ffmpeg/libavcodec/snow.c
Michael Niedermayer ce611a27be Change rounding of the horizontal DWT to match the vertical one.
This allows some simplifications and optimizations and should
not have any effect on quality.

Originally committed as revision 10172 to svn://svn.ffmpeg.org/ffmpeg/trunk
2007-08-21 16:29:40 +00:00

4702 lines
167 KiB
C

/*
* Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "avcodec.h"
#include "dsputil.h"
#include "snow.h"
#include "rangecoder.h"
#include "mpegvideo.h"
#undef NDEBUG
#include <assert.h>
static const int8_t quant3[256]={
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0,
};
static const int8_t quant3b[256]={
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
};
static const int8_t quant3bA[256]={
0, 0, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
};
static const int8_t quant5[256]={
0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,
};
static const int8_t quant7[256]={
0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,
};
static const int8_t quant9[256]={
0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-1,-1,
};
static const int8_t quant11[256]={
0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1,
};
static const int8_t quant13[256]={
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-2,-2,-1,
};
#if 0 //64*cubic
static const uint8_t obmc32[1024]={
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0,
0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 8, 8, 8, 7, 7, 6, 6, 5, 4, 4, 3, 2, 2, 1, 1, 0, 0,
0, 0, 1, 2, 2, 3, 4, 6, 7, 8, 9,10,11,12,12,12,12,12,12,11,10, 9, 8, 7, 6, 4, 3, 2, 2, 1, 0, 0,
0, 1, 1, 2, 3, 5, 6, 8,10,11,13,14,15,16,17,18,18,17,16,15,14,13,11,10, 8, 6, 5, 3, 2, 1, 1, 0,
0, 1, 1, 3, 4, 6, 8,10,13,15,17,19,20,22,22,23,23,22,22,20,19,17,15,13,10, 8, 6, 4, 3, 1, 1, 0,
0, 1, 2, 4, 6, 8,10,13,16,19,21,23,25,27,28,29,29,28,27,25,23,21,19,16,13,10, 8, 6, 4, 2, 1, 0,
0, 1, 2, 4, 7,10,13,16,19,22,25,28,31,33,34,35,35,34,33,31,28,25,22,19,16,13,10, 7, 4, 2, 1, 0,
0, 1, 3, 5, 8,11,15,19,22,26,30,33,36,38,40,41,41,40,38,36,33,30,26,22,19,15,11, 8, 5, 3, 1, 0,
0, 1, 3, 6, 9,12,17,21,25,30,34,38,41,44,45,46,46,45,44,41,38,34,30,25,21,17,12, 9, 6, 3, 1, 0,
0, 1, 3, 6,10,14,19,23,28,33,38,42,45,48,51,52,52,51,48,45,42,38,33,28,23,19,14,10, 6, 3, 1, 0,
0, 1, 4, 7,11,15,20,25,31,36,41,45,49,52,55,56,56,55,52,49,45,41,36,31,25,20,15,11, 7, 4, 1, 0,
0, 2, 4, 7,12,16,22,27,33,38,44,48,52,56,58,60,60,58,56,52,48,44,38,33,27,22,16,12, 7, 4, 2, 0,
0, 1, 4, 8,12,17,22,28,34,40,45,51,55,58,61,62,62,61,58,55,51,45,40,34,28,22,17,12, 8, 4, 1, 0,
0, 2, 4, 8,12,18,23,29,35,41,46,52,56,60,62,64,64,62,60,56,52,46,41,35,29,23,18,12, 8, 4, 2, 0,
0, 2, 4, 8,12,18,23,29,35,41,46,52,56,60,62,64,64,62,60,56,52,46,41,35,29,23,18,12, 8, 4, 2, 0,
0, 1, 4, 8,12,17,22,28,34,40,45,51,55,58,61,62,62,61,58,55,51,45,40,34,28,22,17,12, 8, 4, 1, 0,
0, 2, 4, 7,12,16,22,27,33,38,44,48,52,56,58,60,60,58,56,52,48,44,38,33,27,22,16,12, 7, 4, 2, 0,
0, 1, 4, 7,11,15,20,25,31,36,41,45,49,52,55,56,56,55,52,49,45,41,36,31,25,20,15,11, 7, 4, 1, 0,
0, 1, 3, 6,10,14,19,23,28,33,38,42,45,48,51,52,52,51,48,45,42,38,33,28,23,19,14,10, 6, 3, 1, 0,
0, 1, 3, 6, 9,12,17,21,25,30,34,38,41,44,45,46,46,45,44,41,38,34,30,25,21,17,12, 9, 6, 3, 1, 0,
0, 1, 3, 5, 8,11,15,19,22,26,30,33,36,38,40,41,41,40,38,36,33,30,26,22,19,15,11, 8, 5, 3, 1, 0,
0, 1, 2, 4, 7,10,13,16,19,22,25,28,31,33,34,35,35,34,33,31,28,25,22,19,16,13,10, 7, 4, 2, 1, 0,
0, 1, 2, 4, 6, 8,10,13,16,19,21,23,25,27,28,29,29,28,27,25,23,21,19,16,13,10, 8, 6, 4, 2, 1, 0,
0, 1, 1, 3, 4, 6, 8,10,13,15,17,19,20,22,22,23,23,22,22,20,19,17,15,13,10, 8, 6, 4, 3, 1, 1, 0,
0, 1, 1, 2, 3, 5, 6, 8,10,11,13,14,15,16,17,18,18,17,16,15,14,13,11,10, 8, 6, 5, 3, 2, 1, 1, 0,
0, 0, 1, 2, 2, 3, 4, 6, 7, 8, 9,10,11,12,12,12,12,12,12,11,10, 9, 8, 7, 6, 4, 3, 2, 2, 1, 0, 0,
0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 8, 8, 8, 7, 7, 6, 6, 5, 4, 4, 3, 2, 2, 1, 1, 0, 0,
0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
//error:0.000022
};
static const uint8_t obmc16[256]={
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 1, 1, 2, 4, 5, 5, 6, 6, 5, 5, 4, 2, 1, 1, 0,
0, 1, 4, 6, 9,11,13,15,15,13,11, 9, 6, 4, 1, 0,
0, 2, 6,11,15,20,24,26,26,24,20,15,11, 6, 2, 0,
0, 4, 9,15,23,29,34,38,38,34,29,23,15, 9, 4, 0,
0, 5,11,20,29,38,45,49,49,45,38,29,20,11, 5, 0,
1, 5,13,24,34,45,53,57,57,53,45,34,24,13, 5, 1,
1, 6,15,26,38,49,57,62,62,57,49,38,26,15, 6, 1,
1, 6,15,26,38,49,57,62,62,57,49,38,26,15, 6, 1,
1, 5,13,24,34,45,53,57,57,53,45,34,24,13, 5, 1,
0, 5,11,20,29,38,45,49,49,45,38,29,20,11, 5, 0,
0, 4, 9,15,23,29,34,38,38,34,29,23,15, 9, 4, 0,
0, 2, 6,11,15,20,24,26,26,24,20,15,11, 6, 2, 0,
0, 1, 4, 6, 9,11,13,15,15,13,11, 9, 6, 4, 1, 0,
0, 1, 1, 2, 4, 5, 5, 6, 6, 5, 5, 4, 2, 1, 1, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
//error:0.000033
};
#elif 1 // 64*linear
static const uint8_t obmc32[1024]={
0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0,
0, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 16, 20, 20, 20, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 8, 8, 8, 4, 4, 4, 0,
0, 4, 8, 8, 12, 12, 16, 20, 20, 24, 28, 28, 32, 32, 36, 40, 40, 36, 32, 32, 28, 28, 24, 20, 20, 16, 12, 12, 8, 8, 4, 0,
0, 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, 44, 48, 52, 56, 56, 52, 48, 44, 40, 36, 32, 28, 28, 24, 20, 16, 12, 8, 4, 0,
4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 68, 64, 60, 56, 52, 48, 44, 40, 32, 28, 24, 20, 16, 12, 8, 4,
4, 8, 12, 20, 24, 32, 36, 40, 48, 52, 56, 64, 68, 76, 80, 84, 84, 80, 76, 68, 64, 56, 52, 48, 40, 36, 32, 24, 20, 12, 8, 4,
4, 8, 16, 24, 28, 36, 44, 48, 56, 60, 68, 76, 80, 88, 96,100,100, 96, 88, 80, 76, 68, 60, 56, 48, 44, 36, 28, 24, 16, 8, 4,
4, 12, 20, 28, 32, 40, 48, 56, 64, 72, 80, 88, 92,100,108,116,116,108,100, 92, 88, 80, 72, 64, 56, 48, 40, 32, 28, 20, 12, 4,
4, 12, 20, 28, 40, 48, 56, 64, 72, 80, 88, 96,108,116,124,132,132,124,116,108, 96, 88, 80, 72, 64, 56, 48, 40, 28, 20, 12, 4,
4, 16, 24, 32, 44, 52, 60, 72, 80, 92,100,108,120,128,136,148,148,136,128,120,108,100, 92, 80, 72, 60, 52, 44, 32, 24, 16, 4,
4, 16, 28, 36, 48, 56, 68, 80, 88,100,112,120,132,140,152,164,164,152,140,132,120,112,100, 88, 80, 68, 56, 48, 36, 28, 16, 4,
4, 16, 28, 40, 52, 64, 76, 88, 96,108,120,132,144,156,168,180,180,168,156,144,132,120,108, 96, 88, 76, 64, 52, 40, 28, 16, 4,
8, 20, 32, 44, 56, 68, 80, 92,108,120,132,144,156,168,180,192,192,180,168,156,144,132,120,108, 92, 80, 68, 56, 44, 32, 20, 8,
8, 20, 32, 48, 60, 76, 88,100,116,128,140,156,168,184,196,208,208,196,184,168,156,140,128,116,100, 88, 76, 60, 48, 32, 20, 8,
8, 20, 36, 52, 64, 80, 96,108,124,136,152,168,180,196,212,224,224,212,196,180,168,152,136,124,108, 96, 80, 64, 52, 36, 20, 8,
8, 24, 40, 56, 68, 84,100,116,132,148,164,180,192,208,224,240,240,224,208,192,180,164,148,132,116,100, 84, 68, 56, 40, 24, 8,
8, 24, 40, 56, 68, 84,100,116,132,148,164,180,192,208,224,240,240,224,208,192,180,164,148,132,116,100, 84, 68, 56, 40, 24, 8,
8, 20, 36, 52, 64, 80, 96,108,124,136,152,168,180,196,212,224,224,212,196,180,168,152,136,124,108, 96, 80, 64, 52, 36, 20, 8,
8, 20, 32, 48, 60, 76, 88,100,116,128,140,156,168,184,196,208,208,196,184,168,156,140,128,116,100, 88, 76, 60, 48, 32, 20, 8,
8, 20, 32, 44, 56, 68, 80, 92,108,120,132,144,156,168,180,192,192,180,168,156,144,132,120,108, 92, 80, 68, 56, 44, 32, 20, 8,
4, 16, 28, 40, 52, 64, 76, 88, 96,108,120,132,144,156,168,180,180,168,156,144,132,120,108, 96, 88, 76, 64, 52, 40, 28, 16, 4,
4, 16, 28, 36, 48, 56, 68, 80, 88,100,112,120,132,140,152,164,164,152,140,132,120,112,100, 88, 80, 68, 56, 48, 36, 28, 16, 4,
4, 16, 24, 32, 44, 52, 60, 72, 80, 92,100,108,120,128,136,148,148,136,128,120,108,100, 92, 80, 72, 60, 52, 44, 32, 24, 16, 4,
4, 12, 20, 28, 40, 48, 56, 64, 72, 80, 88, 96,108,116,124,132,132,124,116,108, 96, 88, 80, 72, 64, 56, 48, 40, 28, 20, 12, 4,
4, 12, 20, 28, 32, 40, 48, 56, 64, 72, 80, 88, 92,100,108,116,116,108,100, 92, 88, 80, 72, 64, 56, 48, 40, 32, 28, 20, 12, 4,
4, 8, 16, 24, 28, 36, 44, 48, 56, 60, 68, 76, 80, 88, 96,100,100, 96, 88, 80, 76, 68, 60, 56, 48, 44, 36, 28, 24, 16, 8, 4,
4, 8, 12, 20, 24, 32, 36, 40, 48, 52, 56, 64, 68, 76, 80, 84, 84, 80, 76, 68, 64, 56, 52, 48, 40, 36, 32, 24, 20, 12, 8, 4,
4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 68, 64, 60, 56, 52, 48, 44, 40, 32, 28, 24, 20, 16, 12, 8, 4,
0, 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, 44, 48, 52, 56, 56, 52, 48, 44, 40, 36, 32, 28, 28, 24, 20, 16, 12, 8, 4, 0,
0, 4, 8, 8, 12, 12, 16, 20, 20, 24, 28, 28, 32, 32, 36, 40, 40, 36, 32, 32, 28, 28, 24, 20, 20, 16, 12, 12, 8, 8, 4, 0,
0, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 16, 20, 20, 20, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 8, 8, 8, 4, 4, 4, 0,
0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0,
//error:0.000020
};
static const uint8_t obmc16[256]={
0, 4, 4, 8, 8, 12, 12, 16, 16, 12, 12, 8, 8, 4, 4, 0,
4, 8, 16, 20, 28, 32, 40, 44, 44, 40, 32, 28, 20, 16, 8, 4,
4, 16, 24, 36, 44, 56, 64, 76, 76, 64, 56, 44, 36, 24, 16, 4,
8, 20, 36, 48, 64, 76, 92,104,104, 92, 76, 64, 48, 36, 20, 8,
8, 28, 44, 64, 80,100,116,136,136,116,100, 80, 64, 44, 28, 8,
12, 32, 56, 76,100,120,144,164,164,144,120,100, 76, 56, 32, 12,
12, 40, 64, 92,116,144,168,196,196,168,144,116, 92, 64, 40, 12,
16, 44, 76,104,136,164,196,224,224,196,164,136,104, 76, 44, 16,
16, 44, 76,104,136,164,196,224,224,196,164,136,104, 76, 44, 16,
12, 40, 64, 92,116,144,168,196,196,168,144,116, 92, 64, 40, 12,
12, 32, 56, 76,100,120,144,164,164,144,120,100, 76, 56, 32, 12,
8, 28, 44, 64, 80,100,116,136,136,116,100, 80, 64, 44, 28, 8,
8, 20, 36, 48, 64, 76, 92,104,104, 92, 76, 64, 48, 36, 20, 8,
4, 16, 24, 36, 44, 56, 64, 76, 76, 64, 56, 44, 36, 24, 16, 4,
4, 8, 16, 20, 28, 32, 40, 44, 44, 40, 32, 28, 20, 16, 8, 4,
0, 4, 4, 8, 8, 12, 12, 16, 16, 12, 12, 8, 8, 4, 4, 0,
//error:0.000015
};
#else //64*cos
static const uint8_t obmc32[1024]={
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0,
0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0,
0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 9,10,11,11,12,12,12,12,11,11,10, 9, 7, 6, 5, 4, 3, 2, 1, 1, 0, 0,
0, 0, 1, 2, 3, 5, 6, 8, 9,11,12,14,15,16,17,17,17,17,16,15,14,12,11, 9, 8, 6, 5, 3, 2, 1, 0, 0,
0, 1, 1, 2, 4, 6, 8,10,12,15,17,19,20,21,22,23,23,22,21,20,19,17,15,12,10, 8, 6, 4, 2, 1, 1, 0,
0, 1, 2, 3, 5, 8,10,13,16,19,21,24,26,27,28,29,29,28,27,26,24,21,19,16,13,10, 8, 5, 3, 2, 1, 0,
0, 1, 2, 4, 6, 9,12,16,19,23,26,29,31,33,34,35,35,34,33,31,29,26,23,19,16,12, 9, 6, 4, 2, 1, 0,
0, 1, 3, 5, 7,11,15,19,23,26,30,34,37,39,40,41,41,40,39,37,34,30,26,23,19,15,11, 7, 5, 3, 1, 0,
0, 1, 3, 5, 9,12,17,21,26,30,35,38,42,44,46,47,47,46,44,42,38,35,30,26,21,17,12, 9, 5, 3, 1, 0,
0, 1, 3, 6, 9,14,19,24,29,34,38,43,46,49,51,52,52,51,49,46,43,38,34,29,24,19,14, 9, 6, 3, 1, 0,
0, 1, 3, 6,11,15,20,26,31,37,42,46,50,53,56,57,57,56,53,50,46,42,37,31,26,20,15,11, 6, 3, 1, 0,
0, 1, 3, 7,11,16,21,27,33,39,44,49,53,57,59,60,60,59,57,53,49,44,39,33,27,21,16,11, 7, 3, 1, 0,
0, 1, 4, 7,12,17,22,28,34,40,46,51,56,59,61,63,63,61,59,56,51,46,40,34,28,22,17,12, 7, 4, 1, 0,
0, 1, 4, 7,12,17,23,29,35,41,47,52,57,60,63,64,64,63,60,57,52,47,41,35,29,23,17,12, 7, 4, 1, 0,
0, 1, 4, 7,12,17,23,29,35,41,47,52,57,60,63,64,64,63,60,57,52,47,41,35,29,23,17,12, 7, 4, 1, 0,
0, 1, 4, 7,12,17,22,28,34,40,46,51,56,59,61,63,63,61,59,56,51,46,40,34,28,22,17,12, 7, 4, 1, 0,
0, 1, 3, 7,11,16,21,27,33,39,44,49,53,57,59,60,60,59,57,53,49,44,39,33,27,21,16,11, 7, 3, 1, 0,
0, 1, 3, 6,11,15,20,26,31,37,42,46,50,53,56,57,57,56,53,50,46,42,37,31,26,20,15,11, 6, 3, 1, 0,
0, 1, 3, 6, 9,14,19,24,29,34,38,43,46,49,51,52,52,51,49,46,43,38,34,29,24,19,14, 9, 6, 3, 1, 0,
0, 1, 3, 5, 9,12,17,21,26,30,35,38,42,44,46,47,47,46,44,42,38,35,30,26,21,17,12, 9, 5, 3, 1, 0,
0, 1, 3, 5, 7,11,15,19,23,26,30,34,37,39,40,41,41,40,39,37,34,30,26,23,19,15,11, 7, 5, 3, 1, 0,
0, 1, 2, 4, 6, 9,12,16,19,23,26,29,31,33,34,35,35,34,33,31,29,26,23,19,16,12, 9, 6, 4, 2, 1, 0,
0, 1, 2, 3, 5, 8,10,13,16,19,21,24,26,27,28,29,29,28,27,26,24,21,19,16,13,10, 8, 5, 3, 2, 1, 0,
0, 1, 1, 2, 4, 6, 8,10,12,15,17,19,20,21,22,23,23,22,21,20,19,17,15,12,10, 8, 6, 4, 2, 1, 1, 0,
0, 0, 1, 2, 3, 5, 6, 8, 9,11,12,14,15,16,17,17,17,17,16,15,14,12,11, 9, 8, 6, 5, 3, 2, 1, 0, 0,
0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 9,10,11,11,12,12,12,12,11,11,10, 9, 7, 6, 5, 4, 3, 2, 1, 1, 0, 0,
0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0,
0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
//error:0.000022
};
static const uint8_t obmc16[256]={
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 1, 2, 3, 4, 5, 5, 5, 5, 4, 3, 2, 1, 0, 0,
0, 1, 3, 6, 8,11,13,14,14,13,11, 8, 6, 3, 1, 0,
0, 2, 6,10,15,20,24,26,26,24,20,15,10, 6, 2, 0,
0, 3, 8,16,23,30,35,38,38,35,30,23,16, 8, 3, 0,
1, 4,11,20,30,39,46,49,49,46,39,30,20,11, 4, 1,
1, 5,13,24,35,46,54,58,58,54,46,35,24,13, 5, 1,
0, 5,14,26,38,49,58,63,63,58,49,38,26,14, 5, 0,
0, 5,14,26,38,49,58,63,63,58,49,38,26,14, 5, 0,
1, 5,13,24,35,46,54,58,58,54,46,35,24,13, 5, 1,
1, 4,11,20,30,39,46,49,49,46,39,30,20,11, 4, 1,
0, 3, 8,16,23,30,35,38,38,35,30,23,16, 8, 3, 0,
0, 2, 6,10,15,20,24,26,26,24,20,15,10, 6, 2, 0,
0, 1, 3, 6, 8,11,13,14,14,13,11, 8, 6, 3, 1, 0,
0, 0, 1, 2, 3, 4, 5, 5, 5, 5, 4, 3, 2, 1, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
//error:0.000022
};
#endif
//linear *64
static const uint8_t obmc8[64]={
4, 12, 20, 28, 28, 20, 12, 4,
12, 36, 60, 84, 84, 60, 36, 12,
20, 60,100,140,140,100, 60, 20,
28, 84,140,196,196,140, 84, 28,
28, 84,140,196,196,140, 84, 28,
20, 60,100,140,140,100, 60, 20,
12, 36, 60, 84, 84, 60, 36, 12,
4, 12, 20, 28, 28, 20, 12, 4,
//error:0.000000
};
//linear *64
static const uint8_t obmc4[16]={
16, 48, 48, 16,
48,144,144, 48,
48,144,144, 48,
16, 48, 48, 16,
//error:0.000000
};
static const uint8_t *obmc_tab[4]={
obmc32, obmc16, obmc8, obmc4
};
static int scale_mv_ref[MAX_REF_FRAMES][MAX_REF_FRAMES];
typedef struct BlockNode{
int16_t mx;
int16_t my;
uint8_t ref;
uint8_t color[3];
uint8_t type;
//#define TYPE_SPLIT 1
#define BLOCK_INTRA 1
#define BLOCK_OPT 2
//#define TYPE_NOCOLOR 4
uint8_t level; //FIXME merge into type?
