switch (s->compr) {
case EXR_RAW:
case EXR_RLE:
case EXR_ZIP1:
s->scan_lines_per_block = 1;
break;
case EXR_PXR24:
case EXR_ZIP16:
s->scan_lines_per_block = 16;
break;
case EXR_PIZ:
s->scan_lines_per_block = 32;
break;
default:
avpriv_report_missing_feature(avctx, "Compression %d", s->compr);
return AVERROR_PATCHWELCOME;
}
// Verify the xmin, xmax, ymin, ymax and xdelta before setting the actual image size
if (s->xmin > s->xmax ||
s->ymin > s->ymax ||
s->xdelta != s->xmax - s->xmin + 1 ||
s->xmax >= w || s->ymax >= h) {
av_log(avctx, AV_LOG_ERROR, "Wrong sizing or missing size information\n");
return AVERROR_INVALIDDATA;
}
if ((ret = ff_set_dimensions(avctx, w, h)) < 0)
return ret;
s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
out_line_size = avctx->width * 2 * s->desc->nb_components;
s->scan_line_size = s->xdelta * current_channel_offset;
scan_line_blocks = (s->ydelta + s->scan_lines_per_block - 1) / s->scan_lines_per_block;
if (s->compr != EXR_RAW) {
size_t thread_data_size, prev_size;
EXRThreadData *m;
prev_size = s->thread_data_size;
if (av_size_mult(avctx->thread_count, sizeof(EXRThreadData), &thread_data_size))
return AVERROR(EINVAL);
m = av_fast_realloc(s->thread_data, &s->thread_data_size, thread_data_size);
if (!m)
return AVERROR(ENOMEM);
s->thread_data = m;
memset(s->thread_data + prev_size, 0, s->thread_data_size - prev_size);
}
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
if (buf_end - buf < scan_line_blocks * 8)
return AVERROR_INVALIDDATA;
s->table = buf;
ptr = picture->data[0];
// Zero out the start if ymin is not 0
for (y = 0; y < s->ymin; y++) {
memset(ptr, 0, out_line_size);
ptr += picture->linesize[0];
}
s->picture = picture;
avctx->execute2(avctx, decode_block, s->thread_data, NULL, scan_line_blocks);
// Zero out the end if ymax+1 is not h
for (y = s->ymax + 1; y < avctx->height; y++) {
memset(ptr, 0, out_line_size);
ptr += picture->linesize[0];
}
picture->pict_type = AV_PICTURE_TYPE_I;
*got_frame = 1;
return buf_size;
}
static av_cold int decode_end(AVCodecContext *avctx)
{
EXRContext *s = avctx->priv_data;
int i;
for (i = 0; i < s->thread_data_size / sizeof(EXRThreadData); i++) {
EXRThreadData *td = &s->thread_data[i];
av_freep(&td->uncompressed_data);
av_freep(&td->tmp);
av_freep(&td->bitmap);
av_freep(&td->lut);
}
av_freep(&s->thread_data);
s->thread_data_size = 0;
av_freep(&s->channels);
return 0;
}
AVCodec ff_exr_decoder = {
.name = "exr",
.long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_EXR,
.priv_data_size = sizeof(EXRContext),
.close = decode_end,
.decode = decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS | CODEC_CAP_SLICE_THREADS,
};