737eb5976f
It is pretty hopeless that other considerable projects will adopt libavutil alone in other projects. Projects that need small footprint are better off with more specialized libraries such as gnulib or rather just copy the necessary parts that they need. With this in mind, nobody is helped by having libavutil and libavcore split. In order to ease maintenance inside and around FFmpeg and to reduce confusion where to put common code, avcore's functionality is merged (back) to avutil. Signed-off-by: Reinhard Tartler <siretart@tauware.de>
2362 lines
82 KiB
C
2362 lines
82 KiB
C
/*
|
|
* Copyright (C) 2003-2004 the ffmpeg project
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* On2 VP3 Video Decoder
|
|
*
|
|
* VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
|
|
* For more information about the VP3 coding process, visit:
|
|
* http://wiki.multimedia.cx/index.php?title=On2_VP3
|
|
*
|
|
* Theora decoder by Alex Beregszaszi
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "libavutil/imgutils.h"
|
|
#include "avcodec.h"
|
|
#include "dsputil.h"
|
|
#include "get_bits.h"
|
|
|
|
#include "vp3data.h"
|
|
#include "xiph.h"
|
|
#include "thread.h"
|
|
|
|
#define FRAGMENT_PIXELS 8
|
|
|
|
static av_cold int vp3_decode_end(AVCodecContext *avctx);
|
|
|
|
//FIXME split things out into their own arrays
|
|
typedef struct Vp3Fragment {
|
|
int16_t dc;
|
|
uint8_t coding_method;
|
|
uint8_t qpi;
|
|
} Vp3Fragment;
|
|
|
|
#define SB_NOT_CODED 0
|
|
#define SB_PARTIALLY_CODED 1
|
|
#define SB_FULLY_CODED 2
|
|
|
|
// This is the maximum length of a single long bit run that can be encoded
|
|
// for superblock coding or block qps. Theora special-cases this to read a
|
|
// bit instead of flipping the current bit to allow for runs longer than 4129.
|
|
#define MAXIMUM_LONG_BIT_RUN 4129
|
|
|
|
#define MODE_INTER_NO_MV 0
|
|
#define MODE_INTRA 1
|
|
#define MODE_INTER_PLUS_MV 2
|
|
#define MODE_INTER_LAST_MV 3
|
|
#define MODE_INTER_PRIOR_LAST 4
|
|
#define MODE_USING_GOLDEN 5
|
|
#define MODE_GOLDEN_MV 6
|
|
#define MODE_INTER_FOURMV 7
|
|
#define CODING_MODE_COUNT 8
|
|
|
|
/* special internal mode */
|
|
#define MODE_COPY 8
|
|
|
|
/* There are 6 preset schemes, plus a free-form scheme */
|
|
static const int ModeAlphabet[6][CODING_MODE_COUNT] =
|
|
{
|
|
/* scheme 1: Last motion vector dominates */
|
|
{ MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
|
|
MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
|
|
MODE_INTRA, MODE_USING_GOLDEN,
|
|
MODE_GOLDEN_MV, MODE_INTER_FOURMV },
|
|
|
|
/* scheme 2 */
|
|
{ MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
|
|
MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
|
|
MODE_INTRA, MODE_USING_GOLDEN,
|
|
MODE_GOLDEN_MV, MODE_INTER_FOURMV },
|
|
|
|
/* scheme 3 */
|
|
{ MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
|
|
MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
|
|
MODE_INTRA, MODE_USING_GOLDEN,
|
|
MODE_GOLDEN_MV, MODE_INTER_FOURMV },
|
|
|
|
/* scheme 4 */
|
|
{ MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
|
|
MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
|
|
MODE_INTRA, MODE_USING_GOLDEN,
|
|
MODE_GOLDEN_MV, MODE_INTER_FOURMV },
|
|
|
|
/* scheme 5: No motion vector dominates */
|
|
{ MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
|
|
MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
|
|
MODE_INTRA, MODE_USING_GOLDEN,
|
|
MODE_GOLDEN_MV, MODE_INTER_FOURMV },
|
|
|
|
/* scheme 6 */
|
|
{ MODE_INTER_NO_MV, MODE_USING_GOLDEN,
|
|
MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
|
|
MODE_INTER_PLUS_MV, MODE_INTRA,
|
|
MODE_GOLDEN_MV, MODE_INTER_FOURMV },
|
|
|
|
};
|
|
|
|
static const uint8_t hilbert_offset[16][2] = {
|
|
{0,0}, {1,0}, {1,1}, {0,1},
|
|
{0,2}, {0,3}, {1,3}, {1,2},
|
|
{2,2}, {2,3}, {3,3}, {3,2},
|
|
{3,1}, {2,1}, {2,0}, {3,0}
|
|
};
|
|
|
|
#define MIN_DEQUANT_VAL 2
|
|
|
|
typedef struct Vp3DecodeContext {
|
|
AVCodecContext *avctx;
|
|
int theora, theora_tables;
|
|
int version;
|
|
int width, height;
|
|
int chroma_x_shift, chroma_y_shift;
|
|
AVFrame golden_frame;
|
|
AVFrame last_frame;
|
|
AVFrame current_frame;
|
|
int keyframe;
|
|
DSPContext dsp;
|
|
int flipped_image;
|
|
int last_slice_end;
|
|
int skip_loop_filter;
|
|
|
|
int qps[3];
|
|
int nqps;
|
|
int last_qps[3];
|
|
|
|
int superblock_count;
|
|
int y_superblock_width;
|
|
int y_superblock_height;
|
|
int y_superblock_count;
|
|
int c_superblock_width;
|
|
int c_superblock_height;
|
|
int c_superblock_count;
|
|
int u_superblock_start;
|
|
int v_superblock_start;
|
|
unsigned char *superblock_coding;
|
|
|
|
int macroblock_count;
|
|
int macroblock_width;
|
|
int macroblock_height;
|
|
|
|
int fragment_count;
|
|
int fragment_width[2];
|
|
int fragment_height[2];
|
|
|
|
Vp3Fragment *all_fragments;
|
|
int fragment_start[3];
|
|
int data_offset[3];
|
|
|
|
int8_t (*motion_val[2])[2];
|
|
|
|
ScanTable scantable;
|
|
|
|
/* tables */
|
|
uint16_t coded_dc_scale_factor[64];
|
|
uint32_t coded_ac_scale_factor[64];
|
|
uint8_t base_matrix[384][64];
|
|
uint8_t qr_count[2][3];
|
|
uint8_t qr_size [2][3][64];
|
|
uint16_t qr_base[2][3][64];
|
|
|
|
/**
|
|
* This is a list of all tokens in bitstream order. Reordering takes place
|
|
* by pulling from each level during IDCT. As a consequence, IDCT must be
|
|
* in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
|
|
* otherwise. The 32 different tokens with up to 12 bits of extradata are
|
|
* collapsed into 3 types, packed as follows:
|
|
* (from the low to high bits)
|
|
*
|
|
* 2 bits: type (0,1,2)
|
|
* 0: EOB run, 14 bits for run length (12 needed)
|
|
* 1: zero run, 7 bits for run length
|
|
* 7 bits for the next coefficient (3 needed)
|
|
* 2: coefficient, 14 bits (11 needed)
|
|
*
|
|
* Coefficients are signed, so are packed in the highest bits for automatic
|
|
* sign extension.
|
|
*/
|
|
int16_t *dct_tokens[3][64];
|
|
int16_t *dct_tokens_base;
|
|
#define TOKEN_EOB(eob_run) ((eob_run) << 2)
|
|
#define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
|
|
#define TOKEN_COEFF(coeff) (((coeff) << 2) + 2)
|
|
|
|
/**
|
|
* number of blocks that contain DCT coefficients at the given level or higher
|
|
*/
|
|
int num_coded_frags[3][64];
|
|
int total_num_coded_frags;
|
|
|
|
/* this is a list of indexes into the all_fragments array indicating
|
|
* which of the fragments are coded */
|
|
int *coded_fragment_list[3];
|
|
|
|
VLC dc_vlc[16];
|
|
VLC ac_vlc_1[16];
|
|
VLC ac_vlc_2[16];
|
|
VLC ac_vlc_3[16];
|
|
VLC ac_vlc_4[16];
|
|
|
|
VLC superblock_run_length_vlc;
|
|
VLC fragment_run_length_vlc;
|
|
VLC mode_code_vlc;
|
|
VLC motion_vector_vlc;
|
|
|
|
/* these arrays need to be on 16-byte boundaries since SSE2 operations
|
|
* index into them */
|
|
DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; //<qmat[qpi][is_inter][plane]
|
|
|
|
/* This table contains superblock_count * 16 entries. Each set of 16
|
|
* numbers corresponds to the fragment indexes 0..15 of the superblock.
|
|
* An entry will be -1 to indicate that no entry corresponds to that
|
|
* index. */
|
|
int *superblock_fragments;
|
|
|
|
/* This is an array that indicates how a particular macroblock
|
|
* is coded. */
|
|
unsigned char *macroblock_coding;
|
|
|
|
uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
|
|
int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
|
|
|
|
/* Huffman decode */
|
|
int hti;
|
|
unsigned int hbits;
|
|
int entries;
|
|
int huff_code_size;
|
|
uint32_t huffman_table[80][32][2];
|
|
|
|
uint8_t filter_limit_values[64];
|
|
DECLARE_ALIGNED(8, int, bounding_values_array)[256+2];
|
|
} Vp3DecodeContext;
|
|
|
|
/************************************************************************
|
|
* VP3 specific functions
|
|
************************************************************************/
|
|
|
|
/*
|
|
* This function sets up all of the various blocks mappings:
|
|
* superblocks <-> fragments, macroblocks <-> fragments,
|
|
* superblocks <-> macroblocks
|
|
*
|
|
* @return 0 is successful; returns 1 if *anything* went wrong.
|
|
*/
|
|
static int init_block_mapping(Vp3DecodeContext *s)
|
|
{
|
|
int sb_x, sb_y, plane;
|
|
int x, y, i, j = 0;
|
|
|
|
for (plane = 0; plane < 3; plane++) {
|
|
int sb_width = plane ? s->c_superblock_width : s->y_superblock_width;
|
|
int sb_height = plane ? s->c_superblock_height : s->y_superblock_height;
|
|
int frag_width = s->fragment_width[!!plane];
|
|
int frag_height = s->fragment_height[!!plane];
|
|
|
|
for (sb_y = 0; sb_y < sb_height; sb_y++)
|
|
for (sb_x = 0; sb_x < sb_width; sb_x++)
|
|
for (i = 0; i < 16; i++) {
|
|
x = 4*sb_x + hilbert_offset[i][0];
|
|
y = 4*sb_y + hilbert_offset[i][1];
|
|
|
|
if (x < frag_width && y < frag_height)
|
|
s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x;
|
|
else
|
|
s->superblock_fragments[j++] = -1;
|
|
}
|
|
}
|
|
|
|
return 0; /* successful path out */
|
|
}
|
|
|
|
/*
|
|
* This function sets up the dequantization tables used for a particular
|
|
* frame.