}BlockNode;
static const BlockNode null_block= { //FIXME add border maybe
.color= {128,128,128},
.mx= 0,
.my= 0,
.ref= 0,
.type= 0,
.level= 0,
};
#define LOG2_MB_SIZE 4
#define MB_SIZE (1<<LOG2_MB_SIZE)
typedef struct x_and_coeff{
int16_t x;
uint16_t coeff;
} x_and_coeff;
typedef struct SubBand{
int level;
int stride;
int width;
int height;
int qlog; ///< log(qscale)/log[2^(1/6)]
DWTELEM *buf;
int buf_x_offset;
int buf_y_offset;
int stride_line; ///< Stride measured in lines, not pixels.
x_and_coeff * x_coeff;
struct SubBand *parent;
uint8_t state[/*7*2*/ 7 + 512][32];
}SubBand;
typedef struct Plane{
int width;
int height;
SubBand band[MAX_DECOMPOSITIONS][4];
}Plane;
typedef struct SnowContext{
// MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independent of MpegEncContext, so this will be removed then (FIXME/XXX)
AVCodecContext *avctx;
RangeCoder c;
DSPContext dsp;
AVFrame new_picture;
AVFrame input_picture; ///< new_picture with the internal linesizes
AVFrame current_picture;
AVFrame last_picture[MAX_REF_FRAMES];
AVFrame mconly_picture;
// uint8_t q_context[16];
uint8_t header_state[32];
uint8_t block_state[128 + 32*128];
int keyframe;
int always_reset;
int version;
int spatial_decomposition_type;
int last_spatial_decomposition_type;
int temporal_decomposition_type;
int spatial_decomposition_count;
int temporal_decomposition_count;
int max_ref_frames;
int ref_frames;
int16_t (*ref_mvs[MAX_REF_FRAMES])[2];
uint32_t *ref_scores[MAX_REF_FRAMES];
DWTELEM *spatial_dwt_buffer;
int colorspace_type;
int chroma_h_shift;
int chroma_v_shift;
int spatial_scalability;
int qlog;
int last_qlog;
int lambda;
int lambda2;
int pass1_rc;
int mv_scale;
int last_mv_scale;
int qbias;
int last_qbias;
#define QBIAS_SHIFT 3
int b_width;
int b_height;
int block_max_depth;
int last_block_max_depth;
Plane plane[MAX_PLANES];
BlockNode *block;
#define ME_CACHE_SIZE 1024
int me_cache[ME_CACHE_SIZE];
int me_cache_generation;
slice_buffer sb;
MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independent of MpegEncContext, so this will be removed then (FIXME/XXX)
}SnowContext;
typedef struct {
DWTELEM *b0;
DWTELEM *b1;
DWTELEM *b2;
DWTELEM *b3;
int y;
} dwt_compose_t;
#define slice_buffer_get_line(slice_buf, line_num) ((slice_buf)->line[line_num] ? (slice_buf)->line[line_num] : slice_buffer_load_line((slice_buf), (line_num)))
//#define slice_buffer_get_line(slice_buf, line_num) (slice_buffer_load_line((slice_buf), (line_num)))
static void iterative_me(SnowContext *s);
static void slice_buffer_init(slice_buffer * buf, int line_count, int max_allocated_lines, int line_width, DWTELEM * base_buffer)
{
int i;
buf->base_buffer = base_buffer;
buf->line_count = line_count;
buf->line_width = line_width;
buf->data_count = max_allocated_lines;
buf->line = (DWTELEM * *) av_mallocz (sizeof(DWTELEM *) * line_count);
buf->data_stack = (DWTELEM * *) av_malloc (sizeof(DWTELEM *) * max_allocated_lines);
for (i = 0; i < max_allocated_lines; i++)
{
buf->data_stack[i] = (DWTELEM *) av_malloc (sizeof(DWTELEM) * line_width);
}
buf->data_stack_top = max_allocated_lines - 1;
}
static DWTELEM * slice_buffer_load_line(slice_buffer * buf, int line)
{
int offset;
DWTELEM * buffer;
// av_log(NULL, AV_LOG_DEBUG, "Cache hit: %d\n", line);
assert(buf->data_stack_top >= 0);
// assert(!buf->line[line]);
if (buf->line[line])
return buf->line[line];
offset = buf->line_width * line;
buffer = buf->data_stack[buf->data_stack_top];
buf->data_stack_top--;
buf->line[line] = buffer;
// av_log(NULL, AV_LOG_DEBUG, "slice_buffer_load_line: line: %d remaining: %d\n", line, buf->data_stack_top + 1);
return buffer;
}
static void slice_buffer_release(slice_buffer * buf, int line)
{
int offset;
DWTELEM * buffer;
assert(line >= 0 && line < buf->line_count);
assert(buf->line[line]);
offset = buf->line_width * line;
buffer = buf->line[line];
buf->data_stack_top++;
buf->data_stack[buf->data_stack_top] = buffer;
buf->line[line] = NULL;
// av_log(NULL, AV_LOG_DEBUG, "slice_buffer_release: line: %d remaining: %d\n", line, buf->data_stack_top + 1);
}
static void slice_buffer_flush(slice_buffer * buf)
{
int i;
for (i = 0; i < buf->line_count; i++)
{
if (buf->line[i])
{
// av_log(NULL, AV_LOG_DEBUG, "slice_buffer_flush: line: %d \n", i);
slice_buffer_release(buf, i);
}
}
}
static void slice_buffer_destroy(slice_buffer * buf)
{
int i;
slice_buffer_flush(buf);
for (i = buf->data_count - 1; i >= 0; i--)
{
assert(buf->data_stack[i]);
av_freep(&buf->data_stack[i]);
}
assert(buf->data_stack);
av_freep(&buf->data_stack);
assert(buf->line);
av_freep(&buf->line);
}
#ifdef __sgi
// Avoid a name clash on SGI IRIX
#undef qexp
#endif
#define QEXPSHIFT (7-FRAC_BITS+8) //FIXME try to change this to 0
static uint8_t qexp[QROOT];
static inline int mirror(int v, int m){
while((unsigned)v > (unsigned)m){
v=-v;
if(v<0) v+= 2*m;
}
return v;
}
static inline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){
int i;
if(v){
const int a= FFABS(v);
const int e= av_log2(a);
#if 1
const int el= FFMIN(e, 10);
put_rac(c, state+0, 0);
for(i=0; i<el; i++){
put_rac(c, state+1+i, 1); //1..10
}
for(; i<e; i++){
put_rac(c, state+1+9, 1); //1..10
}
put_rac(c, state+1+FFMIN(i,9), 0);
for(i=e-1; i>=el; i--){
put_rac(c, state+22+9, (a>>i)&1); //22..31
}
for(; i>=0; i--){
put_rac(c, state+22+i, (a>>i)&1); //22..31
}
if(is_signed)
put_rac(c, state+11 + el, v < 0); //11..21
#else
put_rac(c, state+0, 0);
if(e<=9){
for(i=0; i<e; i++){
put_rac(c, state+1+i, 1); //1..10
}
put_rac(c, state+1+i, 0);
for(i=e-1; i>=0; i--){
put_rac(c, state+22+i, (a>>i)&1); //22..31
}
if(is_signed)
put_rac(c, state+11 + e, v < 0); //11..21
}else{
for(i=0; i<e; i++){
put_rac(c, state+1+FFMIN(i,9), 1); //1..10
}
put_rac(c, state+1+FFMIN(i,9), 0);
for(i=e-1; i>=0; i--){
put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
}
if(is_signed)
put_rac(c, state+11 + FFMIN(e,10), v < 0); //11..21
}
#endif
}else{
put_rac(c, state+0, 1);
}
}
static inline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
if(get_rac(c, state+0))
return 0;
else{
int i, e, a;
e= 0;
while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
e++;
}
a= 1;
for(i=e-1; i>=0; i--){
a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
}
if(is_signed && get_rac(c, state+11 + FFMIN(e,10))) //11..21
return -a;
else
return a;
}
}
static inline void put_symbol2(RangeCoder *c, uint8_t *state, int v, int log2){
int i;
int r= log2>=0 ? 1<<log2 : 1;
assert(v>=0);
assert(log2>=-4);
while(v >= r){
put_rac(c, state+4+log2, 1);
v -= r;
log2++;
if(log2>0) r+=r;
}
put_rac(c, state+4+log2, 0);
for(i=log2-1; i>=0; i--){
put_rac(c, state+31-i, (v>>i)&1);
}
}
static inline int get_symbol2(RangeCoder *c, uint8_t *state, int log2){
int i;
int r= log2>=0 ? 1<<log2 : 1;
int v=0;
assert(log2>=-4);
while(get_rac(c, state+4+log2)){
v+= r;
log2++;
if(log2>0) r+=r;
}
for(i=log2-1; i>=0; i--){
v+= get_rac(c, state+31-i)<<i;
}
return v;
}
static av_always_inline void lift(DWTELEM *dst, DWTELEM *src, DWTELEM *ref, int dst_step, int src_step, int ref_step, int width, int mul, int add, int shift, int highpass, int inverse){
const int mirror_left= !highpass;
const int mirror_right= (width&1) ^ highpass;
const int w= (width>>1) - 1 + (highpass & width);
int i;
#define LIFT(src, ref, inv) ((src) + ((inv) ? - (ref) : + (ref)))
if(mirror_left){
dst[0] = LIFT(src[0], ((mul*2*ref[0]+add)>>shift), inverse);
dst += dst_step;
src += src_step;
}
for(i=0; i<w; i++){
dst[i*dst_step] = LIFT(src[i*src_step], ((mul*(ref[i*ref_step] + ref[(i+1)*ref_step])+add)>>shift), inverse);
}
if(mirror_right){
dst[w*dst_step] = LIFT(src[w*src_step], ((mul*2*ref[w*ref_step]+add)>>shift), inverse);
}
}
#ifndef lift5
static av_always_inline void lift5(DWTELEM *dst, DWTELEM *src, DWTELEM *ref, int dst_step, int src_step, int ref_step, int width, int mul, int add, int shift, int highpass, int inverse){
const int mirror_left= !highpass;
const int mirror_right= (width&1) ^ highpass;
const int w= (width>>1) - 1 + (highpass & width);
int i;
if(mirror_left){
int r= 3*2*ref[0];
r += r>>4;
r += r>>8;
dst[0] = LIFT(src[0], ((r+add)>>shift), inverse);
dst += dst_step;
src += src_step;
}
for(i=0; i<w; i++){
int r= 3*(ref[i*ref_step] + ref[(i+1)*ref_step]);
r += r>>4;
r += r>>8;
dst[i*dst_step] = LIFT(src[i*src_step], ((r+add)>>shift), inverse);
}
if(mirror_right){
int r= 3*2*ref[w*ref_step];
r += r>>4;
r += r>>8;
dst[w*dst_step] = LIFT(src[w*src_step], ((r+add)>>shift), inverse);
}
}
#endif
#ifndef liftS
static av_always_inline void liftS(DWTELEM *dst, DWTELEM *src, DWTELEM *ref, int dst_step, int src_step, int ref_step, int width, int mul, int add, int shift, int highpass, int inverse){
const int mirror_left= !highpass;
const int mirror_right= (width&1) ^ highpass;
const int w= (width>>1) - 1 + (highpass & width);
int i;
assert(shift == 4);
#define LIFTS(src, ref, inv) ((inv) ? (src) + (((ref) + 4*(src))>>shift): -((-16*4*(src) + 4*(ref) + add + 5 + (5<<27))/(5*16) - (1<<23)))
if(mirror_left){
dst[0] = LIFTS(src[0], mul*2*ref[0]+add, inverse);
dst += dst_step;
src += src_step;
}
for(i=0; i<w; i++){
dst[i*dst_step] = LIFTS(src[i*src_step], mul*(ref[i*ref_step] + ref[(i+1)*ref_step])+add, inverse);
}
if(mirror_right){
dst[w*dst_step] = LIFTS(src[w*src_step], mul*2*ref[w*ref_step]+add, inverse);
}
}
#endif
static void inplace_lift(DWTELEM *dst, int width, int *coeffs, int n, int shift, int start, int inverse){
int x, i;
for(x=start; x<width; x+=2){
int64_t sum=0;
for(i=0; i<n; i++){
int x2= x + 2*i - n + 1;
if (x2< 0) x2= -x2;
else if(x2>=width) x2= 2*width-x2-2;
sum += coeffs[i]*(int64_t)dst[x2];
}
if(inverse) dst[x] -= (sum + (1<<shift)/2)>>shift;
else dst[x] += (sum + (1<<shift)/2)>>shift;
}
}
static void inplace_liftV(DWTELEM *dst, int width, int height, int stride, int *coeffs, int n, int shift, int start, int inverse){
int x, y, i;
for(y=start; y<height; y+=2){
for(x=0; x<width; x++){
int64_t sum=0;
for(i=0; i<n; i++){
int y2= y + 2*i - n + 1;
if (y2< 0) y2= -y2;
else if(y2>=height) y2= 2*height-y2-2;
sum += coeffs[i]*(int64_t)dst[x + y2*stride];
}
if(inverse) dst[x + y*stride] -= (sum + (1<<shift)/2)>>shift;
else dst[x + y*stride] += (sum + (1<<shift)/2)>>shift;
}
}
}
#define SCALEX 1
#define LX0 0
#define LX1 1
#if 0 // more accurate 9/7
#define N1 2
#define SHIFT1 14
#define COEFFS1 (int[]){-25987,-25987}
#define N2 2
#define SHIFT2 19
#define COEFFS2 (int[]){-27777,-27777}
#define N3 2
#define SHIFT3 15
#define COEFFS3 (int[]){28931,28931}
#define N4 2
#define SHIFT4 15
#define COEFFS4 (int[]){14533,14533}
#elif 1 // 13/7 CRF
#define N1 4
#define SHIFT1 4
#define COEFFS1 (int[]){1,-9,-9,1}
#define N2 4
#define SHIFT2 4
#define COEFFS2 (int[]){-1,5,5,-1}
#define N3 0
#define SHIFT3 1
#define COEFFS3 NULL
#define N4 0
#define SHIFT4 1
#define COEFFS4 NULL
#elif 1 // 3/5
#define LX0 1
#define LX1 0
#define SCALEX 0.5
#define N1 2
#define SHIFT1 1
#define COEFFS1 (int[]){1,1}
#define N2 2
#define SHIFT2 2
#define COEFFS2 (int[]){-1,-1}
#define N3 0
#define SHIFT3 0
#define COEFFS3 NULL
#define N4 0
#define SHIFT4 0
#define COEFFS4 NULL
#elif 1 // 11/5
#define N1 0
#define SHIFT1 1
#define COEFFS1 NULL
#define N2 2
#define SHIFT2 2
#define COEFFS2 (int[]){-1,-1}
#define N3 2
#define SHIFT3 0
#define COEFFS3 (int[]){-1,-1}
#define N4 4
#define SHIFT4 7
#define COEFFS4 (int[]){-5,29,29,-5}
#define SCALEX 4
#elif 1 // 9/7 CDF
#define N1 2
#define SHIFT1 7
#define COEFFS1 (int[]){-203,-203}
#define N2 2
#define SHIFT2 12
#define COEFFS2 (int[]){-217,-217}
#define N3 2
#define SHIFT3 7
#define COEFFS3 (int[]){113,113}
#define N4 2
#define SHIFT4 9
#define COEFFS4 (int[]){227,227}
#define SCALEX 1
#elif 1 // 7/5 CDF
#define N1 0
#define SHIFT1 1
#define COEFFS1 NULL
#define N2 2
#define SHIFT2 2
#define COEFFS2 (int[]){-1,-1}
#define N3 2
#define SHIFT3 0
#define COEFFS3 (int[]){-1,-1}
#define N4 2
#define SHIFT4 4
#define COEFFS4 (int[]){3,3}
#elif 1 // 9/7 MN
#define N1 4
#define SHIFT1 4
#define COEFFS1 (int[]){1,-9,-9,1}
#define N2 2
#define SHIFT2 2
#define COEFFS2 (int[]){1,1}
#define N3 0
#define SHIFT3 1
#define COEFFS3 NULL
#define N4 0
#define SHIFT4 1
#define COEFFS4 NULL
#else // 13/7 CRF
#define N1 4
#define SHIFT1 4
#define COEFFS1 (int[]){1,-9,-9,1}
#define N2 4
#define SHIFT2 4
#define COEFFS2 (int[]){-1,5,5,-1}
#define N3 0
#define SHIFT3 1
#define COEFFS3 NULL
#define N4 0
#define SHIFT4 1
#define COEFFS4 NULL
#endif
static void horizontal_decomposeX(DWTELEM *b, int width){
DWTELEM temp[width];
const int width2= width>>1;
const int w2= (width+1)>>1;
int x;
inplace_lift(b, width, COEFFS1, N1, SHIFT1, LX1, 0);
inplace_lift(b, width, COEFFS2, N2, SHIFT2, LX0, 0);
inplace_lift(b, width, COEFFS3, N3, SHIFT3, LX1, 0);
inplace_lift(b, width, COEFFS4, N4, SHIFT4, LX0, 0);
for(x=0; x<width2; x++){
temp[x ]= b[2*x ];
temp[x+w2]= b[2*x + 1];
}
if(width&1)
temp[x ]= b[2*x ];
memcpy(b, temp, width*sizeof(int));
}
static void horizontal_composeX(DWTELEM *b, int width){
DWTELEM temp[width];
const int width2= width>>1;
int x;
const int w2= (width+1)>>1;
memcpy(temp, b, width*sizeof(int));
for(x=0; x<width2; x++){
b[2*x ]= temp[x ];
b[2*x + 1]= temp[x+w2];
}
if(width&1)
b[2*x ]= temp[x ];
inplace_lift(b, width, COEFFS4, N4, SHIFT4, LX0, 1);
inplace_lift(b, width, COEFFS3, N3, SHIFT3, LX1, 1);
inplace_lift(b, width, COEFFS2, N2, SHIFT2, LX0, 1);
inplace_lift(b, width, COEFFS1, N1, SHIFT1, LX1, 1);
}