|
|
*/
|
|
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
|
|
{
|
|
int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
|
|
int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
|
|
int i, plane, inter, qri, bmi, bmj, qistart;
|
|
|
|
for(inter=0; inter<2; inter++){
|
|
for(plane=0; plane<3; plane++){
|
|
int sum=0;
|
|
for(qri=0; qri<s->qr_count[inter][plane]; qri++){
|
|
sum+= s->qr_size[inter][plane][qri];
|
|
if(s->qps[qpi] <= sum)
|
|
break;
|
|
}
|
|
qistart= sum - s->qr_size[inter][plane][qri];
|
|
bmi= s->qr_base[inter][plane][qri ];
|
|
bmj= s->qr_base[inter][plane][qri+1];
|
|
for(i=0; i<64; i++){
|
|
int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i]
|
|
- 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
|
|
+ s->qr_size[inter][plane][qri])
|
|
/ (2*s->qr_size[inter][plane][qri]);
|
|
|
|
int qmin= 8<<(inter + !i);
|
|
int qscale= i ? ac_scale_factor : dc_scale_factor;
|
|
|
|
s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
|
|
}
|
|
// all DC coefficients use the same quant so as not to interfere with DC prediction
|
|
s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
|
|
}
|
|
}
|
|
|
|
memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
|
|
}
|
|
|
|
/*
|
|
* This function initializes the loop filter boundary limits if the frame's
|
|
* quality index is different from the previous frame's.
|
|
*
|
|
* The filter_limit_values may not be larger than 127.
|
|
*/
|
|
static void init_loop_filter(Vp3DecodeContext *s)
|
|
{
|
|
int *bounding_values= s->bounding_values_array+127;
|
|
int filter_limit;
|
|
int x;
|
|
int value;
|
|
|
|
filter_limit = s->filter_limit_values[s->qps[0]];
|
|
|
|
/* set up the bounding values */
|
|
memset(s->bounding_values_array, 0, 256 * sizeof(int));
|
|
for (x = 0; x < filter_limit; x++) {
|
|
bounding_values[-x] = -x;
|
|
bounding_values[x] = x;
|
|
}
|
|
for (x = value = filter_limit; x < 128 && value; x++, value--) {
|
|
bounding_values[ x] = value;
|
|
bounding_values[-x] = -value;
|
|
}
|
|
if (value)
|
|
bounding_values[128] = value;
|
|
bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
|
|
}
|
|
|
|
/*
|
|
* This function unpacks all of the superblock/macroblock/fragment coding
|
|
* information from the bitstream.
|
|
*/
|
|
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
|
|
{
|
|
int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start };
|
|
int bit = 0;
|
|
int current_superblock = 0;
|
|
int current_run = 0;
|
|
int num_partial_superblocks = 0;
|
|
|
|
int i, j;
|
|
int current_fragment;
|
|
int plane;
|
|
|
|
if (s->keyframe) {
|
|
memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
|
|
|
|
} else {
|
|
|
|
/* unpack the list of partially-coded superblocks */
|
|
bit = get_bits1(gb) ^ 1;
|
|
current_run = 0;
|
|
|
|
while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
|
|
if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
|
|
bit = get_bits1(gb);
|
|
else
|
|
bit ^= 1;
|
|
|
|
current_run = get_vlc2(gb,
|
|
s->superblock_run_length_vlc.table, 6, 2) + 1;
|
|
if (current_run == 34)
|
|
current_run += get_bits(gb, 12);
|
|
|
|
if (current_superblock + current_run > s->superblock_count) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
|
|
return -1;
|
|
}
|
|
|
|
memset(s->superblock_coding + current_superblock, bit, current_run);
|
|
|
|
current_superblock += current_run;
|
|
if (bit)
|
|
num_partial_superblocks += current_run;
|
|
}
|
|
|
|
/* unpack the list of fully coded superblocks if any of the blocks were
|
|
* not marked as partially coded in the previous step */
|
|
if (num_partial_superblocks < s->superblock_count) {
|
|
int superblocks_decoded = 0;
|
|
|
|
current_superblock = 0;
|
|
bit = get_bits1(gb) ^ 1;
|
|
current_run = 0;
|
|
|
|
while (superblocks_decoded < s->superblock_count - num_partial_superblocks
|
|
&& get_bits_left(gb) > 0) {
|
|
|
|
if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
|
|
bit = get_bits1(gb);
|
|
else
|
|
bit ^= 1;
|
|
|
|
current_run = get_vlc2(gb,
|
|
s->superblock_run_length_vlc.table, 6, 2) + 1;
|
|
if (current_run == 34)
|
|
current_run += get_bits(gb, 12);
|
|
|
|
for (j = 0; j < current_run; current_superblock++) {
|
|
if (current_superblock >= s->superblock_count) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
|
|
return -1;
|
|
}
|
|
|
|
/* skip any superblocks already marked as partially coded */
|
|
if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
|
|
s->superblock_coding[current_superblock] = 2*bit;
|
|
j++;
|
|
}
|
|
}
|
|
superblocks_decoded += current_run;
|
|
}
|
|
}
|
|
|
|
/* if there were partial blocks, initialize bitstream for
|
|
* unpacking fragment codings */
|
|
if (num_partial_superblocks) {
|
|
|
|
current_run = 0;
|
|
bit = get_bits1(gb);
|
|
/* toggle the bit because as soon as the first run length is
|
|
* fetched the bit will be toggled again */
|
|
bit ^= 1;
|
|
}
|
|
}
|
|
|
|
/* figure out which fragments are coded; iterate through each
|
|
* superblock (all planes) */
|
|
s->total_num_coded_frags = 0;
|
|
memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
|
|
|
|
for (plane = 0; plane < 3; plane++) {
|
|
int sb_start = superblock_starts[plane];
|
|
int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count);
|
|
int num_coded_frags = 0;
|
|
|
|
for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
|
|
|
|
/* iterate through all 16 fragments in a superblock */
|
|
for (j = 0; j < 16; j++) {
|
|
|
|
/* if the fragment is in bounds, check its coding status */
|
|
current_fragment = s->superblock_fragments[i * 16 + j];
|
|
if (current_fragment != -1) {
|
|
int coded = s->superblock_coding[i];
|
|
|
|
if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
|
|
|
|
/* fragment may or may not be coded; this is the case
|
|
* that cares about the fragment coding runs */
|
|
if (current_run-- == 0) {
|
|
bit ^= 1;
|
|
current_run = get_vlc2(gb,
|
|
s->fragment_run_length_vlc.table, 5, 2);
|
|
}
|
|
coded = bit;
|
|
}
|
|
|
|
if (coded) {
|
|
/* default mode; actual mode will be decoded in
|
|
* the next phase */
|
|
s->all_fragments[current_fragment].coding_method =
|
|
MODE_INTER_NO_MV;
|
|
s->coded_fragment_list[plane][num_coded_frags++] =
|
|
current_fragment;
|
|
} else {
|
|
/* not coded; copy this fragment from the prior frame */
|
|
s->all_fragments[current_fragment].coding_method =
|
|
MODE_COPY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
s->total_num_coded_frags += num_coded_frags;
|
|
for (i = 0; i < 64; i++)
|
|
s->num_coded_frags[plane][i] = num_coded_frags;
|
|
if (plane < 2)
|
|
s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function unpacks all the coding mode data for individual macroblocks
|
|
* from the bitstream.
|
|
*/
|
|
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
|
|
{
|
|
int i, j, k, sb_x, sb_y;
|
|
int scheme;
|
|
int current_macroblock;
|
|
int current_fragment;
|
|
int coding_mode;
|
|
int custom_mode_alphabet[CODING_MODE_COUNT];
|
|
const int *alphabet;
|
|
Vp3Fragment *frag;
|
|
|
|
if (s->keyframe) {
|
|
for (i = 0; i < s->fragment_count; i++)
|
|
s->all_fragments[i].coding_method = MODE_INTRA;
|
|
|
|
} else {
|
|
|
|
/* fetch the mode coding scheme for this frame */
|
|
scheme = get_bits(gb, 3);
|
|
|
|
/* is it a custom coding scheme? */
|
|
if (scheme == 0) {
|
|
for (i = 0; i < 8; i++)
|
|
custom_mode_alphabet[i] = MODE_INTER_NO_MV;
|
|
for (i = 0; i < 8; i++)
|
|
custom_mode_alphabet[get_bits(gb, 3)] = i;
|
|
alphabet = custom_mode_alphabet;
|
|
} else
|
|
alphabet = ModeAlphabet[scheme-1];
|
|
|
|
/* iterate through all of the macroblocks that contain 1 or more
|
|
* coded fragments */
|
|
for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
|
|
for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
|
|
if (get_bits_left(gb) <= 0)
|
|
return -1;
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
int mb_x = 2*sb_x + (j>>1);
|
|
int mb_y = 2*sb_y + (((j>>1)+j)&1);
|
|
current_macroblock = mb_y * s->macroblock_width + mb_x;
|
|
|
|
if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
|
|
continue;
|
|
|
|
#define BLOCK_X (2*mb_x + (k&1))
|
|
#define BLOCK_Y (2*mb_y + (k>>1))
|
|
/* coding modes are only stored if the macroblock has at least one
|
|
* luma block coded, otherwise it must be INTER_NO_MV */
|
|
for (k = 0; k < 4; k++) {
|
|
current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
|
|
if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
|
|
break;
|
|
}
|
|
if (k == 4) {
|
|
s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
|
|
continue;
|
|
}
|
|
|
|
/* mode 7 means get 3 bits for each coding mode */
|
|
if (scheme == 7)
|
|
coding_mode = get_bits(gb, 3);
|
|
else
|
|
coding_mode = alphabet
|
|
[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
|
|
|
|
s->macroblock_coding[current_macroblock] = coding_mode;
|
|
for (k = 0; k < 4; k++) {
|
|
frag = s->all_fragments + BLOCK_Y*s->fragment_width[0] + BLOCK_X;
|
|
if (frag->coding_method != MODE_COPY)
|
|
frag->coding_method = coding_mode;
|
|
}
|
|
|
|
#define SET_CHROMA_MODES \
|
|
if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
|
|
frag[s->fragment_start[1]].coding_method = coding_mode;\
|
|
if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
|
|
frag[s->fragment_start[2]].coding_method = coding_mode;
|
|
|
|
if (s->chroma_y_shift) {
|
|
frag = s->all_fragments + mb_y*s->fragment_width[1] + mb_x;
|
|
SET_CHROMA_MODES
|
|
} else if (s->chroma_x_shift) {
|
|
frag = s->all_fragments + 2*mb_y*s->fragment_width[1] + mb_x;
|
|
for (k = 0; k < 2; k++) {
|
|
SET_CHROMA_MODES
|
|
frag += s->fragment_width[1];
|
|
}
|
|
} else {
|
|
for (k = 0; k < 4; k++) {
|
|
frag = s->all_fragments + BLOCK_Y*s->fragment_width[1] + BLOCK_X;
|
|
SET_CHROMA_MODES
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function unpacks all the motion vectors for the individual
|
|
* macroblocks from the bitstream.