static void spatial_decomposeX(DWTELEM *buffer, int width, int height, int stride){
int x, y;
for(y=0; y<height; y++){
for(x=0; x<width; x++){
buffer[y*stride + x] *= SCALEX;
}
}
for(y=0; y<height; y++){
horizontal_decomposeX(buffer + y*stride, width);
}
inplace_liftV(buffer, width, height, stride, COEFFS1, N1, SHIFT1, LX1, 0);
inplace_liftV(buffer, width, height, stride, COEFFS2, N2, SHIFT2, LX0, 0);
inplace_liftV(buffer, width, height, stride, COEFFS3, N3, SHIFT3, LX1, 0);
inplace_liftV(buffer, width, height, stride, COEFFS4, N4, SHIFT4, LX0, 0);
}
static void spatial_composeX(DWTELEM *buffer, int width, int height, int stride){
int x, y;
inplace_liftV(buffer, width, height, stride, COEFFS4, N4, SHIFT4, LX0, 1);
inplace_liftV(buffer, width, height, stride, COEFFS3, N3, SHIFT3, LX1, 1);
inplace_liftV(buffer, width, height, stride, COEFFS2, N2, SHIFT2, LX0, 1);
inplace_liftV(buffer, width, height, stride, COEFFS1, N1, SHIFT1, LX1, 1);
for(y=0; y<height; y++){
horizontal_composeX(buffer + y*stride, width);
}
for(y=0; y<height; y++){
for(x=0; x<width; x++){
buffer[y*stride + x] /= SCALEX;
}
}
}
static void horizontal_decompose53i(DWTELEM *b, int width){
DWTELEM temp[width];
const int width2= width>>1;
int x;
const int w2= (width+1)>>1;
for(x=0; x<width2; x++){
temp[x ]= b[2*x ];
temp[x+w2]= b[2*x + 1];
}
if(width&1)
temp[x ]= b[2*x ];
#if 0
{
int A1,A2,A3,A4;
A2= temp[1 ];
A4= temp[0 ];
A1= temp[0+width2];
A1 -= (A2 + A4)>>1;
A4 += (A1 + 1)>>1;
b[0+width2] = A1;
b[0 ] = A4;
for(x=1; x+1<width2; x+=2){
A3= temp[x+width2];
A4= temp[x+1 ];
A3 -= (A2 + A4)>>1;
A2 += (A1 + A3 + 2)>>2;
b[x+width2] = A3;
b[x ] = A2;
A1= temp[x+1+width2];
A2= temp[x+2 ];
A1 -= (A2 + A4)>>1;
A4 += (A1 + A3 + 2)>>2;
b[x+1+width2] = A1;
b[x+1 ] = A4;
}
A3= temp[width-1];
A3 -= A2;
A2 += (A1 + A3 + 2)>>2;
b[width -1] = A3;
b[width2-1] = A2;
}
#else
lift(b+w2, temp+w2, temp, 1, 1, 1, width, -1, 0, 1, 1, 0);
lift(b , temp , b+w2, 1, 1, 1, width, 1, 2, 2, 0, 0);
#endif
}
static void vertical_decompose53iH0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] -= (b0[i] + b2[i])>>1;
}
}
static void vertical_decompose53iL0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] += (b0[i] + b2[i] + 2)>>2;
}
}
static void spatial_decompose53i(DWTELEM *buffer, int width, int height, int stride){
int y;
DWTELEM *b0= buffer + mirror(-2-1, height-1)*stride;
DWTELEM *b1= buffer + mirror(-2 , height-1)*stride;
for(y=-2; y<height; y+=2){
DWTELEM *b2= buffer + mirror(y+1, height-1)*stride;
DWTELEM *b3= buffer + mirror(y+2, height-1)*stride;
{START_TIMER
if(y+1<(unsigned)height) horizontal_decompose53i(b2, width);
if(y+2<(unsigned)height) horizontal_decompose53i(b3, width);
STOP_TIMER("horizontal_decompose53i")}
{START_TIMER
if(y+1<(unsigned)height) vertical_decompose53iH0(b1, b2, b3, width);
if(y+0<(unsigned)height) vertical_decompose53iL0(b0, b1, b2, width);
STOP_TIMER("vertical_decompose53i*")}
b0=b2;
b1=b3;
}
}
static void horizontal_decompose97i(DWTELEM *b, int width){
DWTELEM temp[width];
const int w2= (width+1)>>1;
lift (temp+w2, b +1, b , 1, 2, 2, width, W_AM, W_AO, W_AS, 1, 1);
liftS(temp , b , temp+w2, 1, 2, 1, width, W_BM, W_BO, W_BS, 0, 0);
lift5(b +w2, temp+w2, temp , 1, 1, 1, width, W_CM, W_CO, W_CS, 1, 0);
lift (b , temp , b +w2, 1, 1, 1, width, W_DM, W_DO, W_DS, 0, 0);
}
static void vertical_decompose97iH0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] -= (W_AM*(b0[i] + b2[i])+W_AO)>>W_AS;
}
}
static void vertical_decompose97iH1(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
#ifdef lift5
b1[i] += (W_CM*(b0[i] + b2[i])+W_CO)>>W_CS;
#else
int r= 3*(b0[i] + b2[i]);
r+= r>>4;
r+= r>>8;
b1[i] += (r+W_CO)>>W_CS;
#endif
}
}
static void vertical_decompose97iL0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
#ifdef liftS
b1[i] -= (W_BM*(b0[i] + b2[i])+W_BO)>>W_BS;
#else
b1[i] = (16*4*b1[i] - 4*(b0[i] + b2[i]) + W_BO*5 + (5<<27)) / (5*16) - (1<<23);
#endif
}
}
static void vertical_decompose97iL1(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] += (W_DM*(b0[i] + b2[i])+W_DO)>>W_DS;
}
}
static void spatial_decompose97i(DWTELEM *buffer, int width, int height, int stride){
int y;
DWTELEM *b0= buffer + mirror(-4-1, height-1)*stride;
DWTELEM *b1= buffer + mirror(-4 , height-1)*stride;
DWTELEM *b2= buffer + mirror(-4+1, height-1)*stride;
DWTELEM *b3= buffer + mirror(-4+2, height-1)*stride;
for(y=-4; y<height; y+=2){
DWTELEM *b4= buffer + mirror(y+3, height-1)*stride;
DWTELEM *b5= buffer + mirror(y+4, height-1)*stride;
{START_TIMER
if(y+3<(unsigned)height) horizontal_decompose97i(b4, width);
if(y+4<(unsigned)height) horizontal_decompose97i(b5, width);
if(width>400){
STOP_TIMER("horizontal_decompose97i")
}}
{START_TIMER
if(y+3<(unsigned)height) vertical_decompose97iH0(b3, b4, b5, width);
if(y+2<(unsigned)height) vertical_decompose97iL0(b2, b3, b4, width);
if(y+1<(unsigned)height) vertical_decompose97iH1(b1, b2, b3, width);
if(y+0<(unsigned)height) vertical_decompose97iL1(b0, b1, b2, width);
if(width>400){
STOP_TIMER("vertical_decompose97i")
}}
b0=b2;
b1=b3;
b2=b4;
b3=b5;
}
}
void ff_spatial_dwt(DWTELEM *buffer, int width, int height, int stride, int type, int decomposition_count){
int level;
for(level=0; level<decomposition_count; level++){
switch(type){
case DWT_97: spatial_decompose97i(buffer, width>>level, height>>level, stride<<level); break;
case DWT_53: spatial_decompose53i(buffer, width>>level, height>>level, stride<<level); break;
case DWT_X: spatial_decomposeX (buffer, width>>level, height>>level, stride<<level); break;
}
}
}
static void horizontal_compose53i(DWTELEM *b, int width){
DWTELEM temp[width];
const int width2= width>>1;
const int w2= (width+1)>>1;
int x;
#if 0
int A1,A2,A3,A4;
A2= temp[1 ];
A4= temp[0 ];
A1= temp[0+width2];
A1 -= (A2 + A4)>>1;
A4 += (A1 + 1)>>1;
b[0+width2] = A1;
b[0 ] = A4;
for(x=1; x+1<width2; x+=2){
A3= temp[x+width2];
A4= temp[x+1 ];
A3 -= (A2 + A4)>>1;
A2 += (A1 + A3 + 2)>>2;
b[x+width2] = A3;
b[x ] = A2;
A1= temp[x+1+width2];
A2= temp[x+2 ];
A1 -= (A2 + A4)>>1;
A4 += (A1 + A3 + 2)>>2;
b[x+1+width2] = A1;
b[x+1 ] = A4;
}
A3= temp[width-1];
A3 -= A2;
A2 += (A1 + A3 + 2)>>2;
b[width -1] = A3;
b[width2-1] = A2;
#else
lift(temp , b , b+w2, 1, 1, 1, width, 1, 2, 2, 0, 1);
lift(temp+w2, b+w2, temp, 1, 1, 1, width, -1, 0, 1, 1, 1);
#endif
for(x=0; x<width2; x++){
b[2*x ]= temp[x ];
b[2*x + 1]= temp[x+w2];
}
if(width&1)
b[2*x ]= temp[x ];
}
static void vertical_compose53iH0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] += (b0[i] + b2[i])>>1;
}
}
static void vertical_compose53iL0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] -= (b0[i] + b2[i] + 2)>>2;
}
}
static void spatial_compose53i_buffered_init(dwt_compose_t *cs, slice_buffer * sb, int height, int stride_line){
cs->b0 = slice_buffer_get_line(sb, mirror(-1-1, height-1) * stride_line);
cs->b1 = slice_buffer_get_line(sb, mirror(-1 , height-1) * stride_line);
cs->y = -1;
}
static void spatial_compose53i_init(dwt_compose_t *cs, DWTELEM *buffer, int height, int stride){
cs->b0 = buffer + mirror(-1-1, height-1)*stride;
cs->b1 = buffer + mirror(-1 , height-1)*stride;
cs->y = -1;
}
static void spatial_compose53i_dy_buffered(dwt_compose_t *cs, slice_buffer * sb, int width, int height, int stride_line){
int y= cs->y;
DWTELEM *b0= cs->b0;
DWTELEM *b1= cs->b1;
DWTELEM *b2= slice_buffer_get_line(sb, mirror(y+1, height-1) * stride_line);
DWTELEM *b3= slice_buffer_get_line(sb, mirror(y+2, height-1) * stride_line);
{START_TIMER
if(y+1<(unsigned)height) vertical_compose53iL0(b1, b2, b3, width);
if(y+0<(unsigned)height) vertical_compose53iH0(b0, b1, b2, width);
STOP_TIMER("vertical_compose53i*")}
{START_TIMER
if(y-1<(unsigned)height) horizontal_compose53i(b0, width);
if(y+0<(unsigned)height) horizontal_compose53i(b1, width);
STOP_TIMER("horizontal_compose53i")}
cs->b0 = b2;
cs->b1 = b3;
cs->y += 2;
}
static void spatial_compose53i_dy(dwt_compose_t *cs, DWTELEM *buffer, int width, int height, int stride){
int y= cs->y;
DWTELEM *b0= cs->b0;
DWTELEM *b1= cs->b1;
DWTELEM *b2= buffer + mirror(y+1, height-1)*stride;
DWTELEM *b3= buffer + mirror(y+2, height-1)*stride;
{START_TIMER
if(y+1<(unsigned)height) vertical_compose53iL0(b1, b2, b3, width);
if(y+0<(unsigned)height) vertical_compose53iH0(b0, b1, b2, width);
STOP_TIMER("vertical_compose53i*")}
{START_TIMER
if(y-1<(unsigned)height) horizontal_compose53i(b0, width);
if(y+0<(unsigned)height) horizontal_compose53i(b1, width);
STOP_TIMER("horizontal_compose53i")}
cs->b0 = b2;
cs->b1 = b3;
cs->y += 2;
}
static void spatial_compose53i(DWTELEM *buffer, int width, int height, int stride){
dwt_compose_t cs;
spatial_compose53i_init(&cs, buffer, height, stride);
while(cs.y <= height)
spatial_compose53i_dy(&cs, buffer, width, height, stride);
}
void ff_snow_horizontal_compose97i(DWTELEM *b, int width){
DWTELEM temp[width];
const int w2= (width+1)>>1;
lift (temp , b , b +w2, 1, 1, 1, width, W_DM, W_DO, W_DS, 0, 1);
lift5(temp+w2, b +w2, temp , 1, 1, 1, width, W_CM, W_CO, W_CS, 1, 1);
liftS(b , temp , temp+w2, 2, 1, 1, width, W_BM, W_BO, W_BS, 0, 1);
lift (b+1 , temp+w2, b , 2, 1, 2, width, W_AM, W_AO, W_AS, 1, 0);
}
static void vertical_compose97iH0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] += (W_AM*(b0[i] + b2[i])+W_AO)>>W_AS;
}
}
static void vertical_compose97iH1(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
#ifdef lift5
b1[i] -= (W_CM*(b0[i] + b2[i])+W_CO)>>W_CS;
#else
int r= 3*(b0[i] + b2[i]);
r+= r>>4;
r+= r>>8;
b1[i] -= (r+W_CO)>>W_CS;
#endif
}
}
static void vertical_compose97iL0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
#ifdef liftS
b1[i] += (W_BM*(b0[i] + b2[i])+W_BO)>>W_BS;
#else
b1[i] += (W_BM*(b0[i] + b2[i])+4*b1[i]+W_BO)>>W_BS;
#endif
}
}
static void vertical_compose97iL1(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] -= (W_DM*(b0[i] + b2[i])+W_DO)>>W_DS;
}
}
void ff_snow_vertical_compose97i(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, DWTELEM *b3, DWTELEM *b4, DWTELEM *b5, int width){
int i;
for(i=0; i<width; i++){
#ifndef lift5
int r;
#endif
b4[i] -= (W_DM*(b3[i] + b5[i])+W_DO)>>W_DS;
#ifdef lift5
b3[i] -= (W_CM*(b2[i] + b4[i])+W_CO)>>W_CS;
#else
r= 3*(b2[i] + b4[i]);
r+= r>>4;
r+= r>>8;
b3[i] -= (r+W_CO)>>W_CS;
#endif
#ifdef liftS
b2[i] += (W_BM*(b1[i] + b3[i])+W_BO)>>W_BS;
#else
b2[i] += (W_BM*(b1[i] + b3[i])+4*b2[i]+W_BO)>>W_BS;
#endif
b1[i] += (W_AM*(b0[i] + b2[i])+W_AO)>>W_AS;
}
}
static void spatial_compose97i_buffered_init(dwt_compose_t *cs, slice_buffer * sb, int height, int stride_line){
cs->b0 = slice_buffer_get_line(sb, mirror(-3-1, height-1) * stride_line);
cs->b1 = slice_buffer_get_line(sb, mirror(-3 , height-1) * stride_line);
cs->b2 = slice_buffer_get_line(sb, mirror(-3+1, height-1) * stride_line);
cs->b3 = slice_buffer_get_line(sb, mirror(-3+2, height-1) * stride_line);
cs->y = -3;
}
static void spatial_compose97i_init(dwt_compose_t *cs, DWTELEM *buffer, int height, int stride){
cs->b0 = buffer + mirror(-3-1, height-1)*stride;
cs->b1 = buffer + mirror(-3 , height-1)*stride;
cs->b2 = buffer + mirror(-3+1, height-1)*stride;
cs->b3 = buffer + mirror(-3+2, height-1)*stride;
cs->y = -3;
}
static void spatial_compose97i_dy_buffered(DSPContext *dsp, dwt_compose_t *cs, slice_buffer * sb, int width, int height, int stride_line){
int y = cs->y;
DWTELEM *b0= cs->b0;
DWTELEM *b1= cs->b1;
DWTELEM *b2= cs->b2;
DWTELEM *b3= cs->b3;
DWTELEM *b4= slice_buffer_get_line(sb, mirror(y + 3, height - 1) * stride_line);
DWTELEM *b5= slice_buffer_get_line(sb, mirror(y + 4, height - 1) * stride_line);
{START_TIMER
if(y>0 && y+4<height){
dsp->vertical_compose97i(b0, b1, b2, b3, b4, b5, width);
}else{
if(y+3<(unsigned)height) vertical_compose97iL1(b3, b4, b5, width);
if(y+2<(unsigned)height) vertical_compose97iH1(b2, b3, b4, width);
if(y+1<(unsigned)height) vertical_compose97iL0(b1, b2, b3, width);
if(y+0<(unsigned)height) vertical_compose97iH0(b0, b1, b2, width);
}
if(width>400){
STOP_TIMER("vertical_compose97i")}}
{START_TIMER
if(y-1<(unsigned)height) dsp->horizontal_compose97i(b0, width);
if(y+0<(unsigned)height) dsp->horizontal_compose97i(b1, width);
if(width>400 && y+0<(unsigned)height){
STOP_TIMER("horizontal_compose97i")}}
cs->b0=b2;
cs->b1=b3;
cs->b2=b4;
cs->b3=b5;
cs->y += 2;
}
static void spatial_compose97i_dy(dwt_compose_t *cs, DWTELEM *buffer, int width, int height, int stride){
int y = cs->y;
DWTELEM *b0= cs->b0;
DWTELEM *b1= cs->b1;
DWTELEM *b2= cs->b2;
DWTELEM *b3= cs->b3;
DWTELEM *b4= buffer + mirror(y+3, height-1)*stride;
DWTELEM *b5= buffer + mirror(y+4, height-1)*stride;
{START_TIMER
if(y+3<(unsigned)height) vertical_compose97iL1(b3, b4, b5, width);
if(y+2<(unsigned)height) vertical_compose97iH1(b2, b3, b4, width);
if(y+1<(unsigned)height) vertical_compose97iL0(b1, b2, b3, width);
if(y+0<(unsigned)height) vertical_compose97iH0(b0, b1, b2, width);
if(width>400){
STOP_TIMER("vertical_compose97i")}}
{START_TIMER
if(y-1<(unsigned)height) ff_snow_horizontal_compose97i(b0, width);
if(y+0<(unsigned)height) ff_snow_horizontal_compose97i(b1, width);
if(width>400 && b0 <= b2){
STOP_TIMER("horizontal_compose97i")}}
cs->b0=b2;
cs->b1=b3;
cs->b2=b4;
cs->b3=b5;
cs->y += 2;
}
static void spatial_compose97i(DWTELEM *buffer, int width, int height, int stride){
dwt_compose_t cs;
spatial_compose97i_init(&cs, buffer, height, stride);
while(cs.y <= height)
spatial_compose97i_dy(&cs, buffer, width, height, stride);
}