|
|
*/
|
|
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
|
|
{
|
|
int j, k, sb_x, sb_y;
|
|
int coding_mode;
|
|
int motion_x[4];
|
|
int motion_y[4];
|
|
int last_motion_x = 0;
|
|
int last_motion_y = 0;
|
|
int prior_last_motion_x = 0;
|
|
int prior_last_motion_y = 0;
|
|
int current_macroblock;
|
|
int current_fragment;
|
|
int frag;
|
|
|
|
if (s->keyframe)
|
|
return 0;
|
|
|
|
/* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
|
|
coding_mode = get_bits1(gb);
|
|
|
|
/* iterate through all of the macroblocks that contain 1 or more
|
|
* coded fragments */
|
|
for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
|
|
for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
|
|
if (get_bits_left(gb) <= 0)
|
|
return -1;
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
int mb_x = 2*sb_x + (j>>1);
|
|
int mb_y = 2*sb_y + (((j>>1)+j)&1);
|
|
current_macroblock = mb_y * s->macroblock_width + mb_x;
|
|
|
|
if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
|
|
(s->macroblock_coding[current_macroblock] == MODE_COPY))
|
|
continue;
|
|
|
|
switch (s->macroblock_coding[current_macroblock]) {
|
|
|
|
case MODE_INTER_PLUS_MV:
|
|
case MODE_GOLDEN_MV:
|
|
/* all 6 fragments use the same motion vector */
|
|
if (coding_mode == 0) {
|
|
motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
|
|
motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
|
|
} else {
|
|
motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
|
|
motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
|
|
}
|
|
|
|
/* vector maintenance, only on MODE_INTER_PLUS_MV */
|
|
if (s->macroblock_coding[current_macroblock] ==
|
|
MODE_INTER_PLUS_MV) {
|
|
prior_last_motion_x = last_motion_x;
|
|
prior_last_motion_y = last_motion_y;
|
|
last_motion_x = motion_x[0];
|
|
last_motion_y = motion_y[0];
|
|
}
|
|
break;
|
|
|
|
case MODE_INTER_FOURMV:
|
|
/* vector maintenance */
|
|
prior_last_motion_x = last_motion_x;
|
|
prior_last_motion_y = last_motion_y;
|
|
|
|
/* fetch 4 vectors from the bitstream, one for each
|
|
* Y fragment, then average for the C fragment vectors */
|
|
for (k = 0; k < 4; k++) {
|
|
current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
|
|
if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
|
|
if (coding_mode == 0) {
|
|
motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
|
|
motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
|
|
} else {
|
|
motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
|
|
motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
|
|
}
|
|
last_motion_x = motion_x[k];
|
|
last_motion_y = motion_y[k];
|
|
} else {
|
|
motion_x[k] = 0;
|
|
motion_y[k] = 0;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case MODE_INTER_LAST_MV:
|
|
/* all 6 fragments use the last motion vector */
|
|
motion_x[0] = last_motion_x;
|
|
motion_y[0] = last_motion_y;
|
|
|
|
/* no vector maintenance (last vector remains the
|
|
* last vector) */
|
|
break;
|
|
|
|
case MODE_INTER_PRIOR_LAST:
|
|
/* all 6 fragments use the motion vector prior to the
|
|
* last motion vector */
|
|
motion_x[0] = prior_last_motion_x;
|
|
motion_y[0] = prior_last_motion_y;
|
|
|
|
/* vector maintenance */
|
|
prior_last_motion_x = last_motion_x;
|
|
prior_last_motion_y = last_motion_y;
|
|
last_motion_x = motion_x[0];
|
|
last_motion_y = motion_y[0];
|
|
break;
|
|
|
|
default:
|
|
/* covers intra, inter without MV, golden without MV */
|
|
motion_x[0] = 0;
|
|
motion_y[0] = 0;
|
|
|
|
/* no vector maintenance */
|
|
break;
|
|
}
|
|
|
|
/* assign the motion vectors to the correct fragments */
|
|
for (k = 0; k < 4; k++) {
|
|
current_fragment =
|
|
BLOCK_Y*s->fragment_width[0] + BLOCK_X;
|
|
if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
|
|
s->motion_val[0][current_fragment][0] = motion_x[k];
|
|
s->motion_val[0][current_fragment][1] = motion_y[k];
|
|
} else {
|
|
s->motion_val[0][current_fragment][0] = motion_x[0];
|
|
s->motion_val[0][current_fragment][1] = motion_y[0];
|
|
}
|
|
}
|
|
|
|
if (s->chroma_y_shift) {
|
|
if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
|
|
motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2);
|
|
motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2);
|
|
}
|
|
motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
|
|
motion_y[0] = (motion_y[0]>>1) | (motion_y[0]&1);
|
|
frag = mb_y*s->fragment_width[1] + mb_x;
|
|
s->motion_val[1][frag][0] = motion_x[0];
|
|
s->motion_val[1][frag][1] = motion_y[0];
|
|
} else if (s->chroma_x_shift) {
|
|
if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
|
|
motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
|
|
motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
|
|
motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
|
|
motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
|
|
} else {
|
|
motion_x[1] = motion_x[0];
|
|
motion_y[1] = motion_y[0];
|
|
}
|
|
motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
|
|
motion_x[1] = (motion_x[1]>>1) | (motion_x[1]&1);
|
|
|
|
frag = 2*mb_y*s->fragment_width[1] + mb_x;
|
|
for (k = 0; k < 2; k++) {
|
|
s->motion_val[1][frag][0] = motion_x[k];
|
|
s->motion_val[1][frag][1] = motion_y[k];
|
|
frag += s->fragment_width[1];
|
|
}
|
|
} else {
|
|
for (k = 0; k < 4; k++) {
|
|
frag = BLOCK_Y*s->fragment_width[1] + BLOCK_X;
|
|
if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
|
|
s->motion_val[1][frag][0] = motion_x[k];
|
|
s->motion_val[1][frag][1] = motion_y[k];
|
|
} else {
|
|
s->motion_val[1][frag][0] = motion_x[0];
|
|
s->motion_val[1][frag][1] = motion_y[0];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
|
|
{
|
|
int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
|
|
int num_blocks = s->total_num_coded_frags;
|
|
|
|
for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
|
|
i = blocks_decoded = num_blocks_at_qpi = 0;
|
|
|
|
bit = get_bits1(gb) ^ 1;
|
|
run_length = 0;
|
|
|
|
do {
|
|
if (run_length == MAXIMUM_LONG_BIT_RUN)
|
|
bit = get_bits1(gb);
|
|
else
|
|
bit ^= 1;
|
|
|
|
run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
|
|
if (run_length == 34)
|
|
run_length += get_bits(gb, 12);
|
|
blocks_decoded += run_length;
|
|
|
|
if (!bit)
|
|
num_blocks_at_qpi += run_length;
|
|
|
|
for (j = 0; j < run_length; i++) {
|
|
if (i >= s->total_num_coded_frags)
|
|
return -1;
|
|
|
|
if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
|
|
s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
|
|
j++;
|
|
}
|
|
}
|
|
} while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
|
|
|
|
num_blocks -= num_blocks_at_qpi;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is called by unpack_dct_coeffs() to extract the VLCs from
|
|
* the bitstream. The VLCs encode tokens which are used to unpack DCT
|
|
* data. This function unpacks all the VLCs for either the Y plane or both
|
|
* C planes, and is called for DC coefficients or different AC coefficient
|
|
* levels (since different coefficient types require different VLC tables.
|
|
*
|
|
* This function returns a residual eob run. E.g, if a particular token gave
|
|
* instructions to EOB the next 5 fragments and there were only 2 fragments
|
|
* left in the current fragment range, 3 would be returned so that it could
|
|
* be passed into the next call to this same function.
|
|
*/
|
|
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
|
|
VLC *table, int coeff_index,
|
|
int plane,
|
|
int eob_run)
|
|
{
|
|
int i, j = 0;
|
|
int token;
|
|
int zero_run = 0;
|
|
DCTELEM coeff = 0;
|
|
int bits_to_get;
|
|
int blocks_ended;
|
|
int coeff_i = 0;
|
|
int num_coeffs = s->num_coded_frags[plane][coeff_index];
|
|
int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
|
|
|
|
/* local references to structure members to avoid repeated deferences */
|
|
int *coded_fragment_list = s->coded_fragment_list[plane];
|
|
Vp3Fragment *all_fragments = s->all_fragments;
|
|
VLC_TYPE (*vlc_table)[2] = table->table;
|
|
|
|
if (num_coeffs < 0)
|
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index);
|
|
|
|
if (eob_run > num_coeffs) {
|
|
coeff_i = blocks_ended = num_coeffs;
|
|
eob_run -= num_coeffs;
|
|
} else {
|
|
coeff_i = blocks_ended = eob_run;
|
|
eob_run = 0;
|
|
}
|
|
|
|
// insert fake EOB token to cover the split between planes or zzi
|
|
if (blocks_ended)
|
|
dct_tokens[j++] = blocks_ended << 2;
|
|
|
|
while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
|
|
/* decode a VLC into a token */
|
|
token = get_vlc2(gb, vlc_table, 11, 3);
|
|
/* use the token to get a zero run, a coefficient, and an eob run */
|
|
if (token <= 6) {
|
|
eob_run = eob_run_base[token];
|
|
if (eob_run_get_bits[token])
|
|
eob_run += get_bits(gb, eob_run_get_bits[token]);
|
|
|
|
// record only the number of blocks ended in this plane,
|
|
// any spill will be recorded in the next plane.