static void ff_spatial_idwt_buffered_init(dwt_compose_t *cs, slice_buffer * sb, int width, int height, int stride_line, int type, int decomposition_count){
int level;
for(level=decomposition_count-1; level>=0; level--){
switch(type){
case DWT_97: spatial_compose97i_buffered_init(cs+level, sb, height>>level, stride_line<<level); break;
case DWT_53: spatial_compose53i_buffered_init(cs+level, sb, height>>level, stride_line<<level); break;
/* not slicified yet */
case DWT_X: /*spatial_composeX(buffer, width>>level, height>>level, stride<<level); break;*/
av_log(NULL, AV_LOG_ERROR, "spatial_composeX neither buffered nor slicified yet.\n"); break;
}
}
}
static void ff_spatial_idwt_init(dwt_compose_t *cs, DWTELEM *buffer, int width, int height, int stride, int type, int decomposition_count){
int level;
for(level=decomposition_count-1; level>=0; level--){
switch(type){
case DWT_97: spatial_compose97i_init(cs+level, buffer, height>>level, stride<<level); break;
case DWT_53: spatial_compose53i_init(cs+level, buffer, height>>level, stride<<level); break;
/* not slicified yet */
case DWT_X: spatial_composeX(buffer, width>>level, height>>level, stride<<level); break;
}
}
}
static void ff_spatial_idwt_slice(dwt_compose_t *cs, DWTELEM *buffer, int width, int height, int stride, int type, int decomposition_count, int y){
const int support = type==1 ? 3 : 5;
int level;
if(type==2) return;
for(level=decomposition_count-1; level>=0; level--){
while(cs[level].y <= FFMIN((y>>level)+support, height>>level)){
switch(type){
case DWT_97: spatial_compose97i_dy(cs+level, buffer, width>>level, height>>level, stride<<level);
break;
case DWT_53: spatial_compose53i_dy(cs+level, buffer, width>>level, height>>level, stride<<level);
break;
case DWT_X: break;
}
}
}
}
static void ff_spatial_idwt_buffered_slice(DSPContext *dsp, dwt_compose_t *cs, slice_buffer * slice_buf, int width, int height, int stride_line, int type, int decomposition_count, int y){
const int support = type==1 ? 3 : 5;
int level;
if(type==2) return;
for(level=decomposition_count-1; level>=0; level--){
while(cs[level].y <= FFMIN((y>>level)+support, height>>level)){
switch(type){
case DWT_97: spatial_compose97i_dy_buffered(dsp, cs+level, slice_buf, width>>level, height>>level, stride_line<<level);
break;
case DWT_53: spatial_compose53i_dy_buffered(cs+level, slice_buf, width>>level, height>>level, stride_line<<level);
break;
case DWT_X: break;
}
}
}
}
static void ff_spatial_idwt(DWTELEM *buffer, int width, int height, int stride, int type, int decomposition_count){
if(type==2){
int level;
for(level=decomposition_count-1; level>=0; level--)
spatial_composeX (buffer, width>>level, height>>level, stride<<level);
}else{
dwt_compose_t cs[MAX_DECOMPOSITIONS];
int y;
ff_spatial_idwt_init(cs, buffer, width, height, stride, type, decomposition_count);
for(y=0; y<height; y+=4)
ff_spatial_idwt_slice(cs, buffer, width, height, stride, type, decomposition_count, y);
}
}
static int encode_subband_c0run(SnowContext *s, SubBand *b, DWTELEM *src, DWTELEM *parent, int stride, int orientation){
const int w= b->width;
const int h= b->height;
int x, y;
if(1){
int run=0;
int runs[w*h];
int run_index=0;
int max_index;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int v, p=0;
int /*ll=0, */l=0, lt=0, t=0, rt=0;
v= src[x + y*stride];
if(y){
t= src[x + (y-1)*stride];
if(x){
lt= src[x - 1 + (y-1)*stride];
}
if(x + 1 < w){
rt= src[x + 1 + (y-1)*stride];
}
}
if(x){
l= src[x - 1 + y*stride];
/*if(x > 1){
if(orientation==1) ll= src[y + (x-2)*stride];
else ll= src[x - 2 + y*stride];
}*/
}
if(parent){
int px= x>>1;
int py= y>>1;
if(px<b->parent->width && py<b->parent->height)
p= parent[px + py*2*stride];
}
if(!(/*ll|*/l|lt|t|rt|p)){
if(v){
runs[run_index++]= run;
run=0;
}else{
run++;
}
}
}
}
max_index= run_index;
runs[run_index++]= run;
run_index=0;
run= runs[run_index++];
put_symbol2(&s->c, b->state[30], max_index, 0);
if(run_index <= max_index)
put_symbol2(&s->c, b->state[1], run, 3);
for(y=0; y<h; y++){
if(s->c.bytestream_end - s->c.bytestream < w*40){
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
for(x=0; x<w; x++){
int v, p=0;
int /*ll=0, */l=0, lt=0, t=0, rt=0;
v= src[x + y*stride];
if(y){
t= src[x + (y-1)*stride];
if(x){
lt= src[x - 1 + (y-1)*stride];
}
if(x + 1 < w){
rt= src[x + 1 + (y-1)*stride];
}
}
if(x){
l= src[x - 1 + y*stride];
/*if(x > 1){
if(orientation==1) ll= src[y + (x-2)*stride];
else ll= src[x - 2 + y*stride];
}*/
}
if(parent){
int px= x>>1;
int py= y>>1;
if(px<b->parent->width && py<b->parent->height)
p= parent[px + py*2*stride];
}
if(/*ll|*/l|lt|t|rt|p){
int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
put_rac(&s->c, &b->state[0][context], !!v);
}else{
if(!run){
run= runs[run_index++];
if(run_index <= max_index)
put_symbol2(&s->c, b->state[1], run, 3);
assert(v);
}else{
run--;
assert(!v);
}
}
if(v){
int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
int l2= 2*FFABS(l) + (l<0);
int t2= 2*FFABS(t) + (t<0);
put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
put_rac(&s->c, &b->state[0][16 + 1 + 3 + quant3bA[l2&0xFF] + 3*quant3bA[t2&0xFF]], v<0);
}
}
}
}
return 0;
}
static int encode_subband(SnowContext *s, SubBand *b, DWTELEM *src, DWTELEM *parent, int stride, int orientation){
// encode_subband_qtree(s, b, src, parent, stride, orientation);
// encode_subband_z0run(s, b, src, parent, stride, orientation);
return encode_subband_c0run(s, b, src, parent, stride, orientation);
// encode_subband_dzr(s, b, src, parent, stride, orientation);
}
static inline void unpack_coeffs(SnowContext *s, SubBand *b, SubBand * parent, int orientation){
const int w= b->width;
const int h= b->height;
int x,y;
if(1){
int run, runs;
x_and_coeff *xc= b->x_coeff;
x_and_coeff *prev_xc= NULL;
x_and_coeff *prev2_xc= xc;
x_and_coeff *parent_xc= parent ? parent->x_coeff : NULL;
x_and_coeff *prev_parent_xc= parent_xc;
runs= get_symbol2(&s->c, b->state[30], 0);
if(runs-- > 0) run= get_symbol2(&s->c, b->state[1], 3);
else run= INT_MAX;
for(y=0; y<h; y++){
int v=0;
int lt=0, t=0, rt=0;
if(y && prev_xc->x == 0){
rt= prev_xc->coeff;
}
for(x=0; x<w; x++){
int p=0;
const int l= v;
lt= t; t= rt;
if(y){
if(prev_xc->x <= x)
prev_xc++;
if(prev_xc->x == x + 1)
rt= prev_xc->coeff;
else
rt=0;
}
if(parent_xc){
if(x>>1 > parent_xc->x){
parent_xc++;
}
if(x>>1 == parent_xc->x){
p= parent_xc->coeff;
}
}
if(/*ll|*/l|lt|t|rt|p){
int context= av_log2(/*FFABS(ll) + */3*(l>>1) + (lt>>1) + (t&~1) + (rt>>1) + (p>>1));
v=get_rac(&s->c, &b->state[0][context]);
if(v){
v= 2*(get_symbol2(&s->c, b->state[context + 2], context-4) + 1);
v+=get_rac(&s->c, &b->state[0][16 + 1 + 3 + quant3bA[l&0xFF] + 3*quant3bA[t&0xFF]]);
xc->x=x;
(xc++)->coeff= v;
}
}else{
if(!run){
if(runs-- > 0) run= get_symbol2(&s->c, b->state[1], 3);
else run= INT_MAX;
v= 2*(get_symbol2(&s->c, b->state[0 + 2], 0-4) + 1);
v+=get_rac(&s->c, &b->state[0][16 + 1 + 3]);
xc->x=x;
(xc++)->coeff= v;
}else{
int max_run;
run--;
v=0;
if(y) max_run= FFMIN(run, prev_xc->x - x - 2);
else max_run= FFMIN(run, w-x-1);
if(parent_xc)
max_run= FFMIN(max_run, 2*parent_xc->x - x - 1);
x+= max_run;
run-= max_run;
}
}
}
(xc++)->x= w+1; //end marker
prev_xc= prev2_xc;
prev2_xc= xc;
if(parent_xc){
if(y&1){
while(parent_xc->x != parent->width+1)
parent_xc++;
parent_xc++;
prev_parent_xc= parent_xc;
}else{
parent_xc= prev_parent_xc;
}
}
}
(xc++)->x= w+1; //end marker
}
}
static inline void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer * sb, int start_y, int h, int save_state[1]){
const int w= b->width;
int y;
const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
int new_index = 0;
START_TIMER
if(b->buf == s->spatial_dwt_buffer || s->qlog == LOSSLESS_QLOG){
qadd= 0;
qmul= 1<<QEXPSHIFT;
}
/* If we are on the second or later slice, restore our index. */
if (start_y != 0)
new_index = save_state[0];
for(y=start_y; y<h; y++){
int x = 0;
int v;
DWTELEM * line = slice_buffer_get_line(sb, y * b->stride_line + b->buf_y_offset) + b->buf_x_offset;
memset(line, 0, b->width*sizeof(DWTELEM));
v = b->x_coeff[new_index].coeff;
x = b->x_coeff[new_index++].x;
while(x < w)
{
register int t= ( (v>>1)*qmul + qadd)>>QEXPSHIFT;
register int u= -(v&1);
line[x] = (t^u) - u;
v = b->x_coeff[new_index].coeff;
x = b->x_coeff[new_index++].x;
}
}
if(w > 200 && start_y != 0/*level+1 == s->spatial_decomposition_count*/){
STOP_TIMER("decode_subband")
}
/* Save our variables for the next slice. */
save_state[0] = new_index;
return;
}
static void reset_contexts(SnowContext *s){ //FIXME better initial contexts
int plane_index, level, orientation;
for(plane_index=0; plane_index<3; plane_index++){
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1:0; orientation<4; orientation++){
memset(s->plane[plane_index].band[level][orientation].state, MID_STATE, sizeof(s->plane[plane_index].band[level][orientation].state));
}
}
}
memset(s->header_state, MID_STATE, sizeof(s->header_state));
memset(s->block_state, MID_STATE, sizeof(s->block_state));
}
static int alloc_blocks(SnowContext *s){
int w= -((-s->avctx->width )>>LOG2_MB_SIZE);
int h= -((-s->avctx->height)>>LOG2_MB_SIZE);
s->b_width = w;
s->b_height= h;
s->block= av_mallocz(w * h * sizeof(BlockNode) << (s->block_max_depth*2));
return 0;
}
static inline void copy_rac_state(RangeCoder *d, RangeCoder *s){
uint8_t *bytestream= d->bytestream;
uint8_t *bytestream_start= d->bytestream_start;
*d= *s;
d->bytestream= bytestream;
d->bytestream_start= bytestream_start;
}
//near copy & paste from dsputil, FIXME
static int pix_sum(uint8_t * pix, int line_size, int w)
{
int s, i, j;
s = 0;
for (i = 0; i < w; i++) {
for (j = 0; j < w; j++) {
s += pix[0];
pix ++;
}
pix += line_size - w;
}
return s;
}
//near copy & paste from dsputil, FIXME
static int pix_norm1(uint8_t * pix, int line_size, int w)
{
int s, i, j;
uint32_t *sq = ff_squareTbl + 256;
s = 0;
for (i = 0; i < w; i++) {
for (j = 0; j < w; j ++) {
s += sq[pix[0]];
pix ++;
}
pix += line_size - w;
}
return s;
}
static inline void set_blocks(SnowContext *s, int level, int x, int y, int l, int cb, int cr, int mx, int my, int ref, int type){
const int w= s->b_width << s->block_max_depth;
const int rem_depth= s->block_max_depth - level;
const int index= (x + y*w) << rem_depth;
const int block_w= 1<<rem_depth;
BlockNode block;
int i,j;
block.color[0]= l;
block.color[1]= cb;
block.color[2]= cr;
block.mx= mx;
block.my= my;
block.ref= ref;
block.type= type;
block.level= level;
for(j=0; j<block_w; j++){
for(i=0; i<block_w; i++){
s->block[index + i + j*w]= block;
}
}
}
static inline void init_ref(MotionEstContext *c, uint8_t *src[3], uint8_t *ref[3], uint8_t *ref2[3], int x, int y, int ref_index){
const int offset[3]= {
y*c-> stride + x,
((y*c->uvstride + x)>>1),
((y*c->uvstride + x)>>1),
};
int i;
for(i=0; i<3; i++){
c->src[0][i]= src [i];
c->ref[0][i]= ref [i] + offset[i];
}
assert(!ref_index);
}
static inline void pred_mv(SnowContext *s, int *mx, int *my, int ref,
const BlockNode *left, const BlockNode *top, const BlockNode *tr){
if(s->ref_frames == 1){
*mx = mid_pred(left->mx, top->mx, tr->mx);
*my = mid_pred(left->my, top->my, tr->my);
}else{
const int *scale = scale_mv_ref[ref];
*mx = mid_pred((left->mx * scale[left->ref] + 128) >>8,
(top ->mx * scale[top ->ref] + 128) >>8,
(tr ->mx * scale[tr ->ref] + 128) >>8);
*my = mid_pred((left->my * scale[left->ref] + 128) >>8,
(top ->my * scale[top ->ref] + 128) >>8,
(tr ->my * scale[tr ->ref] + 128) >>8);
}
}
//FIXME copy&paste
#define P_LEFT P[1]
#define P_TOP P[2]
#define P_TOPRIGHT P[3]
#define P_MEDIAN P[4]
#define P_MV1 P[9]
#define FLAG_QPEL 1 //must be 1
static int encode_q_branch(SnowContext *s, int level, int x, int y){
uint8_t p_buffer[1024];
uint8_t i_buffer[1024];
uint8_t p_state[sizeof(s->block_state)];
uint8_t i_state[sizeof(s->block_state)];
RangeCoder pc, ic;
uint8_t *pbbak= s->c.bytestream;
uint8_t *pbbak_start= s->c.bytestream_start;
int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
const int w= s->b_width << s->block_max_depth;
const int h= s->b_height << s->block_max_depth;
const int rem_depth= s->block_max_depth - level;
const int index= (x + y*w) << rem_depth;
const int block_w= 1<<(LOG2_MB_SIZE - level);
int trx= (x+1)<<rem_depth;
int try= (y+1)<<rem_depth;
const BlockNode *left = x ? &s->block[index-1] : &null_block;
const BlockNode *top = y ? &s->block[index-w] : &null_block;
const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
int pl = left->color[0];
int pcb= left->color[1];
int pcr= left->color[2];
int pmx, pmy;
int mx=0, my=0;
int l,cr,cb;
const int stride= s->current_picture.linesize[0];
const int uvstride= s->current_picture.linesize[1];
uint8_t *current_data[3]= { s->input_picture.data[0] + (x + y* stride)*block_w,
s->input_picture.data[1] + (x + y*uvstride)*block_w/2,
s->input_picture.data[2] + (x + y*uvstride)*block_w/2};
int P[10][2];
int16_t last_mv[3][2];
int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused
const int shift= 1+qpel;
MotionEstContext *c= &s->m.me;
int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
int mx_context= av_log2(2*FFABS(left->mx - top->mx));
int my_context= av_log2(2*FFABS(left->my - top->my));
int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
int ref, best_ref, ref_score, ref_mx, ref_my;
assert(sizeof(s->block_state) >= 256);
if(s->keyframe){
set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
return 0;
}
// clip predictors / edge ?
P_LEFT[0]= left->mx;
P_LEFT[1]= left->my;
P_TOP [0]= top->mx;
P_TOP [1]= top->my;
P_TOPRIGHT[0]= tr->mx;
P_TOPRIGHT[1]= tr->my;
last_mv[0][0]= s->block[index].mx;
last_mv[0][1]= s->block[index].my;
last_mv[1][0]= right->mx;
last_mv[1][1]= right->my;
last_mv[2][0]= bottom->mx;
last_mv[2][1]= bottom->my;
s->m.mb_stride=2;
s->m.mb_x=
s->m.mb_y= 0;
c->skip= 0;
assert(c-> stride == stride);
assert(c->uvstride == uvstride);
c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV;
c->xmin = - x*block_w - 16+2;
c->ymin = - y*block_w - 16+2;
c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-2;
c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-2;
if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
if (!y) {
c->pred_x= P_LEFT[0];
c->pred_y= P_LEFT[1];
} else {
c->pred_x = P_MEDIAN[0];
c->pred_y = P_MEDIAN[1];
}
score= INT_MAX;
best_ref= 0;
for(ref=0; ref<s->ref_frames; ref++){
init_ref(c, current_data, s->last_picture[ref].data, NULL, block_w*x, block_w*y, 0);
ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
(1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
assert(ref_mx >= c->xmin);
assert(ref_mx <= c->xmax);
assert(ref_my >= c->ymin);
assert(ref_my <= c->ymax);
ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
if(s->ref_mvs[ref]){
s->ref_mvs[ref][index][0]= ref_mx;
s->ref_mvs[ref][index][1]= ref_my;
s->ref_scores[ref][index]= ref_score;
}
if(score > ref_score){
score= ref_score;
best_ref= ref;
mx= ref_mx;
my= ref_my;
}
}
//FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
// subpel search
base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
pc= s->c;
pc.bytestream_start=
pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
memcpy(p_state, s->block_state, sizeof(s->block_state));
if(level!=s->block_max_depth)
put_rac(&pc, &p_state[4 + s_context], 1);
put_rac(&pc, &p_state[1 + left->type + top->type], 0);
if(s->ref_frames > 1)
put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
p_len= pc.bytestream - pc.bytestream_start;
score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
block_s= block_w*block_w;
sum = pix_sum(current_data[0], stride, block_w);
l= (sum + block_s/2)/block_s;
iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
block_s= block_w*block_w>>2;
sum = pix_sum(current_data[1], uvstride, block_w>>1);
cb= (sum + block_s/2)/block_s;
// iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
sum = pix_sum(current_data[2], uvstride, block_w>>1);
cr= (sum + block_s/2)/block_s;
// iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
ic= s->c;
ic.bytestream_start=
ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
memcpy(i_state, s->block_state, sizeof(s->block_state));
if(level!=s->block_max_depth)
put_rac(&ic, &i_state[4 + s_context], 1);
put_rac(&ic, &i_state[1 + left->type + top->type], 1);
put_symbol(&ic, &i_state[32], l-pl , 1);
put_symbol(&ic, &i_state[64], cb-pcb, 1);
put_symbol(&ic, &i_state[96], cr-pcr, 1);
i_len= ic.bytestream - ic.bytestream_start;
iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
// assert(score==256*256*256*64-1);
assert(iscore < 255*255*256 + s->lambda2*10);
assert(iscore >= 0);
assert(l>=0 && l<=255);
assert(pl>=0 && pl<=255);
if(level==0){
int varc= iscore >> 8;
int vard= score >> 8;
if (vard <= 64 || vard < varc)
c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
else
c->scene_change_score+= s->m.qscale;
}
if(level!=s->block_max_depth){
put_rac(&s->c, &s->block_state[4 + s_context], 0);
score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
if(score2 < score && score2 < iscore)
return score2;
}
if(iscore < score){
pred_mv(s, &pmx, &pmy, 0, left, top, tr);
memcpy(pbbak, i_buffer, i_len);
s->c= ic;
s->c.bytestream_start= pbbak_start;
s->c.bytestream= pbbak + i_len;
set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
memcpy(s->block_state, i_state, sizeof(s->block_state));
return iscore;
}else{
memcpy(pbbak, p_buffer, p_len);
s->c= pc;
s->c.bytestream_start= pbbak_start;
s->c.bytestream= pbbak + p_len;
set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
memcpy(s->block_state, p_state, sizeof(s->block_state));
return score;
}
}
static av_always_inline int same_block(BlockNode *a, BlockNode *b){
if((a->type&BLOCK_INTRA) && (b->type&BLOCK_INTRA)){
return !((a->color[0] - b->color[0]) | (a->color[1] - b->color[1]) | (a->color[2] - b->color[2]));
}else{
return !((a->mx - b->mx) | (a->my - b->my) | (a->ref - b->ref) | ((a->type ^ b->type)&BLOCK_INTRA));
}
}
static void encode_q_branch2(SnowContext *s, int level, int x, int y){
const int w= s->b_width << s->block_max_depth;
const int rem_depth= s->block_max_depth - level;
const int index= (x + y*w) << rem_depth;
int trx= (x+1)<<rem_depth;
BlockNode *b= &s->block[index];
const BlockNode *left = x ? &s->block[index-1] : &null_block;
const BlockNode *top = y ? &s->block[index-w] : &null_block;
const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
int pl = left->color[0];
int pcb= left->color[1];
int pcr= left->color[2];
int pmx, pmy;
int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
if(s->keyframe){
set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
return;
}
if(level!=s->block_max_depth){
if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
put_rac(&s->c, &s->block_state[4 + s_context], 1);
}else{
put_rac(&s->c, &s->block_state[4 + s_context], 0);
encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
return;
}
}
if(b->type & BLOCK_INTRA){
pred_mv(s, &pmx, &pmy, 0, left, top, tr);
put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
}else{
pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
if(s->ref_frames > 1)
put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
}
}
static void decode_q_branch(SnowContext *s, int level, int x, int y){
const int w= s->b_width << s->block_max_depth;
const int rem_depth= s->block_max_depth - level;
const int index= (x + y*w) << rem_depth;
int trx= (x+1)<<rem_depth;
const BlockNode *left = x ? &s->block[index-1] : &null_block;
const BlockNode *top = y ? &s->block[index-w] : &null_block;
const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
if(s->keyframe){
set_blocks(s, level, x, y, null_block.color[0], null_block.color[1], null_block.color[2], null_block.mx, null_block.my, null_block.ref, BLOCK_INTRA);
return;
}
if(level==s->block_max_depth || get_rac(&s->c, &s->block_state[4 + s_context])){
int type, mx, my;
int l = left->color[0];
int cb= left->color[1];
int cr= left->color[2];
int ref = 0;
int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 0*av_log2(2*FFABS(tr->mx - top->mx));
int my_context= av_log2(2*FFABS(left->my - top->my)) + 0*av_log2(2*FFABS(tr->my - top->my));
type= get_rac(&s->c, &s->block_state[1 + left->type + top->type]) ? BLOCK_INTRA : 0;
if(type){
pred_mv(s, &mx, &my, 0, left, top, tr);
l += get_symbol(&s->c, &s->block_state[32], 1);
cb+= get_symbol(&s->c, &s->block_state[64], 1);
cr+= get_symbol(&s->c, &s->block_state[96], 1);
}else{
if(s->ref_frames > 1)
ref= get_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], 0);
pred_mv(s, &mx, &my, ref, left, top, tr);
mx+= get_symbol(&s->c, &s->block_state[128 + 32*(mx_context + 16*!!ref)], 1);
my+= get_symbol(&s->c, &s->block_state[128 + 32*(my_context + 16*!!ref)], 1);
}
set_blocks(s, level, x, y, l, cb, cr, mx, my, ref, type);
}else{
decode_q_branch(s, level+1, 2*x+0, 2*y+0);
decode_q_branch(s, level+1, 2*x+1, 2*y+0);
decode_q_branch(s, level+1, 2*x+0, 2*y+1);
decode_q_branch(s, level+1, 2*x+1, 2*y+1);
}
}
static void encode_blocks(SnowContext *s, int search){
int x, y;
int w= s->b_width;
int h= s->b_height;
if(s->avctx->me_method == ME_ITER && !s->keyframe && search)
iterative_me(s);
for(y=0; y<h; y++){
if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return;
}
for(x=0; x<w; x++){
if(s->avctx->me_method == ME_ITER || !search)
encode_q_branch2(s, 0, x, y);
else
encode_q_branch (s, 0, x, y);
}
}
}
static void decode_blocks(SnowContext *s){
int x, y;
int w= s->b_width;
int h= s->b_height;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
decode_q_branch(s, 0, x, y);
}
}
}
static void mc_block(uint8_t *dst, const uint8_t *src, uint8_t *tmp, int stride, int b_w, int b_h, int dx, int dy){
int x, y;
START_TIMER
for(y=0; y < b_h+5; y++){
for(x=0; x < b_w; x++){
int a0= src[x ];
int a1= src[x + 1];
int a2= src[x + 2];
int a3= src[x + 3];
int a4= src[x + 4];
int a5= src[x + 5];
// int am= 9*(a1+a2) - (a0+a3);
int am= 20*(a2+a3) - 5*(a1+a4) + (a0+a5);
// int am= 18*(a2+a3) - 2*(a1+a4);
// int aL= (-7*a0 + 105*a1 + 35*a2 - 5*a3)>>3;
// int aR= (-7*a3 + 105*a2 + 35*a1 - 5*a0)>>3;
// if(b_w==16) am= 8*(a1+a2);
if(dx<8) am = (32*a2*( 8-dx) + am* dx + 128)>>8;
else am = ( am*(16-dx) + 32*a3*(dx-8) + 128)>>8;
/* FIXME Try increasing tmp buffer to 16 bits and not clipping here. Should give marginally better results. - Robert*/
if(am&(~255)) am= ~(am>>31);
tmp[x] = am;
/* if (dx< 4) tmp[x + y*stride]= (16*a1*( 4-dx) + aL* dx + 32)>>6;
else if(dx< 8) tmp[x + y*stride]= ( aL*( 8-dx) + am*(dx- 4) + 32)>>6;
else if(dx<12) tmp[x + y*stride]= ( am*(12-dx) + aR*(dx- 8) + 32)>>6;
else tmp[x + y*stride]= ( aR*(16-dx) + 16*a2*(dx-12) + 32)>>6;*/
}
tmp += stride;
src += stride;
}
tmp -= (b_h+5)*stride;
for(y=0; y < b_h; y++){
for(x=0; x < b_w; x++){
int a0= tmp[x + 0*stride];
int a1= tmp[x + 1*stride];
int a2= tmp[x + 2*stride];
int a3= tmp[x + 3*stride];
int a4= tmp[x + 4*stride];
int a5= tmp[x + 5*stride];
int am= 20*(a2+a3) - 5*(a1+a4) + (a0+a5);
// int am= 18*(a2+a3) - 2*(a1+a4);
/* int aL= (-7*a0 + 105*a1 + 35*a2 - 5*a3)>>3;
int aR= (-7*a3 + 105*a2 + 35*a1 - 5*a0)>>3;*/
// if(b_w==16) am= 8*(a1+a2);
if(dy<8) am = (32*a2*( 8-dy) + am* dy + 128)>>8;
else am = ( am*(16-dy) + 32*a3*(dy-8) + 128)>>8;
if(am&(~255)) am= ~(am>>31);
dst[x] = am;
/* if (dy< 4) tmp[x + y*stride]= (16*a1*( 4-dy) + aL* dy + 32)>>6;
else if(dy< 8) tmp[x + y*stride]= ( aL*( 8-dy) + am*(dy- 4) + 32)>>6;
else if(dy<12) tmp[x + y*stride]= ( am*(12-dy) + aR*(dy- 8) + 32)>>6;
else tmp[x + y*stride]= ( aR*(16-dy) + 16*a2*(dy-12) + 32)>>6;*/
}
dst += stride;
tmp += stride;
}
STOP_TIMER("mc_block")
}
#define mca(dx,dy,b_w)\
static void mc_block_hpel ## dx ## dy ## b_w(uint8_t *dst, const uint8_t *src, int stride, int h){\
uint8_t tmp[stride*(b_w+5)];\
assert(h==b_w);\
mc_block(dst, src-2-2*stride, tmp, stride, b_w, b_w, dx, dy);\
}
mca( 0, 0,16)
mca( 8, 0,16)
mca( 0, 8,16)
mca( 8, 8,16)
mca( 0, 0,8)
mca( 8, 0,8)
mca( 0, 8,8)
mca( 8, 8,8)
static void pred_block(SnowContext *s, uint8_t *dst, uint8_t *tmp, int stride, int sx, int sy, int b_w, int b_h, BlockNode *block, int plane_index, int w, int h){
if(block->type & BLOCK_INTRA){
int x, y;
const int color = block->color[plane_index];
const int color4= color*0x01010101;
if(b_w==32){
for(y=0; y < b_h; y++){
*(uint32_t*)&dst[0 + y*stride]= color4;
*(uint32_t*)&dst[4 + y*stride]= color4;
*(uint32_t*)&dst[8 + y*stride]= color4;
*(uint32_t*)&dst[12+ y*stride]= color4;
*(uint32_t*)&dst[16+ y*stride]= color4;
*(uint32_t*)&dst[20+ y*stride]= color4;
*(uint32_t*)&dst[24+ y*stride]= color4;
*(uint32_t*)&dst[28+ y*stride]= color4;
}
}else if(b_w==16){
for(y=0; y < b_h; y++){
*(uint32_t*)&dst[0 + y*stride]= color4;
*(uint32_t*)&dst[4 + y*stride]= color4;
*(uint32_t*)&dst[8 + y*stride]= color4;
*(uint32_t*)&dst[12+ y*stride]= color4;
}
}else if(b_w==8){
for(y=0; y < b_h; y++){
*(uint32_t*)&dst[0 + y*stride]= color4;
*(uint32_t*)&dst[4 + y*stride]= color4;
}
}else if(b_w==4){
for(y=0; y < b_h; y++){
*(uint32_t*)&dst[0 + y*stride]= color4;
}
}else{
for(y=0; y < b_h; y++){
for(x=0; x < b_w; x++){
dst[x + y*stride]= color;
}
}
}
}else{
uint8_t *src= s->last_picture[block->ref].data[plane_index];
const int scale= plane_index ? s->mv_scale : 2*s->mv_scale;
int mx= block->mx*scale;
int my= block->my*scale;
const int dx= mx&15;
const int dy= my&15;
const int tab_index= 3 - (b_w>>2) + (b_w>>4);
sx += (mx>>4) - 2;
sy += (my>>4) - 2;
src += sx + sy*stride;
if( (unsigned)sx >= w - b_w - 4
|| (unsigned)sy >= h - b_h - 4){
ff_emulated_edge_mc(tmp + MB_SIZE, src, stride, b_w+5, b_h+5, sx, sy, w, h);
src= tmp + MB_SIZE;
}
// assert(b_w == b_h || 2*b_w == b_h || b_w == 2*b_h);
// assert(!(b_w&(b_w-1)));
assert(b_w>1 && b_h>1);
assert(tab_index>=0 && tab_index<4 || b_w==32);
if((dx&3) || (dy&3) || !(b_w == b_h || 2*b_w == b_h || b_w == 2*b_h) || (b_w&(b_w-1)))
mc_block(dst, src, tmp, stride, b_w, b_h, dx, dy);
else if(b_w==32){
int y;
for(y=0; y<b_h; y+=16){
s->dsp.put_h264_qpel_pixels_tab[0][dy+(dx>>2)](dst + y*stride, src + 2 + (y+2)*stride,stride);
s->dsp.put_h264_qpel_pixels_tab[0][dy+(dx>>2)](dst + 16 + y*stride, src + 18 + (y+2)*stride,stride);
}
}else if(b_w==b_h)
s->dsp.put_h264_qpel_pixels_tab[tab_index ][dy+(dx>>2)](dst,src + 2 + 2*stride,stride);
else if(b_w==2*b_h){
s->dsp.put_h264_qpel_pixels_tab[tab_index+1][dy+(dx>>2)](dst ,src + 2 + 2*stride,stride);
s->dsp.put_h264_qpel_pixels_tab[tab_index+1][dy+(dx>>2)](dst+b_h,src + 2 + b_h + 2*stride,stride);
}else{
assert(2*b_w==b_h);
s->dsp.put_h264_qpel_pixels_tab[tab_index ][dy+(dx>>2)](dst ,src + 2 + 2*stride ,stride);
s->dsp.put_h264_qpel_pixels_tab[tab_index ][dy+(dx>>2)](dst+b_w*stride,src + 2 + 2*stride+b_w*stride,stride);
}
}
}
void ff_snow_inner_add_yblock(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h,
int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8){
int y, x;
DWTELEM * dst;
for(y=0; y<b_h; y++){
//FIXME ugly misuse of obmc_stride
const uint8_t *obmc1= obmc + y*obmc_stride;
const uint8_t *obmc2= obmc1+ (obmc_stride>>1);
const uint8_t *obmc3= obmc1+ obmc_stride*(obmc_stride>>1);