|
|
if (eob_run > num_coeffs - coeff_i) {
|
|
dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
|
|
blocks_ended += num_coeffs - coeff_i;
|
|
eob_run -= num_coeffs - coeff_i;
|
|
coeff_i = num_coeffs;
|
|
} else {
|
|
dct_tokens[j++] = TOKEN_EOB(eob_run);
|
|
blocks_ended += eob_run;
|
|
coeff_i += eob_run;
|
|
eob_run = 0;
|
|
}
|
|
} else {
|
|
bits_to_get = coeff_get_bits[token];
|
|
if (bits_to_get)
|
|
bits_to_get = get_bits(gb, bits_to_get);
|
|
coeff = coeff_tables[token][bits_to_get];
|
|
|
|
zero_run = zero_run_base[token];
|
|
if (zero_run_get_bits[token])
|
|
zero_run += get_bits(gb, zero_run_get_bits[token]);
|
|
|
|
if (zero_run) {
|
|
dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
|
|
} else {
|
|
// Save DC into the fragment structure. DC prediction is
|
|
// done in raster order, so the actual DC can't be in with
|
|
// other tokens. We still need the token in dct_tokens[]
|
|
// however, or else the structure collapses on itself.
|
|
if (!coeff_index)
|
|
all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
|
|
|
|
dct_tokens[j++] = TOKEN_COEFF(coeff);
|
|
}
|
|
|
|
if (coeff_index + zero_run > 64) {
|
|
av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with"
|
|
" %d coeffs left\n", zero_run, 64-coeff_index);
|
|
zero_run = 64 - coeff_index;
|
|
}
|
|
|
|
// zero runs code multiple coefficients,
|
|
// so don't try to decode coeffs for those higher levels
|
|
for (i = coeff_index+1; i <= coeff_index+zero_run; i++)
|
|
s->num_coded_frags[plane][i]--;
|
|
coeff_i++;
|
|
}
|
|
}
|
|
|
|
if (blocks_ended > s->num_coded_frags[plane][coeff_index])
|
|
av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
|
|
|
|
// decrement the number of blocks that have higher coeffecients for each
|
|
// EOB run at this level
|
|
if (blocks_ended)
|
|
for (i = coeff_index+1; i < 64; i++)
|
|
s->num_coded_frags[plane][i] -= blocks_ended;
|
|
|
|
// setup the next buffer
|
|
if (plane < 2)
|
|
s->dct_tokens[plane+1][coeff_index] = dct_tokens + j;
|
|
else if (coeff_index < 63)
|
|
s->dct_tokens[0][coeff_index+1] = dct_tokens + j;
|
|
|
|
return eob_run;
|
|
}
|
|
|
|
static void reverse_dc_prediction(Vp3DecodeContext *s,
|
|
int first_fragment,
|
|
int fragment_width,
|
|
int fragment_height);
|
|
/*
|
|
* This function unpacks all of the DCT coefficient data from the
|
|
* bitstream.
|
|
*/
|
|
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
|
|
{
|
|
int i;
|
|
int dc_y_table;
|
|
int dc_c_table;
|
|
int ac_y_table;
|
|
int ac_c_table;
|
|
int residual_eob_run = 0;
|
|
VLC *y_tables[64];
|
|
VLC *c_tables[64];
|
|
|
|
s->dct_tokens[0][0] = s->dct_tokens_base;
|
|
|
|
/* fetch the DC table indexes */
|
|
dc_y_table = get_bits(gb, 4);
|
|
dc_c_table = get_bits(gb, 4);
|
|
|
|
/* unpack the Y plane DC coefficients */
|
|
residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
|
|
0, residual_eob_run);
|
|
|
|
/* reverse prediction of the Y-plane DC coefficients */
|
|
reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
|
|
|
|
/* unpack the C plane DC coefficients */
|
|
residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
|
|
1, residual_eob_run);
|
|
residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
|
|
2, residual_eob_run);
|
|
|
|
/* reverse prediction of the C-plane DC coefficients */
|
|
if (!(s->avctx->flags & CODEC_FLAG_GRAY))
|
|
{
|
|
reverse_dc_prediction(s, s->fragment_start[1],
|
|
s->fragment_width[1], s->fragment_height[1]);
|
|
reverse_dc_prediction(s, s->fragment_start[2],
|
|
s->fragment_width[1], s->fragment_height[1]);
|
|
}
|
|
|
|
/* fetch the AC table indexes */
|
|
ac_y_table = get_bits(gb, 4);
|
|
ac_c_table = get_bits(gb, 4);
|
|
|
|
/* build tables of AC VLC tables */
|
|
for (i = 1; i <= 5; i++) {
|
|
y_tables[i] = &s->ac_vlc_1[ac_y_table];
|
|
c_tables[i] = &s->ac_vlc_1[ac_c_table];
|
|
}
|
|
for (i = 6; i <= 14; i++) {
|
|
y_tables[i] = &s->ac_vlc_2[ac_y_table];
|
|
c_tables[i] = &s->ac_vlc_2[ac_c_table];
|
|
}
|
|
for (i = 15; i <= 27; i++) {
|
|
y_tables[i] = &s->ac_vlc_3[ac_y_table];
|
|
c_tables[i] = &s->ac_vlc_3[ac_c_table];
|
|
}
|
|
for (i = 28; i <= 63; i++) {
|
|
y_tables[i] = &s->ac_vlc_4[ac_y_table];
|
|
c_tables[i] = &s->ac_vlc_4[ac_c_table];
|
|
}
|
|
|
|
/* decode all AC coefficents */
|
|
for (i = 1; i <= 63; i++) {
|
|
residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
|
|
0, residual_eob_run);
|
|
|
|
residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
|
|
1, residual_eob_run);
|
|
residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
|
|
2, residual_eob_run);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function reverses the DC prediction for each coded fragment in
|
|
* the frame. Much of this function is adapted directly from the original
|
|
* VP3 source code.
|
|
*/
|
|
#define COMPATIBLE_FRAME(x) \
|
|
(compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
|
|
#define DC_COEFF(u) s->all_fragments[u].dc
|
|
|
|
static void reverse_dc_prediction(Vp3DecodeContext *s,
|
|
int first_fragment,
|
|
int fragment_width,
|
|
int fragment_height)
|
|
{
|
|
|
|
#define PUL 8
|
|
#define PU 4
|
|
#define PUR 2
|
|
#define PL 1
|
|
|
|
int x, y;
|
|
int i = first_fragment;
|
|
|
|
int predicted_dc;
|
|
|
|
/* DC values for the left, up-left, up, and up-right fragments */
|
|
int vl, vul, vu, vur;
|
|
|
|
/* indexes for the left, up-left, up, and up-right fragments */
|
|
int l, ul, u, ur;
|
|
|
|
/*
|
|
* The 6 fields mean:
|
|
* 0: up-left multiplier
|
|
* 1: up multiplier
|
|
* 2: up-right multiplier
|
|
* 3: left multiplier
|
|
*/
|
|
static const int predictor_transform[16][4] = {
|
|
{ 0, 0, 0, 0},
|
|
{ 0, 0, 0,128}, // PL
|
|
{ 0, 0,128, 0}, // PUR
|
|
{ 0, 0, 53, 75}, // PUR|PL
|
|
{ 0,128, 0, 0}, // PU
|
|
{ 0, 64, 0, 64}, // PU|PL
|
|
{ 0,128, 0, 0}, // PU|PUR
|
|
{ 0, 0, 53, 75}, // PU|PUR|PL
|
|
{128, 0, 0, 0}, // PUL
|
|
{ 0, 0, 0,128}, // PUL|PL
|
|
{ 64, 0, 64, 0}, // PUL|PUR
|
|
{ 0, 0, 53, 75}, // PUL|PUR|PL
|
|
{ 0,128, 0, 0}, // PUL|PU
|
|
{-104,116, 0,116}, // PUL|PU|PL
|
|
{ 24, 80, 24, 0}, // PUL|PU|PUR
|
|
{-104,116, 0,116} // PUL|PU|PUR|PL
|
|
};
|
|
|
|
/* This table shows which types of blocks can use other blocks for
|
|
* prediction. For example, INTRA is the only mode in this table to
|
|
* have a frame number of 0. That means INTRA blocks can only predict
|
|
* from other INTRA blocks. There are 2 golden frame coding types;
|
|
* blocks encoding in these modes can only predict from other blocks
|
|
* that were encoded with these 1 of these 2 modes. */
|
|
static const unsigned char compatible_frame[9] = {
|
|
1, /* MODE_INTER_NO_MV */
|
|
0, /* MODE_INTRA */
|
|
1, /* MODE_INTER_PLUS_MV */
|
|
1, /* MODE_INTER_LAST_MV */
|
|
1, /* MODE_INTER_PRIOR_MV */
|
|
2, /* MODE_USING_GOLDEN */
|
|
2, /* MODE_GOLDEN_MV */
|
|
1, /* MODE_INTER_FOUR_MV */
|
|
3 /* MODE_COPY */
|
|
};
|
|
int current_frame_type;
|
|
|
|
/* there is a last DC predictor for each of the 3 frame types */
|
|
short last_dc[3];
|
|
|
|
int transform = 0;
|
|
|
|
vul = vu = vur = vl = 0;
|
|
last_dc[0] = last_dc[1] = last_dc[2] = 0;
|
|
|
|
/* for each fragment row... */
|
|
for (y = 0; y < fragment_height; y++) {
|
|
|
|
/* for each fragment in a row... */
|
|
for (x = 0; x < fragment_width; x++, i++) {
|
|
|
|
/* reverse prediction if this block was coded */
|
|
if (s->all_fragments[i].coding_method != MODE_COPY) {
|
|
|
|
current_frame_type =
|
|
compatible_frame[s->all_fragments[i].coding_method];
|
|
|
|
transform= 0;
|
|
if(x){
|
|
l= i-1;
|
|
vl = DC_COEFF(l);
|
|
if(COMPATIBLE_FRAME(l))
|
|
transform |= PL;
|
|
}
|
|
if(y){
|
|
u= i-fragment_width;
|
|
vu = DC_COEFF(u);
|
|
if(COMPATIBLE_FRAME(u))
|
|
transform |= PU;
|
|
if(x){
|
|
ul= i-fragment_width-1;
|
|
vul = DC_COEFF(ul);
|
|
if(COMPATIBLE_FRAME(ul))
|
|
transform |= PUL;
|
|
}
|
|
if(x + 1 < fragment_width){
|
|
ur= i-fragment_width+1;
|
|
vur = DC_COEFF(ur);
|
|
if(COMPATIBLE_FRAME(ur))
|
|
transform |= PUR;
|
|
}
|
|
}
|
|
|
|
if (transform == 0) {
|
|
|
|
/* if there were no fragments to predict from, use last
|
|
* DC saved */
|
|
predicted_dc = last_dc[current_frame_type];
|
|
} else {
|
|
|
|
/* apply the appropriate predictor transform */
|
|
predicted_dc =
|
|
(predictor_transform[transform][0] * vul) +
|
|
(predictor_transform[transform][1] * vu) +
|
|
(predictor_transform[transform][2] * vur) +
|
|
(predictor_transform[transform][3] * vl);
|
|
|
|
predicted_dc /= 128;
|
|
|
|
/* check for outranging on the [ul u l] and
|
|
* [ul u ur l] predictors */
|
|
if ((transform == 15) || (transform == 13)) {
|
|
if (FFABS(predicted_dc - vu) > 128)
|
|
predicted_dc = vu;
|
|
else if (FFABS(predicted_dc - vl) > 128)
|
|
predicted_dc = vl;
|
|
else if (FFABS(predicted_dc - vul) > 128)
|
|
predicted_dc = vul;
|
|
}
|
|
}
|
|
|
|
/* at long last, apply the predictor */
|
|
DC_COEFF(i) += predicted_dc;
|
|
/* save the DC */
|
|
last_dc[current_frame_type] = DC_COEFF(i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
|
|
{
|
|
int x, y;
|
|
int *bounding_values= s->bounding_values_array+127;
|
|
|
|
int width = s->fragment_width[!!plane];
|
|
int height = s->fragment_height[!!plane];
|
|
int fragment = s->fragment_start [plane] + ystart * width;
|
|
int stride = s->current_frame.linesize[plane];
|
|
uint8_t *plane_data = s->current_frame.data [plane];
|
|
if (!s->flipped_image) stride = -stride;
|
|
plane_data += s->data_offset[plane] + 8*ystart*stride;
|
|
|
|
for (y = ystart; y < yend; y++) {
|
|
|
|
for (x = 0; x < width; x++) {
|
|
/* This code basically just deblocks on the edges of coded blocks.