const uint8_t *obmc4= obmc3+ (obmc_stride>>1);
dst = slice_buffer_get_line(sb, src_y + y);
for(x=0; x<b_w; x++){
int v= obmc1[x] * block[3][x + y*src_stride]
+obmc2[x] * block[2][x + y*src_stride]
+obmc3[x] * block[1][x + y*src_stride]
+obmc4[x] * block[0][x + y*src_stride];
v <<= 8 - LOG2_OBMC_MAX;
if(FRAC_BITS != 8){
v += 1<<(7 - FRAC_BITS);
v >>= 8 - FRAC_BITS;
}
if(add){
v += dst[x + src_x];
v = (v + (1<<(FRAC_BITS-1))) >> FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst8[x + y*src_stride] = v;
}else{
dst[x + src_x] -= v;
}
}
}
}
//FIXME name clenup (b_w, block_w, b_width stuff)
static av_always_inline void add_yblock(SnowContext *s, int sliced, slice_buffer *sb, DWTELEM *dst, uint8_t *dst8, const uint8_t *obmc, int src_x, int src_y, int b_w, int b_h, int w, int h, int dst_stride, int src_stride, int obmc_stride, int b_x, int b_y, int add, int offset_dst, int plane_index){
const int b_width = s->b_width << s->block_max_depth;
const int b_height= s->b_height << s->block_max_depth;
const int b_stride= b_width;
BlockNode *lt= &s->block[b_x + b_y*b_stride];
BlockNode *rt= lt+1;
BlockNode *lb= lt+b_stride;
BlockNode *rb= lb+1;
uint8_t *block[4];
int tmp_step= src_stride >= 7*MB_SIZE ? MB_SIZE : MB_SIZE*src_stride;
uint8_t tmp[src_stride*7*MB_SIZE]; //FIXME align
uint8_t *ptmp;
int x,y;
if(b_x<0){
lt= rt;
lb= rb;
}else if(b_x + 1 >= b_width){
rt= lt;
rb= lb;
}
if(b_y<0){
lt= lb;
rt= rb;
}else if(b_y + 1 >= b_height){
lb= lt;
rb= rt;
}
if(src_x<0){ //FIXME merge with prev & always round internal width upto *16
obmc -= src_x;
b_w += src_x;
if(!sliced && !offset_dst)
dst -= src_x;
src_x=0;
}else if(src_x + b_w > w){
b_w = w - src_x;
}
if(src_y<0){
obmc -= src_y*obmc_stride;
b_h += src_y;
if(!sliced && !offset_dst)
dst -= src_y*dst_stride;
src_y=0;
}else if(src_y + b_h> h){
b_h = h - src_y;
}
if(b_w<=0 || b_h<=0) return;
assert(src_stride > 2*MB_SIZE + 5);
if(!sliced && offset_dst)
dst += src_x + src_y*dst_stride;
dst8+= src_x + src_y*src_stride;
// src += src_x + src_y*src_stride;
ptmp= tmp + 3*tmp_step;
block[0]= ptmp;
ptmp+=tmp_step;
pred_block(s, block[0], tmp, src_stride, src_x, src_y, b_w, b_h, lt, plane_index, w, h);
if(same_block(lt, rt)){
block[1]= block[0];
}else{
block[1]= ptmp;
ptmp+=tmp_step;
pred_block(s, block[1], tmp, src_stride, src_x, src_y, b_w, b_h, rt, plane_index, w, h);
}
if(same_block(lt, lb)){
block[2]= block[0];
}else if(same_block(rt, lb)){
block[2]= block[1];
}else{
block[2]= ptmp;
ptmp+=tmp_step;
pred_block(s, block[2], tmp, src_stride, src_x, src_y, b_w, b_h, lb, plane_index, w, h);
}
if(same_block(lt, rb) ){
block[3]= block[0];
}else if(same_block(rt, rb)){
block[3]= block[1];
}else if(same_block(lb, rb)){
block[3]= block[2];
}else{
block[3]= ptmp;
pred_block(s, block[3], tmp, src_stride, src_x, src_y, b_w, b_h, rb, plane_index, w, h);
}
#if 0
for(y=0; y<b_h; y++){
for(x=0; x<b_w; x++){
int v= obmc [x + y*obmc_stride] * block[3][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
for(y=0; y<b_h; y++){
uint8_t *obmc2= obmc + (obmc_stride>>1);
for(x=0; x<b_w; x++){
int v= obmc2[x + y*obmc_stride] * block[2][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
for(y=0; y<b_h; y++){
uint8_t *obmc3= obmc + obmc_stride*(obmc_stride>>1);
for(x=0; x<b_w; x++){
int v= obmc3[x + y*obmc_stride] * block[1][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
for(y=0; y<b_h; y++){
uint8_t *obmc3= obmc + obmc_stride*(obmc_stride>>1);
uint8_t *obmc4= obmc3+ (obmc_stride>>1);
for(x=0; x<b_w; x++){
int v= obmc4[x + y*obmc_stride] * block[0][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
#else
if(sliced){
START_TIMER
s->dsp.inner_add_yblock(obmc, obmc_stride, block, b_w, b_h, src_x,src_y, src_stride, sb, add, dst8);
STOP_TIMER("inner_add_yblock")
}else
for(y=0; y<b_h; y++){
//FIXME ugly misuse of obmc_stride
const uint8_t *obmc1= obmc + y*obmc_stride;
const uint8_t *obmc2= obmc1+ (obmc_stride>>1);
const uint8_t *obmc3= obmc1+ obmc_stride*(obmc_stride>>1);
const uint8_t *obmc4= obmc3+ (obmc_stride>>1);
for(x=0; x<b_w; x++){
int v= obmc1[x] * block[3][x + y*src_stride]
+obmc2[x] * block[2][x + y*src_stride]
+obmc3[x] * block[1][x + y*src_stride]
+obmc4[x] * block[0][x + y*src_stride];
v <<= 8 - LOG2_OBMC_MAX;
if(FRAC_BITS != 8){
v += 1<<(7 - FRAC_BITS);
v >>= 8 - FRAC_BITS;
}
if(add){
v += dst[x + y*dst_stride];
v = (v + (1<<(FRAC_BITS-1))) >> FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst8[x + y*src_stride] = v;
}else{
dst[x + y*dst_stride] -= v;
}
}
}
#endif
}
static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, DWTELEM * old_buffer, int plane_index, int add, int mb_y){
Plane *p= &s->plane[plane_index];
const int mb_w= s->b_width << s->block_max_depth;
const int mb_h= s->b_height << s->block_max_depth;
int x, y, mb_x;
int block_size = MB_SIZE >> s->block_max_depth;
int block_w = plane_index ? block_size/2 : block_size;
const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth];
int obmc_stride= plane_index ? block_size : 2*block_size;
int ref_stride= s->current_picture.linesize[plane_index];
uint8_t *dst8= s->current_picture.data[plane_index];
int w= p->width;
int h= p->height;
START_TIMER
if(s->keyframe || (s->avctx->debug&512)){
if(mb_y==mb_h)
return;
if(add){
for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++)
{
// DWTELEM * line = slice_buffer_get_line(sb, y);
DWTELEM * line = sb->line[y];
for(x=0; x<w; x++)
{
// int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
int v= line[x] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
v >>= FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst8[x + y*ref_stride]= v;
}
}
}else{
for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++)
{
// DWTELEM * line = slice_buffer_get_line(sb, y);
DWTELEM * line = sb->line[y];
for(x=0; x<w; x++)
{
line[x] -= 128 << FRAC_BITS;
// buf[x + y*w]-= 128<<FRAC_BITS;
}
}
}
return;
}
for(mb_x=0; mb_x<=mb_w; mb_x++){
START_TIMER
add_yblock(s, 1, sb, old_buffer, dst8, obmc,
block_w*mb_x - block_w/2,
block_w*mb_y - block_w/2,
block_w, block_w,
w, h,
w, ref_stride, obmc_stride,
mb_x - 1, mb_y - 1,
add, 0, plane_index);
STOP_TIMER("add_yblock")
}
STOP_TIMER("predict_slice")
}
static av_always_inline void predict_slice(SnowContext *s, DWTELEM *buf, int plane_index, int add, int mb_y){
Plane *p= &s->plane[plane_index];
const int mb_w= s->b_width << s->block_max_depth;
const int mb_h= s->b_height << s->block_max_depth;
int x, y, mb_x;
int block_size = MB_SIZE >> s->block_max_depth;
int block_w = plane_index ? block_size/2 : block_size;
const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth];
const int obmc_stride= plane_index ? block_size : 2*block_size;
int ref_stride= s->current_picture.linesize[plane_index];
uint8_t *dst8= s->current_picture.data[plane_index];
int w= p->width;
int h= p->height;
START_TIMER
if(s->keyframe || (s->avctx->debug&512)){
if(mb_y==mb_h)
return;
if(add){
for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++){
for(x=0; x<w; x++){
int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
v >>= FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst8[x + y*ref_stride]= v;
}
}
}else{
for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++){
for(x=0; x<w; x++){
buf[x + y*w]-= 128<<FRAC_BITS;
}
}
}
return;
}
for(mb_x=0; mb_x<=mb_w; mb_x++){
START_TIMER
add_yblock(s, 0, NULL, buf, dst8, obmc,
block_w*mb_x - block_w/2,
block_w*mb_y - block_w/2,
block_w, block_w,
w, h,
w, ref_stride, obmc_stride,
mb_x - 1, mb_y - 1,
add, 1, plane_index);
STOP_TIMER("add_yblock")
}
STOP_TIMER("predict_slice")
}
static av_always_inline void predict_plane(SnowContext *s, DWTELEM *buf, int plane_index, int add){
const int mb_h= s->b_height << s->block_max_depth;
int mb_y;
for(mb_y=0; mb_y<=mb_h; mb_y++)
predict_slice(s, buf, plane_index, add, mb_y);
}
static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
int i, x2, y2;
Plane *p= &s->plane[plane_index];
const int block_size = MB_SIZE >> s->block_max_depth;
const int block_w = plane_index ? block_size/2 : block_size;
const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth];
const int obmc_stride= plane_index ? block_size : 2*block_size;
const int ref_stride= s->current_picture.linesize[plane_index];
uint8_t *src= s-> input_picture.data[plane_index];
DWTELEM *dst= (DWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
const int b_stride = s->b_width << s->block_max_depth;
const int w= p->width;
const int h= p->height;
int index= mb_x + mb_y*b_stride;
BlockNode *b= &s->block[index];
BlockNode backup= *b;
int ab=0;
int aa=0;
b->type|= BLOCK_INTRA;
b->color[plane_index]= 0;
memset(dst, 0, obmc_stride*obmc_stride*sizeof(DWTELEM));
for(i=0; i<4; i++){
int mb_x2= mb_x + (i &1) - 1;
int mb_y2= mb_y + (i>>1) - 1;
int x= block_w*mb_x2 + block_w/2;
int y= block_w*mb_y2 + block_w/2;
add_yblock(s, 0, NULL, dst + ((i&1)+(i>>1)*obmc_stride)*block_w, NULL, obmc,
x, y, block_w, block_w, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_w); y2++){
for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_w*mb_y - block_w/2))*obmc_stride;
int obmc_v= obmc[index];
int d;
if(y<0) obmc_v += obmc[index + block_w*obmc_stride];
if(x<0) obmc_v += obmc[index + block_w];
if(y+block_w>h) obmc_v += obmc[index - block_w*obmc_stride];
if(x+block_w>w) obmc_v += obmc[index - block_w];
//FIXME precalc this or simplify it somehow else
d = -dst[index] + (1<<(FRAC_BITS-1));
dst[index] = d;
ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
aa += obmc_v * obmc_v; //FIXME precalclate this
}
}
}
*b= backup;
return av_clip(((ab<<LOG2_OBMC_MAX) + aa/2)/aa, 0, 255); //FIXME we should not need clipping
}
static inline int get_block_bits(SnowContext *s, int x, int y, int w){
const int b_stride = s->b_width << s->block_max_depth;
const int b_height = s->b_height<< s->block_max_depth;
int index= x + y*b_stride;
const BlockNode *b = &s->block[index];
const BlockNode *left = x ? &s->block[index-1] : &null_block;
const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
int dmx, dmy;
// int mx_context= av_log2(2*FFABS(left->mx - top->mx));
// int my_context= av_log2(2*FFABS(left->my - top->my));
if(x<0 || x>=b_stride || y>=b_height)
return 0;
/*
1 0 0
01X 1-2 1
001XX 3-6 2-3
0001XXX 7-14 4-7
00001XXXX 15-30 8-15
*/
//FIXME try accurate rate
//FIXME intra and inter predictors if surrounding blocks arent the same type
if(b->type & BLOCK_INTRA){
return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
+ av_log2(2*FFABS(left->color[1] - b->color[1]))
+ av_log2(2*FFABS(left->color[2] - b->color[2])));
}else{
pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
dmx-= b->mx;
dmy-= b->my;
return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
+ av_log2(2*FFABS(dmy))
+ av_log2(2*b->ref));
}
}
static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, const uint8_t *obmc_edged){
Plane *p= &s->plane[plane_index];
const int block_size = MB_SIZE >> s->block_max_depth;
const int block_w = plane_index ? block_size/2 : block_size;
const int obmc_stride= plane_index ? block_size : 2*block_size;
const int ref_stride= s->current_picture.linesize[plane_index];
uint8_t *dst= s->current_picture.data[plane_index];
uint8_t *src= s-> input_picture.data[plane_index];
DWTELEM *pred= (DWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
uint8_t cur[ref_stride*2*MB_SIZE]; //FIXME alignment
uint8_t tmp[ref_stride*(2*MB_SIZE+5)];
const int b_stride = s->b_width << s->block_max_depth;
const int b_height = s->b_height<< s->block_max_depth;
const int w= p->width;
const int h= p->height;
int distortion;
int rate= 0;
const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
int sx= block_w*mb_x - block_w/2;
int sy= block_w*mb_y - block_w/2;
int x0= FFMAX(0,-sx);
int y0= FFMAX(0,-sy);
int x1= FFMIN(block_w*2, w-sx);
int y1= FFMIN(block_w*2, h-sy);
int i,x,y;
pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_w*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
for(y=y0; y<y1; y++){
const uint8_t *obmc1= obmc_edged + y*obmc_stride;
const DWTELEM *pred1 = pred + y*obmc_stride;
uint8_t *cur1 = cur + y*ref_stride;
uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
for(x=x0; x<x1; x++){
int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
v = (v + pred1[x]) >> FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst1[x] = v;
}
}
/* copy the regions where obmc[] = (uint8_t)256 */
if(LOG2_OBMC_MAX == 8
&& (mb_x == 0 || mb_x == b_stride-1)
&& (mb_y == 0 || mb_y == b_height-1)){
if(mb_x == 0)
x1 = block_w;
else
x0 = block_w;
if(mb_y == 0)
y1 = block_w;
else
y0 = block_w;
for(y=y0; y<y1; y++)
memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
}
if(block_w==16){
/* FIXME rearrange dsputil to fit 32x32 cmp functions */
/* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
/* FIXME cmps overlap but don't cover the wavelet's whole support,
* so improving the score of one block is not strictly guaranteed to
* improve the score of the whole frame, so iterative motion est
* doesn't always converge. */
if(s->avctx->me_cmp == FF_CMP_W97)
distortion = w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
else if(s->avctx->me_cmp == FF_CMP_W53)
distortion = w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
else{
distortion = 0;
for(i=0; i<4; i++){
int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
distortion += s->dsp.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
}
}
}else{
assert(block_w==8);
distortion = s->dsp.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
}
if(plane_index==0){
for(i=0; i<4; i++){
/* ..RRr
* .RXx.