|
|
* However, it has to be much more complicated because of the
|
|
* braindamaged deblock ordering used in VP3/Theora. Order matters
|
|
* because some pixels get filtered twice. */
|
|
if( s->all_fragments[fragment].coding_method != MODE_COPY )
|
|
{
|
|
/* do not perform left edge filter for left columns frags */
|
|
if (x > 0) {
|
|
s->dsp.vp3_h_loop_filter(
|
|
plane_data + 8*x,
|
|
stride, bounding_values);
|
|
}
|
|
|
|
/* do not perform top edge filter for top row fragments */
|
|
if (y > 0) {
|
|
s->dsp.vp3_v_loop_filter(
|
|
plane_data + 8*x,
|
|
stride, bounding_values);
|
|
}
|
|
|
|
/* do not perform right edge filter for right column
|
|
* fragments or if right fragment neighbor is also coded
|
|
* in this frame (it will be filtered in next iteration) */
|
|
if ((x < width - 1) &&
|
|
(s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
|
|
s->dsp.vp3_h_loop_filter(
|
|
plane_data + 8*x + 8,
|
|
stride, bounding_values);
|
|
}
|
|
|
|
/* do not perform bottom edge filter for bottom row
|
|
* fragments or if bottom fragment neighbor is also coded
|
|
* in this frame (it will be filtered in the next row) */
|
|
if ((y < height - 1) &&
|
|
(s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
|
|
s->dsp.vp3_v_loop_filter(
|
|
plane_data + 8*x + 8*stride,
|
|
stride, bounding_values);
|
|
}
|
|
}
|
|
|
|
fragment++;
|
|
}
|
|
plane_data += 8*stride;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Pull DCT tokens from the 64 levels to decode and dequant the coefficients
|
|
* for the next block in coding order
|
|
*/
|
|
static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
|
|
int plane, int inter, DCTELEM block[64])
|
|
{
|
|
int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
|
|
uint8_t *perm = s->scantable.permutated;
|
|
int i = 0;
|
|
|
|
do {
|
|
int token = *s->dct_tokens[plane][i];
|
|
switch (token & 3) {
|
|
case 0: // EOB
|
|
if (--token < 4) // 0-3 are token types, so the EOB run must now be 0
|
|
s->dct_tokens[plane][i]++;
|
|
else
|
|
*s->dct_tokens[plane][i] = token & ~3;
|
|
goto end;
|
|
case 1: // zero run
|
|
s->dct_tokens[plane][i]++;
|
|
i += (token >> 2) & 0x7f;
|
|
block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
|
|
i++;
|
|
break;
|
|
case 2: // coeff
|
|
block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
|
|
s->dct_tokens[plane][i++]++;
|
|
break;
|
|
default: // shouldn't happen
|
|
return i;
|
|
}
|
|
} while (i < 64);
|
|
end:
|
|
// the actual DC+prediction is in the fragment structure
|
|
block[0] = frag->dc * s->qmat[0][inter][plane][0];
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* called when all pixels up to row y are complete
|
|
*/
|
|
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
|
|
{
|
|
int h, cy;
|
|
int offset[4];
|
|
|
|
if (HAVE_PTHREADS && s->avctx->active_thread_type&FF_THREAD_FRAME) {
|
|
int y_flipped = s->flipped_image ? s->avctx->height-y : y;
|
|
|
|
// At the end of the frame, report INT_MAX instead of the height of the frame.
|
|
// This makes the other threads' ff_thread_await_progress() calls cheaper, because
|
|
// they don't have to clip their values.
|
|
ff_thread_report_progress(&s->current_frame, y_flipped==s->avctx->height ? INT_MAX : y_flipped-1, 0);
|
|
}
|
|
|
|
if(s->avctx->draw_horiz_band==NULL)
|
|
return;
|
|
|
|
h= y - s->last_slice_end;
|
|
s->last_slice_end= y;
|
|
y -= h;
|
|
|
|
if (!s->flipped_image) {
|
|
y = s->avctx->height - y - h;
|
|
}
|
|
|
|
cy = y >> s->chroma_y_shift;
|
|
offset[0] = s->current_frame.linesize[0]*y;
|
|
offset[1] = s->current_frame.linesize[1]*cy;
|
|
offset[2] = s->current_frame.linesize[2]*cy;
|
|
offset[3] = 0;
|
|
|
|
emms_c();
|
|
s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
|
|
}
|
|
|
|
/**
|
|
* Wait for the reference frame of the current fragment.
|
|
* The progress value is in luma pixel rows.
|
|
*/
|
|
static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y)
|
|
{
|
|
AVFrame *ref_frame;
|
|
int ref_row;
|
|
int border = motion_y&1;
|
|
|
|
if (fragment->coding_method == MODE_USING_GOLDEN ||
|
|
fragment->coding_method == MODE_GOLDEN_MV)
|
|
ref_frame = &s->golden_frame;
|
|
else
|
|
ref_frame = &s->last_frame;
|
|
|
|
ref_row = y + (motion_y>>1);
|
|
ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
|
|
|
|
ff_thread_await_progress(ref_frame, ref_row, 0);
|
|
}
|
|
|
|
/*
|
|
* Perform the final rendering for a particular slice of data.
|
|
* The slice number ranges from 0..(c_superblock_height - 1).
|
|
*/
|
|
static void render_slice(Vp3DecodeContext *s, int slice)
|
|
{
|
|
int x, y, i, j, fragment;
|
|
LOCAL_ALIGNED_16(DCTELEM, block, [64]);
|
|
int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
|
|
int motion_halfpel_index;
|
|
uint8_t *motion_source;
|
|
int plane, first_pixel;
|
|
|
|
if (slice >= s->c_superblock_height)
|
|
return;
|
|
|
|
for (plane = 0; plane < 3; plane++) {
|
|
uint8_t *output_plane = s->current_frame.data [plane] + s->data_offset[plane];
|
|
uint8_t * last_plane = s-> last_frame.data [plane] + s->data_offset[plane];
|
|
uint8_t *golden_plane = s-> golden_frame.data [plane] + s->data_offset[plane];
|
|
int stride = s->current_frame.linesize[plane];
|
|
int plane_width = s->width >> (plane && s->chroma_x_shift);
|
|
int plane_height = s->height >> (plane && s->chroma_y_shift);
|
|
int8_t (*motion_val)[2] = s->motion_val[!!plane];
|
|
|
|
int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
|
|
int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
|
|
int slice_width = plane ? s->c_superblock_width : s->y_superblock_width;
|
|
|
|
int fragment_width = s->fragment_width[!!plane];
|
|
int fragment_height = s->fragment_height[!!plane];
|
|
int fragment_start = s->fragment_start[plane];
|
|
int do_await = !plane && HAVE_PTHREADS && (s->avctx->active_thread_type&FF_THREAD_FRAME);
|
|
|
|
if (!s->flipped_image) stride = -stride;
|
|
if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
|
|
continue;
|
|
|
|
|
|
if(FFABS(stride) > 2048)
|
|
return; //various tables are fixed size
|
|
|
|
/* for each superblock row in the slice (both of them)... */
|
|
for (; sb_y < slice_height; sb_y++) {
|
|
|
|
/* for each superblock in a row... */
|
|
for (sb_x = 0; sb_x < slice_width; sb_x++) {
|
|
|
|
/* for each block in a superblock... */
|
|
for (j = 0; j < 16; j++) {
|
|
x = 4*sb_x + hilbert_offset[j][0];
|
|
y = 4*sb_y + hilbert_offset[j][1];
|
|
fragment = y*fragment_width + x;
|
|
|
|
i = fragment_start + fragment;
|
|
|
|
// bounds check
|
|
if (x >= fragment_width || y >= fragment_height)
|
|
continue;
|
|
|
|
first_pixel = 8*y*stride + 8*x;
|
|
|
|
if (do_await && s->all_fragments[i].coding_method != MODE_INTRA)
|
|
await_reference_row(s, &s->all_fragments[i], motion_val[fragment][1], (16*y) >> s->chroma_y_shift);
|
|
|
|
/* transform if this block was coded */
|
|
if (s->all_fragments[i].coding_method != MODE_COPY) {
|
|
if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
|
|
(s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
|
|
motion_source= golden_plane;
|
|
else
|
|
motion_source= last_plane;
|
|
|
|
motion_source += first_pixel;
|
|
motion_halfpel_index = 0;
|
|
|
|
/* sort out the motion vector if this fragment is coded
|
|
* using a motion vector method */
|
|
if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
|
|
(s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
|
|
int src_x, src_y;
|
|
motion_x = motion_val[fragment][0];
|
|
motion_y = motion_val[fragment][1];
|
|
|
|
src_x= (motion_x>>1) + 8*x;
|
|
src_y= (motion_y>>1) + 8*y;
|
|
|
|
motion_halfpel_index = motion_x & 0x01;
|
|
motion_source += (motion_x >> 1);
|
|
|
|
motion_halfpel_index |= (motion_y & 0x01) << 1;
|
|
motion_source += ((motion_y >> 1) * stride);
|
|
|
|
if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
|
|
uint8_t *temp= s->edge_emu_buffer;
|
|
if(stride<0) temp -= 9*stride;
|
|
else temp += 9*stride;
|
|
|
|
s->dsp.emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
|
|
motion_source= temp;
|
|
}
|
|
}
|
|
|
|
|
|
/* first, take care of copying a block from either the
|
|
* previous or the golden frame */
|
|
if (s->all_fragments[i].coding_method != MODE_INTRA) {
|
|
/* Note, it is possible to implement all MC cases with
|
|
put_no_rnd_pixels_l2 which would look more like the
|
|
VP3 source but this would be slower as
|
|
put_no_rnd_pixels_tab is better optimzed */
|
|
if(motion_halfpel_index != 3){
|
|
s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
|
|
output_plane + first_pixel,
|
|
motion_source, stride, 8);
|
|
}else{
|
|
int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
|
|
s->dsp.put_no_rnd_pixels_l2[1](
|
|
output_plane + first_pixel,
|
|
motion_source - d,
|
|
motion_source + stride + 1 + d,
|
|
stride, 8);
|
|
}
|
|
}
|
|
|
|
s->dsp.clear_block(block);
|
|
|
|
/* invert DCT and place (or add) in final output */
|
|
|
|
if (s->all_fragments[i].coding_method == MODE_INTRA) {
|
|
vp3_dequant(s, s->all_fragments + i, plane, 0, block);
|
|
if(s->avctx->idct_algo!=FF_IDCT_VP3)
|
|
block[0] += 128<<3;
|
|
s->dsp.idct_put(
|
|
output_plane + first_pixel,
|
|
stride,
|
|
block);
|
|
} else {
|
|
if (vp3_dequant(s, s->all_fragments + i, plane, 1, block)) {
|
|
s->dsp.idct_add(
|
|
output_plane + first_pixel,
|
|
stride,
|
|
block);
|
|
} else {
|
|
s->dsp.vp3_idct_dc_add(output_plane + first_pixel, stride, block);
|
|
}
|
|
}
|
|
} else {
|
|
|
|
/* copy directly from the previous frame */
|
|
s->dsp.put_pixels_tab[1][0](
|
|
output_plane + first_pixel,
|
|
last_plane + first_pixel,
|
|
stride, 8);
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
// Filter up to the last row in the superblock row
|
|
if (!s->skip_loop_filter)
|
|
apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1));
|
|
}
|
|
}
|
|
|
|
/* this looks like a good place for slice dispatch... */
|
|
/* algorithm:
|
|
* if (slice == s->macroblock_height - 1)
|
|
* dispatch (both last slice & 2nd-to-last slice);
|
|
* else if (slice > 0)
|
|
* dispatch (slice - 1);
|
|
*/
|
|
|
|
vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) -16, s->height-16));
|
|
}
|
|
|
|
/// Allocate tables for per-frame data in Vp3DecodeContext
|
|
static av_cold int allocate_tables(AVCodecContext *avctx)
|
|
{
|
|
Vp3DecodeContext *s = avctx->priv_data;
|
|
int y_fragment_count, c_fragment_count;
|
|
|
|
y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
|
|
c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
|
|
|
|
s->superblock_coding = av_malloc(s->superblock_count);
|
|
s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
|
|
s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int));
|
|
s->dct_tokens_base = av_malloc(64*s->fragment_count * sizeof(*s->dct_tokens_base));
|
|
s->motion_val[0] = av_malloc(y_fragment_count * sizeof(*s->motion_val[0]));
|
|
s->motion_val[1] = av_malloc(c_fragment_count * sizeof(*s->motion_val[1]));
|
|
|
|
/* work out the block mapping tables */
|
|
s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
|
|
s->macroblock_coding = av_malloc(s->macroblock_count + 1);
|
|
|
|
if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base ||
|
|
!s->coded_fragment_list[0] || !s->superblock_fragments || !s->macroblock_coding ||
|
|
!s->motion_val[0] || !s->motion_val[1]) {
|
|
vp3_decode_end(avctx);
|
|
return -1;
|
|
}
|
|
|
|
init_block_mapping(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is the ffmpeg/libavcodec API init function.
|
|
*/
|
|
static av_cold int vp3_decode_init(AVCodecContext *avctx)
|
|
{
|
|
Vp3DecodeContext *s = avctx->priv_data;
|
|
int i, inter, plane;
|
|
int c_width;
|
|
int c_height;
|
|
int y_fragment_count, c_fragment_count;
|
|
|
|
if (avctx->codec_tag == MKTAG('V','P','3','0'))
|
|
s->version = 0;
|
|
else
|
|
s->version = 1;
|
|
|
|
s->avctx = avctx;
|
|
s->width = FFALIGN(avctx->width, 16);
|
|
s->height = FFALIGN(avctx->height, 16);
|
|
if (avctx->pix_fmt == PIX_FMT_NONE)
|
|
avctx->pix_fmt = PIX_FMT_YUV420P;
|
|
avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
|
|
if(avctx->idct_algo==FF_IDCT_AUTO)
|
|
avctx->idct_algo=FF_IDCT_VP3;
|
|
dsputil_init(&s->dsp, avctx);
|
|
|
|
ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
|
|
|
|
/* initialize to an impossible value which will force a recalculation
|
|
* in the first frame decode */
|
|
for (i = 0; i < 3; i++)
|
|
s->qps[i] = -1;
|
|
|
|
avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
|
|
|
|
s->y_superblock_width = (s->width + 31) / 32;
|
|
s->y_superblock_height = (s->height + 31) / 32;
|
|
s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
|
|
|
|
/* work out the dimensions for the C planes */
|
|
c_width = s->width >> s->chroma_x_shift;
|
|
c_height = s->height >> s->chroma_y_shift;
|
|
s->c_superblock_width = (c_width + 31) / 32;
|
|
s->c_superblock_height = (c_height + 31) / 32;
|
|
s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
|
|
|
|
s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
|
|
s->u_superblock_start = s->y_superblock_count;
|
|
s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
|
|
|
|
s->macroblock_width = (s->width + 15) / 16;
|
|
s->macroblock_height = (s->height + 15) / 16;
|
|
s->macroblock_count = s->macroblock_width * s->macroblock_height;
|
|
|
|
s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
|
|
s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
|
|
s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
|
|
s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
|
|
|
|
/* fragment count covers all 8x8 blocks for all 3 planes */
|
|
y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
|
|
c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
|
|
s->fragment_count = y_fragment_count + 2*c_fragment_count;
|
|
s->fragment_start[1] = y_fragment_count;
|
|
s->fragment_start[2] = y_fragment_count + c_fragment_count;
|
|
|
|
if (!s->theora_tables)
|
|
{
|
|
for (i = 0; i < 64; i++) {
|
|
s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
|
|
s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
|
|
s->base_matrix[0][i] = vp31_intra_y_dequant[i];
|
|
s->base_matrix[1][i] = vp31_intra_c_dequant[i];
|
|
s->base_matrix[2][i] = vp31_inter_dequant[i];
|
|
s->filter_limit_values[i] = vp31_filter_limit_values[i];
|
|
}
|
|
|
|
for(inter=0; inter<2; inter++){
|
|
for(plane=0; plane<3; plane++){
|
|
s->qr_count[inter][plane]= 1;
|
|
s->qr_size [inter][plane][0]= 63;
|
|
s->qr_base [inter][plane][0]=
|
|
s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
|
|
}
|
|
}
|
|
|
|
/* init VLC tables */
|
|
for (i = 0; i < 16; i++) {
|
|
|
|
/* DC histograms */
|
|
init_vlc(&s->dc_vlc[i], 11, 32,
|
|
&dc_bias[i][0][1], 4, 2,
|
|
&dc_bias[i][0][0], 4, 2, 0);
|
|
|
|
/* group 1 AC histograms */
|
|
init_vlc(&s->ac_vlc_1[i], 11, 32,
|
|
&ac_bias_0[i][0][1], 4, 2,
|
|
&ac_bias_0[i][0][0], 4, 2, 0);
|
|
|
|
/* group 2 AC histograms */
|
|
init_vlc(&s->ac_vlc_2[i], 11, 32,
|
|
&ac_bias_1[i][0][1], 4, 2,
|
|
&ac_bias_1[i][0][0], 4, 2, 0);
|
|
|
|
/* group 3 AC histograms */
|
|
init_vlc(&s->ac_vlc_3[i], 11, 32,
|
|
&ac_bias_2[i][0][1], 4, 2,
|
|
&ac_bias_2[i][0][0], 4, 2, 0);
|
|
|
|
/* group 4 AC histograms */
|
|
init_vlc(&s->ac_vlc_4[i], 11, 32,
|
|
&ac_bias_3[i][0][1], 4, 2,
|
|
&ac_bias_3[i][0][0], 4, 2, 0);
|
|
}
|
|
} else {
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
/* DC histograms */
|
|
if (init_vlc(&s->dc_vlc[i], 11, 32,
|
|
&s->huffman_table[i][0][1], 8, 4,
|
|
&s->huffman_table[i][0][0], 8, 4, 0) < 0)
|
|
goto vlc_fail;
|
|
|
|
/* group 1 AC histograms */
|
|
if (init_vlc(&s->ac_vlc_1[i], 11, 32,
|
|
&s->huffman_table[i+16][0][1], 8, 4,
|
|
&s->huffman_table[i+16][0][0], 8, 4, 0) < 0)
|
|
goto vlc_fail;
|
|
|
|
/* group 2 AC histograms */
|
|
if (init_vlc(&s->ac_vlc_2[i], 11, 32,
|
|
&s->huffman_table[i+16*2][0][1], 8, 4,
|
|
&s->huffman_table[i+16*2][0][0], 8, 4, 0) < 0)
|
|
goto vlc_fail;
|
|
|
|
/* group 3 AC histograms */
|
|
if (init_vlc(&s->ac_vlc_3[i], 11, 32,
|
|
&s->huffman_table[i+16*3][0][1], 8, 4,
|
|
&s->huffman_table[i+16*3][0][0], 8, 4, 0) < 0)