* rxx..
*/
rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
}
if(mb_x == b_stride-2)
rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
}
return distortion + rate*penalty_factor;
}
static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
int i, y2;
Plane *p= &s->plane[plane_index];
const int block_size = MB_SIZE >> s->block_max_depth;
const int block_w = plane_index ? block_size/2 : block_size;
const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth];
const int obmc_stride= plane_index ? block_size : 2*block_size;
const int ref_stride= s->current_picture.linesize[plane_index];
uint8_t *dst= s->current_picture.data[plane_index];
uint8_t *src= s-> input_picture.data[plane_index];
static const DWTELEM zero_dst[4096]; //FIXME
const int b_stride = s->b_width << s->block_max_depth;
const int w= p->width;
const int h= p->height;
int distortion= 0;
int rate= 0;
const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
for(i=0; i<9; i++){
int mb_x2= mb_x + (i%3) - 1;
int mb_y2= mb_y + (i/3) - 1;
int x= block_w*mb_x2 + block_w/2;
int y= block_w*mb_y2 + block_w/2;
add_yblock(s, 0, NULL, zero_dst, dst, obmc,
x, y, block_w, block_w, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
//FIXME find a cleaner/simpler way to skip the outside stuff
for(y2= y; y2<0; y2++)
memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
for(y2= h; y2<y+block_w; y2++)
memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
if(x<0){
for(y2= y; y2<y+block_w; y2++)
memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
}
if(x+block_w > w){
for(y2= y; y2<y+block_w; y2++)
memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
}
assert(block_w== 8 || block_w==16);
distortion += s->dsp.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_w);
}
if(plane_index==0){
BlockNode *b= &s->block[mb_x+mb_y*b_stride];
int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
/* ..RRRr
* .RXXx.
* .RXXx.
* rxxx.
*/
if(merged)
rate = get_block_bits(s, mb_x, mb_y, 2);
for(i=merged?4:0; i<9; i++){
static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
}
}
return distortion + rate*penalty_factor;
}
static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, const uint8_t *obmc_edged, int *best_rd){
const int b_stride= s->b_width << s->block_max_depth;
BlockNode *block= &s->block[mb_x + mb_y * b_stride];
BlockNode backup= *block;
int rd, index, value;
assert(mb_x>=0 && mb_y>=0);
assert(mb_x<b_stride);
if(intra){
block->color[0] = p[0];
block->color[1] = p[1];
block->color[2] = p[2];
block->type |= BLOCK_INTRA;
}else{
index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
if(s->me_cache[index] == value)
return 0;
s->me_cache[index]= value;
block->mx= p[0];
block->my= p[1];
block->type &= ~BLOCK_INTRA;
}
rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged);
//FIXME chroma
if(rd < *best_rd){
*best_rd= rd;
return 1;
}else{
*block= backup;
return 0;
}
}
/* special case for int[2] args we discard afterward, fixes compilation prob with gcc 2.95 */
static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, const uint8_t *obmc_edged, int *best_rd){
int p[2] = {p0, p1};
return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
}
static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
const int b_stride= s->b_width << s->block_max_depth;
BlockNode *block= &s->block[mb_x + mb_y * b_stride];
BlockNode backup[4]= {block[0], block[1], block[b_stride], block[b_stride+1]};
int rd, index, value;
assert(mb_x>=0 && mb_y>=0);
assert(mb_x<b_stride);
assert(((mb_x|mb_y)&1) == 0);
index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
if(s->me_cache[index] == value)
return 0;
s->me_cache[index]= value;
block->mx= p0;
block->my= p1;
block->ref= ref;
block->type &= ~BLOCK_INTRA;
block[1]= block[b_stride]= block[b_stride+1]= *block;
rd= get_4block_rd(s, mb_x, mb_y, 0);
//FIXME chroma
if(rd < *best_rd){
*best_rd= rd;
return 1;
}else{
block[0]= backup[0];
block[1]= backup[1];
block[b_stride]= backup[2];
block[b_stride+1]= backup[3];
return 0;
}
}
static void iterative_me(SnowContext *s){
int pass, mb_x, mb_y;
const int b_width = s->b_width << s->block_max_depth;
const int b_height= s->b_height << s->block_max_depth;
const int b_stride= b_width;
int color[3];
{
RangeCoder r = s->c;
uint8_t state[sizeof(s->block_state)];
memcpy(state, s->block_state, sizeof(s->block_state));
for(mb_y= 0; mb_y<s->b_height; mb_y++)
for(mb_x= 0; mb_x<s->b_width; mb_x++)
encode_q_branch(s, 0, mb_x, mb_y);
s->c = r;
memcpy(s->block_state, state, sizeof(s->block_state));
}
for(pass=0; pass<25; pass++){
int change= 0;
for(mb_y= 0; mb_y<b_height; mb_y++){
for(mb_x= 0; mb_x<b_width; mb_x++){
int dia_change, i, j, ref;
int best_rd= INT_MAX, ref_rd;
BlockNode backup, ref_b;
const int index= mb_x + mb_y * b_stride;
BlockNode *block= &s->block[index];
BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
const int b_w= (MB_SIZE >> s->block_max_depth);
uint8_t obmc_edged[b_w*2][b_w*2];
if(pass && (block->type & BLOCK_OPT))
continue;
block->type |= BLOCK_OPT;
backup= *block;
if(!s->me_cache_generation)
memset(s->me_cache, 0, sizeof(s->me_cache));
s->me_cache_generation += 1<<22;
//FIXME precalc
{
int x, y;
memcpy(obmc_edged, obmc_tab[s->block_max_depth], b_w*b_w*4);
if(mb_x==0)
for(y=0; y<b_w*2; y++)
memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
if(mb_x==b_stride-1)
for(y=0; y<b_w*2; y++)
memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
if(mb_y==0){
for(x=0; x<b_w*2; x++)
obmc_edged[0][x] += obmc_edged[b_w-1][x];
for(y=1; y<b_w; y++)
memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
}
if(mb_y==b_height-1){
for(x=0; x<b_w*2; x++)
obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
for(y=b_w; y<b_w*2-1; y++)
memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
}
}
//skip stuff outside the picture
if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1)
{
uint8_t *src= s-> input_picture.data[0];
uint8_t *dst= s->current_picture.data[0];
const int stride= s->current_picture.linesize[0];
const int block_w= MB_SIZE >> s->block_max_depth;
const int sx= block_w*mb_x - block_w/2;
const int sy= block_w*mb_y - block_w/2;
const int w= s->plane[0].width;
const int h= s->plane[0].height;
int y;
for(y=sy; y<0; y++)
memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
for(y=h; y<sy+block_w*2; y++)
memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
if(sx<0){
for(y=sy; y<sy+block_w*2; y++)
memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
}
if(sx+block_w*2 > w){
for(y=sy; y<sy+block_w*2; y++)
memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
}
}
// intra(black) = neighbors' contribution to the current block
for(i=0; i<3; i++)
color[i]= get_dc(s, mb_x, mb_y, i);
// get previous score (cannot be cached due to OBMC)
if(pass > 0 && (block->type&BLOCK_INTRA)){
int color0[3]= {block->color[0], block->color[1], block->color[2]};
check_block(s, mb_x, mb_y, color0, 1, *obmc_edged, &best_rd);
}else
check_block_inter(s, mb_x, mb_y, block->mx, block->my, *obmc_edged, &best_rd);
ref_b= *block;
ref_rd= best_rd;
for(ref=0; ref < s->ref_frames; ref++){
int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
continue;
block->ref= ref;
best_rd= INT_MAX;
check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], *obmc_edged, &best_rd);
check_block_inter(s, mb_x, mb_y, 0, 0, *obmc_edged, &best_rd);
if(tb)
check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], *obmc_edged, &best_rd);
if(lb)
check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], *obmc_edged, &best_rd);
if(rb)
check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], *obmc_edged, &best_rd);
if(bb)
check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], *obmc_edged, &best_rd);
/* fullpel ME */
//FIXME avoid subpel interpol / round to nearest integer
do{
dia_change=0;
for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){
for(j=0; j<i; j++){
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), *obmc_edged, &best_rd);
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), *obmc_edged, &best_rd);
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), *obmc_edged, &best_rd);
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), *obmc_edged, &best_rd);
}
}
}while(dia_change);
/* subpel ME */
do{
static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
dia_change=0;
for(i=0; i<8; i++)
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], *obmc_edged, &best_rd);
}while(dia_change);
//FIXME or try the standard 2 pass qpel or similar
mvr[0][0]= block->mx;
mvr[0][1]= block->my;
if(ref_rd > best_rd){
ref_rd= best_rd;
ref_b= *block;
}
}
best_rd= ref_rd;
*block= ref_b;
#if 1
check_block(s, mb_x, mb_y, color, 1, *obmc_edged, &best_rd);
//FIXME RD style color selection
#endif
if(!same_block(block, &backup)){
if(tb ) tb ->type &= ~BLOCK_OPT;
if(lb ) lb ->type &= ~BLOCK_OPT;
if(rb ) rb ->type &= ~BLOCK_OPT;
if(bb ) bb ->type &= ~BLOCK_OPT;
if(tlb) tlb->type &= ~BLOCK_OPT;
if(trb) trb->type &= ~BLOCK_OPT;
if(blb) blb->type &= ~BLOCK_OPT;
if(brb) brb->type &= ~BLOCK_OPT;
change ++;
}
}
}
av_log(NULL, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change);
if(!change)
break;
}
if(s->block_max_depth == 1){
int change= 0;
for(mb_y= 0; mb_y<b_height; mb_y+=2){
for(mb_x= 0; mb_x<b_width; mb_x+=2){
int i;
int best_rd, init_rd;
const int index= mb_x + mb_y * b_stride;
BlockNode *b[4];
b[0]= &s->block[index];
b[1]= b[0]+1;
b[2]= b[0]+b_stride;
b[3]= b[2]+1;
if(same_block(b[0], b[1]) &&
same_block(b[0], b[2]) &&
same_block(b[0], b[3]))
continue;
if(!s->me_cache_generation)
memset(s->me_cache, 0, sizeof(s->me_cache));
s->me_cache_generation += 1<<22;
init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
//FIXME more multiref search?
check_4block_inter(s, mb_x, mb_y,
(b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
(b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
for(i=0; i<4; i++)
if(!(b[i]->type&BLOCK_INTRA))
check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
if(init_rd != best_rd)
change++;
}
}
av_log(NULL, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
}
}
static void quantize(SnowContext *s, SubBand *b, DWTELEM *src, int stride, int bias){
const int level= b->level;
const int w= b->width;
const int h= b->height;
const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
int x,y, thres1, thres2;
// START_TIMER
if(s->qlog == LOSSLESS_QLOG) return;
bias= bias ? 0 : (3*qmul)>>3;
thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
thres2= 2*thres1;
if(!bias){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= src[x + y*stride];
if((unsigned)(i+thres1) > thres2){
if(i>=0){
i<<= QEXPSHIFT;
i/= qmul; //FIXME optimize
src[x + y*stride]= i;
}else{
i= -i;
i<<= QEXPSHIFT;
i/= qmul; //FIXME optimize
src[x + y*stride]= -i;
}
}else
src[x + y*stride]= 0;
}
}
}else{
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= src[x + y*stride];
if((unsigned)(i+thres1) > thres2){
if(i>=0){
i<<= QEXPSHIFT;
i= (i + bias) / qmul; //FIXME optimize
src[x + y*stride]= i;
}else{
i= -i;
i<<= QEXPSHIFT;
i= (i + bias) / qmul; //FIXME optimize
src[x + y*stride]= -i;
}
}else
src[x + y*stride]= 0;
}
}
}
if(level+1 == s->spatial_decomposition_count){
// STOP_TIMER("quantize")
}
}
static void dequantize_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, DWTELEM *src, int stride, int start_y, int end_y){
const int w= b->width;
const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
int x,y;
START_TIMER
if(s->qlog == LOSSLESS_QLOG) return;
for(y=start_y; y<end_y; y++){
// DWTELEM * line = slice_buffer_get_line_from_address(sb, src + (y * stride));
DWTELEM * line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
for(x=0; x<w; x++){
int i= line[x];
if(i<0){
line[x]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
}else if(i>0){
line[x]= (( i*qmul + qadd)>>(QEXPSHIFT));
}
}
}
if(w > 200 /*level+1 == s->spatial_decomposition_count*/){
STOP_TIMER("dquant")
}
}
static void dequantize(SnowContext *s, SubBand *b, DWTELEM *src, int stride){
const int w= b->width;
const int h= b->height;
const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
int x,y;
START_TIMER
if(s->qlog == LOSSLESS_QLOG) return;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= src[x + y*stride];
if(i<0){
src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
}else if(i>0){
src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
}
}
}
if(w > 200 /*level+1 == s->spatial_decomposition_count*/){
STOP_TIMER("dquant")
}
}
static void decorrelate(SnowContext *s, SubBand *b, DWTELEM *src, int stride, int inverse, int use_median){
const int w= b->width;
const int h= b->height;
int x,y;
for(y=h-1; y>=0; y--){
for(x=w-1; x>=0; x--){
int i= x + y*stride;
if(x){
if(use_median){
if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
else src[i] -= src[i - 1];
}else{
if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
else src[i] -= src[i - 1];
}
}else{
if(y) src[i] -= src[i - stride];
}
}
}
}
static void correlate_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, DWTELEM *src, int stride, int inverse, int use_median, int start_y, int end_y){
const int w= b->width;
int x,y;
// START_TIMER
DWTELEM * line=0; // silence silly "could be used without having been initialized" warning
DWTELEM * prev;
if (start_y != 0)
line = slice_buffer_get_line(sb, ((start_y - 1) * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
for(y=start_y; y<end_y; y++){
prev = line;
// line = slice_buffer_get_line_from_address(sb, src + (y * stride));
line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
for(x=0; x<w; x++){
if(x){
if(use_median){
if(y && x+1<w) line[x] += mid_pred(line[x - 1], prev[x], prev[x + 1]);
else line[x] += line[x - 1];
}else{
if(y) line[x] += mid_pred(line[x - 1], prev[x], line[x - 1] + prev[x] - prev[x - 1]);
else line[x] += line[x - 1];
}
}else{
if(y) line[x] += prev[x];
}
}
}
// STOP_TIMER("correlate")
}
static void correlate(SnowContext *s, SubBand *b, DWTELEM *src, int stride, int inverse, int use_median){
const int w= b->width;
const int h= b->height;
int x,y;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= x + y*stride;
if(x){
if(use_median){
if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
else src[i] += src[i - 1];
}else{
if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
else src[i] += src[i - 1];
}
}else{
if(y) src[i] += src[i - stride];
}
}
}
}
static void encode_header(SnowContext *s){
int plane_index, level, orientation;
uint8_t kstate[32];
memset(kstate, MID_STATE, sizeof(kstate));
put_rac(&s->c, kstate, s->keyframe);
if(s->keyframe || s->always_reset){
reset_contexts(s);
s->last_spatial_decomposition_type=
s->last_qlog=
s->last_qbias=
s->last_mv_scale=
s->last_block_max_depth= 0;
}
if(s->keyframe){
put_symbol(&s->c, s->header_state, s->version, 0);
put_rac(&s->c, s->header_state, s->always_reset);
put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0);
put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0);
put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
put_rac(&s->c, s->header_state, s->spatial_scalability);
// put_rac(&s->c, s->header_state, s->rate_scalability);
put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
for(plane_index=0; plane_index<2; plane_index++){
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1:0; orientation<4; orientation++){
if(orientation==2) continue;
put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
}
}
}
}
put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1);
put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1);
s->last_spatial_decomposition_type= s->spatial_decomposition_type;
s->last_qlog = s->qlog;
s->last_qbias = s->qbias;
s->last_mv_scale = s->mv_scale;
s->last_block_max_depth = s->block_max_depth;
}
static int decode_header(SnowContext *s){
int plane_index, level, orientation;
uint8_t kstate[32];
memset(kstate, MID_STATE, sizeof(kstate));
s->keyframe= get_rac(&s->c, kstate);
if(s->keyframe || s->always_reset){
reset_contexts(s);
s->spatial_decomposition_type=
s->qlog=
s->qbias=
s->mv_scale=
s->block_max_depth= 0;
}
if(s->keyframe){
s->version= get_symbol(&s->c, s->header_state, 0);
if(s->version>0){
av_log(s->avctx, AV_LOG_ERROR, "version %d not supported", s->version);
return -1;
}
s->always_reset= get_rac(&s->c, s->header_state);
s->temporal_decomposition_type= get_symbol(&s->c, s->header_state, 0);
s->temporal_decomposition_count= get_symbol(&s->c, s->header_state, 0);
s->spatial_decomposition_count= get_symbol(&s->c, s->header_state, 0);
s->colorspace_type= get_symbol(&s->c, s->header_state, 0);
s->chroma_h_shift= get_symbol(&s->c, s->header_state, 0);
s->chroma_v_shift= get_symbol(&s->c, s->header_state, 0);
s->spatial_scalability= get_rac(&s->c, s->header_state);
// s->rate_scalability= get_rac(&s->c, s->header_state);
s->max_ref_frames= get_symbol(&s->c, s->header_state, 0)+1;
for(plane_index=0; plane_index<3; plane_index++){
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1:0; orientation<4; orientation++){
int q;
if (plane_index==2) q= s->plane[1].band[level][orientation].qlog;
else if(orientation==2) q= s->plane[plane_index].band[level][1].qlog;
else q= get_symbol(&s->c, s->header_state, 1);
s->plane[plane_index].band[level][orientation].qlog= q;
}
}
}
}
s->spatial_decomposition_type+= get_symbol(&s->c, s->header_state, 1);
if(s->spatial_decomposition_type > 2){
av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_type %d not supported", s->spatial_decomposition_type);
return -1;
}
s->qlog += get_symbol(&s->c, s->header_state, 1);
s->mv_scale += get_symbol(&s->c, s->header_state, 1);
s->qbias += get_symbol(&s->c, s->header_state, 1);
s->block_max_depth+= get_symbol(&s->c, s->header_state, 1);
if(s->block_max_depth > 1 || s->block_max_depth < 0){
av_log(s->avctx, AV_LOG_ERROR, "block_max_depth= %d is too large", s->block_max_depth);
s->block_max_depth= 0;
return -1;
}
return 0;
}
static void init_qexp(void){
int i;
double v=128;
for(i=0; i<QROOT; i++){
qexp[i]= lrintf(v);
v *= pow(2, 1.0 / QROOT);
}
}
static int common_init(AVCodecContext *avctx){
SnowContext *s = avctx->priv_data;
int width, height;
int level, orientation, plane_index, dec;
int i, j;
s->avctx= avctx;
dsputil_init(&s->dsp, avctx);
#define mcf(dx,dy)\
s->dsp.put_qpel_pixels_tab [0][dy+dx/4]=\
s->dsp.put_no_rnd_qpel_pixels_tab[0][dy+dx/4]=\
s->dsp.put_h264_qpel_pixels_tab[0][dy+dx/4];\
s->dsp.put_qpel_pixels_tab [1][dy+dx/4]=\
s->dsp.put_no_rnd_qpel_pixels_tab[1][dy+dx/4]=\
s->dsp.put_h264_qpel_pixels_tab[1][dy+dx/4];
mcf( 0, 0)
mcf( 4, 0)
mcf( 8, 0)
mcf(12, 0)
mcf( 0, 4)
mcf( 4, 4)
mcf( 8, 4)
mcf(12, 4)
mcf( 0, 8)
mcf( 4, 8)
mcf( 8, 8)
mcf(12, 8)
mcf( 0,12)
mcf( 4,12)
mcf( 8,12)
mcf(12,12)
#define mcfh(dx,dy)\
s->dsp.put_pixels_tab [0][dy/4+dx/8]=\
s->dsp.put_no_rnd_pixels_tab[0][dy/4+dx/8]=\
mc_block_hpel ## dx ## dy ## 16;\
s->dsp.put_pixels_tab [1][dy/4+dx/8]=\
s->dsp.put_no_rnd_pixels_tab[1][dy/4+dx/8]=\
mc_block_hpel ## dx ## dy ## 8;
mcfh(0, 0)
mcfh(8, 0)
mcfh(0, 8)
mcfh(8, 8)
if(!qexp[0])
init_qexp();
dec= s->spatial_decomposition_count= 5;
s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
s->chroma_h_shift= 1; //FIXME XXX
s->chroma_v_shift= 1;
// dec += FFMAX(s->chroma_h_shift, s->chroma_v_shift);
width= s->avctx->width;
height= s->avctx->height;
s->spatial_dwt_buffer= av_mallocz(width*height*sizeof(DWTELEM));
s->mv_scale= (s->avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
s->block_max_depth= (s->avctx->flags & CODEC_FLAG_4MV) ? 1 : 0;
for(plane_index=0; plane_index<3; plane_index++){
int w= s->avctx->width;
int h= s->avctx->height;
if(plane_index){
w>>= s->chroma_h_shift;
h>>= s->chroma_v_shift;
}
s->plane[plane_index].width = w;
s->plane[plane_index].height= h;
//av_log(NULL, AV_LOG_DEBUG, "%d %d\n", w, h);
for(level=s->spatial_decomposition_count-1; level>=0; level--){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &s->plane[plane_index].band[level][orientation];
b->buf= s->spatial_dwt_buffer;
b->level= level;
b->stride= s->plane[plane_index].width << (s->spatial_decomposition_count - level);
b->width = (w + !(orientation&1))>>1;
b->height= (h + !(orientation>1))>>1;
b->stride_line = 1 << (s->spatial_decomposition_count - level);
b->buf_x_offset = 0;
b->buf_y_offset = 0;
if(orientation&1){
b->buf += (w+1)>>1;
b->buf_x_offset = (w+1)>>1;
}
if(orientation>1){
b->buf += b->stride>>1;
b->buf_y_offset = b->stride_line >> 1;
}
if(level)
b->parent= &s->plane[plane_index].band[level-1][orientation];
b->x_coeff=av_mallocz(((b->width+1) * b->height+1)*sizeof(x_and_coeff));
}
w= (w+1)>>1;
h= (h+1)>>1;
}
}
for(i=0; i<MAX_REF_FRAMES; i++)
for(j=0; j<MAX_REF_FRAMES; j++)
scale_mv_ref[i][j] = 256*(i+1)/(j+1);
reset_contexts(s);
/*
width= s->width= avctx->width;
height= s->height= avctx->height;
assert(width && height);
*/
s->avctx->get_buffer(s->avctx, &s->mconly_picture);
return 0;
}
static int qscale2qlog(int qscale){
return rint(QROOT*log(qscale / (float)FF_QP2LAMBDA)/log(2))
+ 61*QROOT/8; //<64 >60
}
static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
{
/* estimate the frame's complexity as a sum of weighted dwt coefs.