|
|
goto vlc_fail;
|
|
|
|
/* group 4 AC histograms */
|
|
if (init_vlc(&s->ac_vlc_4[i], 11, 32,
|
|
&s->huffman_table[i+16*4][0][1], 8, 4,
|
|
&s->huffman_table[i+16*4][0][0], 8, 4, 0) < 0)
|
|
goto vlc_fail;
|
|
}
|
|
}
|
|
|
|
init_vlc(&s->superblock_run_length_vlc, 6, 34,
|
|
&superblock_run_length_vlc_table[0][1], 4, 2,
|
|
&superblock_run_length_vlc_table[0][0], 4, 2, 0);
|
|
|
|
init_vlc(&s->fragment_run_length_vlc, 5, 30,
|
|
&fragment_run_length_vlc_table[0][1], 4, 2,
|
|
&fragment_run_length_vlc_table[0][0], 4, 2, 0);
|
|
|
|
init_vlc(&s->mode_code_vlc, 3, 8,
|
|
&mode_code_vlc_table[0][1], 2, 1,
|
|
&mode_code_vlc_table[0][0], 2, 1, 0);
|
|
|
|
init_vlc(&s->motion_vector_vlc, 6, 63,
|
|
&motion_vector_vlc_table[0][1], 2, 1,
|
|
&motion_vector_vlc_table[0][0], 2, 1, 0);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
s->current_frame.data[i] = NULL;
|
|
s->last_frame.data[i] = NULL;
|
|
s->golden_frame.data[i] = NULL;
|
|
}
|
|
|
|
return allocate_tables(avctx);
|
|
|
|
vlc_fail:
|
|
av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
|
|
return -1;
|
|
}
|
|
|
|
/// Release and shuffle frames after decode finishes
|
|
static void update_frames(AVCodecContext *avctx)
|
|
{
|
|
Vp3DecodeContext *s = avctx->priv_data;
|
|
|
|
/* release the last frame, if it is allocated and if it is not the
|
|
* golden frame */
|
|
if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
|
|
ff_thread_release_buffer(avctx, &s->last_frame);
|
|
|
|
/* shuffle frames (last = current) */
|
|
s->last_frame= s->current_frame;
|
|
|
|
if (s->keyframe) {
|
|
if (s->golden_frame.data[0])
|
|
ff_thread_release_buffer(avctx, &s->golden_frame);
|
|
s->golden_frame = s->current_frame;
|
|
s->last_frame.type = FF_BUFFER_TYPE_COPY;
|
|
}
|
|
|
|
s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
|
|
}
|
|
|
|
static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
|
|
{
|
|
Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
|
|
int qps_changed = 0, i, err;
|
|
|
|
if (!s1->current_frame.data[0]
|
|
||s->width != s1->width
|
|
||s->height!= s1->height)
|
|
return -1;
|
|
|
|
if (s != s1) {
|
|
// init tables if the first frame hasn't been decoded
|
|
if (!s->current_frame.data[0]) {
|
|
int y_fragment_count, c_fragment_count;
|
|
s->avctx = dst;
|
|
err = allocate_tables(dst);
|
|
if (err)
|
|
return err;
|
|
y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
|
|
c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
|
|
memcpy(s->motion_val[0], s1->motion_val[0], y_fragment_count * sizeof(*s->motion_val[0]));
|
|
memcpy(s->motion_val[1], s1->motion_val[1], c_fragment_count * sizeof(*s->motion_val[1]));
|
|
}
|
|
|
|
#define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field)
|
|
|
|
// copy previous frame data
|
|
copy_fields(s, s1, golden_frame, dsp);
|
|
|
|
// copy qscale data if necessary
|
|
for (i = 0; i < 3; i++) {
|
|
if (s->qps[i] != s1->qps[1]) {
|
|
qps_changed = 1;
|
|
memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
|
|
}
|
|
}
|
|
|
|
if (s->qps[0] != s1->qps[0]) {
|
|
memcpy(&s->qscale_table, &s1->qscale_table, sizeof(s->qscale_table));
|
|
memcpy(&s->bounding_values_array, &s1->bounding_values_array, sizeof(s->bounding_values_array));
|
|
}
|
|
|
|
if (qps_changed)
|
|
copy_fields(s, s1, qps, superblock_count);
|
|
#undef copy_fields
|
|
}
|
|
|
|
update_frames(dst);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is the ffmpeg/libavcodec API frame decode function.
|
|
*/
|
|
static int vp3_decode_frame(AVCodecContext *avctx,
|
|
void *data, int *data_size,
|
|
AVPacket *avpkt)
|
|
{
|
|
const uint8_t *buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
Vp3DecodeContext *s = avctx->priv_data;
|
|
GetBitContext gb;
|
|
int i;
|
|
|
|
init_get_bits(&gb, buf, buf_size * 8);
|
|
|
|
if (s->theora && get_bits1(&gb))
|
|
{
|
|
av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
|
|
return -1;
|
|
}
|
|
|
|
s->keyframe = !get_bits1(&gb);
|
|
if (!s->theora)
|
|
skip_bits(&gb, 1);
|
|
for (i = 0; i < 3; i++)
|
|
s->last_qps[i] = s->qps[i];
|
|
|
|
s->nqps=0;
|
|
do{
|
|
s->qps[s->nqps++]= get_bits(&gb, 6);
|
|
} while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
|
|
for (i = s->nqps; i < 3; i++)
|
|
s->qps[i] = -1;
|
|
|
|
if (s->avctx->debug & FF_DEBUG_PICT_INFO)
|
|
av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
|
|
s->keyframe?"key":"", avctx->frame_number+1, s->qps[0]);
|
|
|
|
s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
|
|
avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL : AVDISCARD_NONKEY);
|
|
|
|
if (s->qps[0] != s->last_qps[0])
|
|
init_loop_filter(s);
|
|
|
|
for (i = 0; i < s->nqps; i++)
|
|
// reinit all dequantizers if the first one changed, because
|
|
// the DC of the first quantizer must be used for all matrices
|
|
if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
|
|
init_dequantizer(s, i);
|
|
|
|
if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
|
|
return buf_size;
|
|
|
|
s->current_frame.reference = 3;
|
|
s->current_frame.pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE;
|
|
if (ff_thread_get_buffer(avctx, &s->current_frame) < 0) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
|
|
goto error;
|
|
}
|
|
|
|
if (s->keyframe) {
|
|
if (!s->theora)
|
|
{
|
|
skip_bits(&gb, 4); /* width code */
|
|
skip_bits(&gb, 4); /* height code */
|
|
if (s->version)
|
|
{
|
|
s->version = get_bits(&gb, 5);
|
|
if (avctx->frame_number == 0)
|
|
av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
|
|
}
|
|
}
|
|
if (s->version || s->theora)
|
|
{
|
|
if (get_bits1(&gb))
|
|
av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
|
|
skip_bits(&gb, 2); /* reserved? */
|
|
}
|
|
} else {
|
|
if (!s->golden_frame.data[0]) {
|
|
av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n");
|
|
|
|
s->golden_frame.reference = 3;
|
|
s->golden_frame.pict_type = FF_I_TYPE;
|
|
if (ff_thread_get_buffer(avctx, &s->golden_frame) < 0) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
|
|
goto error;
|
|
}
|
|
s->last_frame = s->golden_frame;
|
|
s->last_frame.type = FF_BUFFER_TYPE_COPY;
|
|
}
|
|
}
|
|
|
|
s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
|
|
s->current_frame.qstride= 0;
|
|
|
|
memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
|
|
ff_thread_finish_setup(avctx);
|
|
|
|
if (unpack_superblocks(s, &gb)){
|
|
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
|
|
goto error;
|
|
}
|
|
if (unpack_modes(s, &gb)){
|
|
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
|
|
goto error;
|
|
}
|
|
if (unpack_vectors(s, &gb)){
|
|
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
|
|
goto error;
|
|
}
|
|
if (unpack_block_qpis(s, &gb)){
|
|
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
|
|
goto error;
|
|
}
|
|
if (unpack_dct_coeffs(s, &gb)){
|
|
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
|
|
goto error;
|
|
}
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
int height = s->height >> (i && s->chroma_y_shift);
|
|
if (s->flipped_image)
|
|
s->data_offset[i] = 0;
|
|
else
|
|
s->data_offset[i] = (height-1) * s->current_frame.linesize[i];
|
|
}
|
|
|
|
s->last_slice_end = 0;
|
|
for (i = 0; i < s->c_superblock_height; i++)
|
|
render_slice(s, i);
|
|
|
|
// filter the last row
|
|
for (i = 0; i < 3; i++) {
|
|
int row = (s->height >> (3+(i && s->chroma_y_shift))) - 1;
|
|
apply_loop_filter(s, i, row, row+1);
|
|
}
|
|
vp3_draw_horiz_band(s, s->avctx->height);
|
|
|
|
*data_size=sizeof(AVFrame);
|
|
*(AVFrame*)data= s->current_frame;
|
|
|
|
if (!HAVE_PTHREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME))
|
|
update_frames(avctx);
|
|
|
|
return buf_size;
|
|
|
|
error:
|
|
ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
|
|
|
|
if (!HAVE_PTHREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME))
|
|
avctx->release_buffer(avctx, &s->current_frame);
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* This is the ffmpeg/libavcodec API module cleanup function.
|
|
*/
|
|
static av_cold int vp3_decode_end(AVCodecContext *avctx)
|
|
{
|
|
Vp3DecodeContext *s = avctx->priv_data;
|
|
int i;
|
|
|
|
if (avctx->is_copy && !s->current_frame.data[0])
|
|
return 0;
|
|
|
|
av_free(s->superblock_coding);
|
|
av_free(s->all_fragments);
|
|
av_free(s->coded_fragment_list[0]);
|
|
av_free(s->dct_tokens_base);
|
|
av_free(s->superblock_fragments);
|
|
av_free(s->macroblock_coding);
|
|
av_free(s->motion_val[0]);
|
|
av_free(s->motion_val[1]);
|
|
|
|
if (avctx->is_copy) return 0;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
free_vlc(&s->dc_vlc[i]);
|
|
free_vlc(&s->ac_vlc_1[i]);
|
|
free_vlc(&s->ac_vlc_2[i]);
|
|
free_vlc(&s->ac_vlc_3[i]);
|
|
free_vlc(&s->ac_vlc_4[i]);
|
|
}
|
|
|
|
free_vlc(&s->superblock_run_length_vlc);
|
|
free_vlc(&s->fragment_run_length_vlc);
|
|
free_vlc(&s->mode_code_vlc);
|
|
free_vlc(&s->motion_vector_vlc);
|
|
|
|
/* release all frames */
|
|
if (s->golden_frame.data[0])
|
|
ff_thread_release_buffer(avctx, &s->golden_frame);
|
|
if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
|
|
ff_thread_release_buffer(avctx, &s->last_frame);
|
|
/* no need to release the current_frame since it will always be pointing
|
|
* to the same frame as either the golden or last frame */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
|
|
{
|
|
Vp3DecodeContext *s = avctx->priv_data;
|
|
|
|
if (get_bits1(gb)) {
|
|
int token;
|
|
if (s->entries >= 32) { /* overflow */
|
|
av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
|
|
return -1;
|
|
}
|
|
token = get_bits(gb, 5);
|
|
//av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
|
|
s->huffman_table[s->hti][token][0] = s->hbits;
|
|
s->huffman_table[s->hti][token][1] = s->huff_code_size;
|
|
s->entries++;
|
|
}
|
|
else {
|
|
if (s->huff_code_size >= 32) {/* overflow */
|
|
av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
|
|
return -1;
|
|
}
|
|
s->huff_code_size++;
|
|
s->hbits <<= 1;
|
|
if (read_huffman_tree(avctx, gb))
|
|
return -1;
|
|
s->hbits |= 1;
|
|
if (read_huffman_tree(avctx, gb))
|
|
return -1;
|
|
s->hbits >>= 1;
|
|
s->huff_code_size--;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if CONFIG_THEORA_DECODER
|
|
static const enum PixelFormat theora_pix_fmts[4] = {
|
|
PIX_FMT_YUV420P, PIX_FMT_NONE, PIX_FMT_YUV422P, PIX_FMT_YUV444P
|
|
};
|
|
|
|
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
|
|
{
|
|
Vp3DecodeContext *s = avctx->priv_data;
|
|
int visible_width, visible_height, colorspace;
|
|
int offset_x = 0, offset_y = 0;
|
|
AVRational fps, aspect;
|
|
|
|
s->theora = get_bits_long(gb, 24);
|
|
av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
|
|
|
|
/* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
|
|
/* but previous versions have the image flipped relative to vp3 */
|
|
if (s->theora < 0x030200)
|
|
{
|
|
s->flipped_image = 1;
|
|
av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
|
|
}
|
|
|
|
visible_width = s->width = get_bits(gb, 16) << 4;
|
|
visible_height = s->height = get_bits(gb, 16) << 4;
|
|
|
|
if(av_image_check_size(s->width, s->height, 0, avctx)){
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
|
|
s->width= s->height= 0;
|
|
return -1;
|
|
}
|
|
|
|
if (s->theora >= 0x030200) {
|
|
visible_width = get_bits_long(gb, 24);
|
|
visible_height = get_bits_long(gb, 24);
|
|
|
|
offset_x = get_bits(gb, 8); /* offset x */
|
|
offset_y = get_bits(gb, 8); /* offset y, from bottom */
|
|
}
|
|
|
|
fps.num = get_bits_long(gb, 32);
|
|
fps.den = get_bits_long(gb, 32);
|
|
if (fps.num && fps.den) {
|
|
av_reduce(&avctx->time_base.num, &avctx->time_base.den,
|
|
fps.den, fps.num, 1<<30);
|
|
}
|
|
|
|
aspect.num = get_bits_long(gb, 24);
|
|
aspect.den = get_bits_long(gb, 24);
|
|
if (aspect.num && aspect.den) {
|
|
av_reduce(&avctx->sample_aspect_ratio.num,
|
|
&avctx->sample_aspect_ratio.den,
|
|
aspect.num, aspect.den, 1<<30);
|
|
}
|
|
|
|
if (s->theora < 0x030200)
|
|
skip_bits(gb, 5); /* keyframe frequency force */
|
|
colorspace = get_bits(gb, 8);
|
|
skip_bits(gb, 24); /* bitrate */
|
|
|
|
skip_bits(gb, 6); /* quality hint */
|
|
|
|
if (s->theora >= 0x030200)
|
|
{
|
|
skip_bits(gb, 5); /* keyframe frequency force */
|
|
avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
|
|
skip_bits(gb, 3); /* reserved */
|
|
}
|
|
|
|
// align_get_bits(gb);
|
|
|
|
if ( visible_width <= s->width && visible_width > s->width-16
|
|
&& visible_height <= s->height && visible_height > s->height-16
|
|
&& !offset_x && (offset_y == s->height - visible_height))
|
|
avcodec_set_dimensions(avctx, visible_width, visible_height);
|
|
else
|
|
avcodec_set_dimensions(avctx, s->width, s->height);
|
|
|
|
if (colorspace == 1) {
|
|
avctx->color_primaries = AVCOL_PRI_BT470M;
|
|
} else if (colorspace == 2) {
|
|
avctx->color_primaries = AVCOL_PRI_BT470BG;
|
|
}
|
|
if (colorspace == 1 || colorspace == 2) {
|
|
avctx->colorspace = AVCOL_SPC_BT470BG;
|
|
avctx->color_trc = AVCOL_TRC_BT709;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
|
|
{
|
|
Vp3DecodeContext *s = avctx->priv_data;
|
|
int i, n, matrices, inter, plane;
|
|
|
|
if (s->theora >= 0x030200) {
|
|
n = get_bits(gb, 3);
|
|
/* loop filter limit values table */
|
|
if (n)
|
|
for (i = 0; i < 64; i++)
|
|
s->filter_limit_values[i] = get_bits(gb, n);
|
|
}
|
|
|
|
if (s->theora >= 0x030200)
|
|
n = get_bits(gb, 4) + 1;
|
|
else
|
|
n = 16;
|
|
/* quality threshold table */
|
|
for (i = 0; i < 64; i++)
|
|
s->coded_ac_scale_factor[i] = get_bits(gb, n);
|
|
|
|
if (s->theora >= 0x030200)
|
|
n = get_bits(gb, 4) + 1;
|
|
else
|
|
n = 16;
|
|
/* dc scale factor table */
|
|
for (i = 0; i < 64; i++)
|
|
s->coded_dc_scale_factor[i] = get_bits(gb, n);
|
|
|
|
if (s->theora >= 0x030200)
|
|
matrices = get_bits(gb, 9) + 1;
|
|
else
|
|
matrices = 3;
|
|
|
|
if(matrices > 384){
|
|
av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
|
|
return -1;
|
|
}
|
|
|
|
for(n=0; n<matrices; n++){
|
|
for (i = 0; i < 64; i++)
|
|
s->base_matrix[n][i]= get_bits(gb, 8);
|
|
}
|
|
|
|
for (inter = 0; inter <= 1; inter++) {
|
|
for (plane = 0; plane <= 2; plane++) {
|
|
int newqr= 1;
|
|
if (inter || plane > 0)
|
|
newqr = get_bits1(gb);
|
|
if (!newqr) {
|
|
int qtj, plj;
|
|
if(inter && get_bits1(gb)){
|
|
qtj = 0;
|
|
plj = plane;
|
|
}else{
|
|
qtj= (3*inter + plane - 1) / 3;
|
|
plj= (plane + 2) % 3;
|
|
}
|
|
s->qr_count[inter][plane]= s->qr_count[qtj][plj];
|
|
memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
|
|
memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
|
|
} else {
|
|
int qri= 0;
|
|
int qi = 0;
|
|
|
|
for(;;){
|
|
i= get_bits(gb, av_log2(matrices-1)+1);
|
|
if(i>= matrices){
|
|
av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
|
|
return -1;
|
|
}
|
|
s->qr_base[inter][plane][qri]= i;
|
|
if(qi >= 63)
|
|
break;
|
|
i = get_bits(gb, av_log2(63-qi)+1) + 1;
|
|
s->qr_size[inter][plane][qri++]= i;
|
|
qi += i;
|
|
}
|
|
|
|
if (qi > 63) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
|
|
return -1;
|
|
}
|
|
s->qr_count[inter][plane]= qri;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Huffman tables */
|
|
for (s->hti = 0; s->hti < 80; s->hti++) {
|
|
s->entries = 0;
|
|
s->huff_code_size = 1;
|
|
if (!get_bits1(gb)) {
|
|
s->hbits = 0;
|
|
if(read_huffman_tree(avctx, gb))
|
|
return -1;
|
|
s->hbits = 1;
|
|
if(read_huffman_tree(avctx, gb))
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
s->theora_tables = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_cold int theora_decode_init(AVCodecContext *avctx)
|
|
{
|
|
Vp3DecodeContext *s = avctx->priv_data;
|
|
GetBitContext gb;
|
|
int ptype;
|
|
uint8_t *header_start[3];
|
|
int header_len[3];
|
|
int i;
|
|
|
|
s->theora = 1;
|
|
|
|
if (!avctx->extradata_size)
|
|
{
|
|
av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
|
|
return -1;
|
|
}
|
|
|
|
if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
|
|
42, header_start, header_len) < 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
|
|
return -1;
|
|
}
|
|
|
|
for(i=0;i<3;i++) {
|
|
init_get_bits(&gb, header_start[i], header_len[i] * 8);
|
|
|
|
ptype = get_bits(&gb, 8);
|
|
|
|
if (!(ptype & 0x80))
|
|
{
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
|
|
// return -1;
|
|
}
|
|
|
|
// FIXME: Check for this as well.
|
|
skip_bits_long(&gb, 6*8); /* "theora" */
|
|
|
|
switch(ptype)
|
|
{
|
|
case 0x80:
|
|
theora_decode_header(avctx, &gb);
|
|
break;
|
|
case 0x81:
|
|
// FIXME: is this needed? it breaks sometimes
|
|
// theora_decode_comments(avctx, gb);
|
|
break;
|
|
case 0x82:
|
|
if (theora_decode_tables(avctx, &gb))
|
|
return -1;
|
|
break;
|
|
default:
|
|
av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
|
|
break;
|
|
}
|
|
if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
|
|
av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
|
|
if (s->theora < 0x030200)
|
|
break;
|
|
}
|
|
|
|
return vp3_decode_init(avctx);
|
|
}
|
|
|
|
AVCodec ff_theora_decoder = {
|
|
"theora",
|
|
AVMEDIA_TYPE_VIDEO,
|
|
CODEC_ID_THEORA,
|
|
sizeof(Vp3DecodeContext),
|
|
theora_decode_init,
|
|
NULL,
|
|
vp3_decode_end,
|
|
vp3_decode_frame,
|
|
CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
|
|
NULL,
|
|
.long_name = NULL_IF_CONFIG_SMALL("Theora"),
|
|
.update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
|
|
};
|
|
#endif
|
|
|
|
AVCodec ff_vp3_decoder = {
|
|
"vp3",
|
|
AVMEDIA_TYPE_VIDEO,
|
|
CODEC_ID_VP3,
|
|
sizeof(Vp3DecodeContext),
|
|
vp3_decode_init,
|
|
NULL,
|
|
vp3_decode_end,
|
|
vp3_decode_frame,
|
|
CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
|
|
NULL,
|
|
.long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
|
|
.update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
|
|
};
|