* FIXME we know exact mv bits at this point,
* but ratecontrol isn't set up to include them. */
uint32_t coef_sum= 0;
int level, orientation, delta_qlog;
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &s->plane[0].band[level][orientation];
DWTELEM *buf= b->buf;
const int w= b->width;
const int h= b->height;
const int stride= b->stride;
const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
const int qdiv= (1<<16)/qmul;
int x, y;
if(orientation==0)
decorrelate(s, b, buf, stride, 1, 0);
for(y=0; y<h; y++)
for(x=0; x<w; x++)
coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
if(orientation==0)
correlate(s, b, buf, stride, 1, 0);
}
}
/* ugly, ratecontrol just takes a sqrt again */
coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
assert(coef_sum < INT_MAX);
if(pict->pict_type == I_TYPE){
s->m.current_picture.mb_var_sum= coef_sum;
s->m.current_picture.mc_mb_var_sum= 0;
}else{
s->m.current_picture.mc_mb_var_sum= coef_sum;
s->m.current_picture.mb_var_sum= 0;
}
pict->quality= ff_rate_estimate_qscale(&s->m, 1);
if (pict->quality < 0)
return INT_MIN;
s->lambda= pict->quality * 3/2;
delta_qlog= qscale2qlog(pict->quality) - s->qlog;
s->qlog+= delta_qlog;
return delta_qlog;
}
static void calculate_vissual_weight(SnowContext *s, Plane *p){
int width = p->width;
int height= p->height;
int level, orientation, x, y;
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
DWTELEM *buf= b->buf;
int64_t error=0;
memset(s->spatial_dwt_buffer, 0, sizeof(int)*width*height);
buf[b->width/2 + b->height/2*b->stride]= 256*256;
ff_spatial_idwt(s->spatial_dwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
for(y=0; y<height; y++){
for(x=0; x<width; x++){
int64_t d= s->spatial_dwt_buffer[x + y*width];
error += d*d;
}
}
b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
// av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", level, orientation, b->qlog/*, sqrt(error)*/);
}
}
}
static int encode_init(AVCodecContext *avctx)
{
SnowContext *s = avctx->priv_data;
int plane_index;
if(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL){
av_log(avctx, AV_LOG_ERROR, "this codec is under development, files encoded with it may not be decodable with future versions!!!\n"
"use vstrict=-2 / -strict -2 to use it anyway\n");
return -1;
}
if(avctx->prediction_method == DWT_97
&& (avctx->flags & CODEC_FLAG_QSCALE)
&& avctx->global_quality == 0){
av_log(avctx, AV_LOG_ERROR, "the 9/7 wavelet is incompatible with lossless mode\n");
return -1;
}
common_init(avctx);
alloc_blocks(s);
s->version=0;
s->m.avctx = avctx;
s->m.flags = avctx->flags;
s->m.bit_rate= avctx->bit_rate;
s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
h263_encode_init(&s->m); //mv_penalty
s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1);
if(avctx->flags&CODEC_FLAG_PASS1){
if(!avctx->stats_out)
avctx->stats_out = av_mallocz(256);
}
if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
if(ff_rate_control_init(&s->m) < 0)
return -1;
}
s->pass1_rc= !(avctx->flags & (CODEC_FLAG_QSCALE|CODEC_FLAG_PASS2));
for(plane_index=0; plane_index<3; plane_index++){
calculate_vissual_weight(s, &s->plane[plane_index]);
}
avctx->coded_frame= &s->current_picture;
switch(avctx->pix_fmt){
// case PIX_FMT_YUV444P:
// case PIX_FMT_YUV422P:
case PIX_FMT_YUV420P:
case PIX_FMT_GRAY8:
// case PIX_FMT_YUV411P:
// case PIX_FMT_YUV410P:
s->colorspace_type= 0;
break;
/* case PIX_FMT_RGB32:
s->colorspace= 1;
break;*/
default:
av_log(avctx, AV_LOG_ERROR, "format not supported\n");
return -1;
}
// avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
s->chroma_h_shift= 1;
s->chroma_v_shift= 1;
ff_set_cmp(&s->dsp, s->dsp.me_cmp, s->avctx->me_cmp);
ff_set_cmp(&s->dsp, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp);
s->avctx->get_buffer(s->avctx, &s->input_picture);
if(s->avctx->me_method == ME_ITER){
int i;
int size= s->b_width * s->b_height << 2*s->block_max_depth;
for(i=0; i<s->max_ref_frames; i++){
s->ref_mvs[i]= av_mallocz(size*sizeof(int16_t[2]));
s->ref_scores[i]= av_mallocz(size*sizeof(uint32_t));
}
}
return 0;
}
static int frame_start(SnowContext *s){
AVFrame tmp;
int w= s->avctx->width; //FIXME round up to x16 ?
int h= s->avctx->height;
if(s->current_picture.data[0]){
draw_edges(s->current_picture.data[0], s->current_picture.linesize[0], w , h , EDGE_WIDTH );
draw_edges(s->current_picture.data[1], s->current_picture.linesize[1], w>>1, h>>1, EDGE_WIDTH/2);
draw_edges(s->current_picture.data[2], s->current_picture.linesize[2], w>>1, h>>1, EDGE_WIDTH/2);
}
tmp= s->last_picture[s->max_ref_frames-1];
memmove(s->last_picture+1, s->last_picture, (s->max_ref_frames-1)*sizeof(AVFrame));
s->last_picture[0]= s->current_picture;
s->current_picture= tmp;
if(s->keyframe){
s->ref_frames= 0;
}else{
int i;
for(i=0; i<s->max_ref_frames && s->last_picture[i].data[0]; i++)
if(i && s->last_picture[i-1].key_frame)
break;
s->ref_frames= i;
}
s->current_picture.reference= 1;
if(s->avctx->get_buffer(s->avctx, &s->current_picture) < 0){
av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return -1;
}
s->current_picture.key_frame= s->keyframe;
return 0;
}
static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
SnowContext *s = avctx->priv_data;
RangeCoder * const c= &s->c;
AVFrame *pict = data;
const int width= s->avctx->width;
const int height= s->avctx->height;
int level, orientation, plane_index, i, y;
uint8_t rc_header_bak[sizeof(s->header_state)];
uint8_t rc_block_bak[sizeof(s->block_state)];
ff_init_range_encoder(c, buf, buf_size);
ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
for(i=0; i<3; i++){
int shift= !!i;
for(y=0; y<(height>>shift); y++)
memcpy(&s->input_picture.data[i][y * s->input_picture.linesize[i]],
&pict->data[i][y * pict->linesize[i]],
width>>shift);
}
s->new_picture = *pict;
s->m.picture_number= avctx->frame_number;
if(avctx->flags&CODEC_FLAG_PASS2){
s->m.pict_type =
pict->pict_type= s->m.rc_context.entry[avctx->frame_number].new_pict_type;
s->keyframe= pict->pict_type==FF_I_TYPE;
if(!(avctx->flags&CODEC_FLAG_QSCALE)) {
pict->quality= ff_rate_estimate_qscale(&s->m, 0);
if (pict->quality < 0)
return -1;
}
}else{
s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
s->m.pict_type=
pict->pict_type= s->keyframe ? FF_I_TYPE : FF_P_TYPE;
}
if(s->pass1_rc && avctx->frame_number == 0)
pict->quality= 2*FF_QP2LAMBDA;
if(pict->quality){
s->qlog= qscale2qlog(pict->quality);
s->lambda = pict->quality * 3/2;
}
if(s->qlog < 0 || (!pict->quality && (avctx->flags & CODEC_FLAG_QSCALE))){
s->qlog= LOSSLESS_QLOG;
s->lambda = 0;
}//else keep previous frame's qlog until after motion est
frame_start(s);
s->m.current_picture_ptr= &s->m.current_picture;
if(pict->pict_type == P_TYPE){
int block_width = (width +15)>>4;
int block_height= (height+15)>>4;
int stride= s->current_picture.linesize[0];
assert(s->current_picture.data[0]);
assert(s->last_picture[0].data[0]);
s->m.avctx= s->avctx;
s->m.current_picture.data[0]= s->current_picture.data[0];
s->m. last_picture.data[0]= s->last_picture[0].data[0];
s->m. new_picture.data[0]= s-> input_picture.data[0];
s->m. last_picture_ptr= &s->m. last_picture;
s->m.linesize=
s->m. last_picture.linesize[0]=
s->m. new_picture.linesize[0]=
s->m.current_picture.linesize[0]= stride;
s->m.uvlinesize= s->current_picture.linesize[1];
s->m.width = width;
s->m.height= height;
s->m.mb_width = block_width;
s->m.mb_height= block_height;
s->m.mb_stride= s->m.mb_width+1;
s->m.b8_stride= 2*s->m.mb_width+1;
s->m.f_code=1;
s->m.pict_type= pict->pict_type;
s->m.me_method= s->avctx->me_method;
s->m.me.scene_change_score=0;
s->m.flags= s->avctx->flags;
s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
s->m.out_format= FMT_H263;
s->m.unrestricted_mv= 1;
s->m.lambda = s->lambda;
s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
s->m.dsp= s->dsp; //move
ff_init_me(&s->m);
s->dsp= s->m.dsp;
}
if(s->pass1_rc){
memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
}
redo_frame:
s->m.pict_type = pict->pict_type;
s->qbias= pict->pict_type == P_TYPE ? 2 : 0;
encode_header(s);
s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
encode_blocks(s, 1);
s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
for(plane_index=0; plane_index<3; plane_index++){
Plane *p= &s->plane[plane_index];
int w= p->width;
int h= p->height;
int x, y;
// int bits= put_bits_count(&s->c.pb);
if(!(avctx->flags2 & CODEC_FLAG2_MEMC_ONLY)){
//FIXME optimize
if(pict->data[plane_index]) //FIXME gray hack
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->spatial_dwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
}
}
predict_plane(s, s->spatial_dwt_buffer, plane_index, 0);
if( plane_index==0
&& pict->pict_type == P_TYPE
&& !(avctx->flags&CODEC_FLAG_PASS2)
&& s->m.me.scene_change_score > s->avctx->scenechange_threshold){
ff_init_range_encoder(c, buf, buf_size);
ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
pict->pict_type= FF_I_TYPE;
s->keyframe=1;
s->current_picture.key_frame=1;
goto redo_frame;
}
if(s->qlog == LOSSLESS_QLOG){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->spatial_dwt_buffer[y*w + x]= (s->spatial_dwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
}
}
}
ff_spatial_dwt(s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
if(s->pass1_rc && plane_index==0){
int delta_qlog = ratecontrol_1pass(s, pict);
if (delta_qlog <= INT_MIN)
return -1;
if(delta_qlog){
//reordering qlog in the bitstream would eliminate this reset
ff_init_range_encoder(c, buf, buf_size);
memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
encode_header(s);
encode_blocks(s, 0);
}
}
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
quantize(s, b, b->buf, b->stride, s->qbias);
if(orientation==0)
decorrelate(s, b, b->buf, b->stride, pict->pict_type == P_TYPE, 0);
encode_subband(s, b, b->buf, b->parent ? b->parent->buf : NULL, b->stride, orientation);
assert(b->parent==NULL || b->parent->stride == b->stride*2);
if(orientation==0)
correlate(s, b, b->buf, b->stride, 1, 0);
}
}
// av_log(NULL, AV_LOG_DEBUG, "plane:%d bits:%d\n", plane_index, put_bits_count(&s->c.pb) - bits);
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
dequantize(s, b, b->buf, b->stride);
}
}
ff_spatial_idwt(s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
if(s->qlog == LOSSLESS_QLOG){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->spatial_dwt_buffer[y*w + x]<<=FRAC_BITS;
}
}
}
{START_TIMER
predict_plane(s, s->spatial_dwt_buffer, plane_index, 1);
STOP_TIMER("pred-conv")}
}else{
//ME/MC only
if(pict->pict_type == I_TYPE){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x]=
pict->data[plane_index][y*pict->linesize[plane_index] + x];
}
}
}else{
memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h);
predict_plane(s, s->spatial_dwt_buffer, plane_index, 1);
}
}
if(s->avctx->flags&CODEC_FLAG_PSNR){
int64_t error= 0;
if(pict->data[plane_index]) //FIXME gray hack
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int d= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
error += d*d;
}
}
s->avctx->error[plane_index] += error;
s->current_picture.error[plane_index] = error;
}
}
if(s->last_picture[s->max_ref_frames-1].data[0])
avctx->release_buffer(avctx, &s->last_picture[s->max_ref_frames-1]);
s->current_picture.coded_picture_number = avctx->frame_number;
s->current_picture.pict_type = pict->pict_type;
s->current_picture.quality = pict->quality;
s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
s->m.current_picture.display_picture_number =
s->m.current_picture.coded_picture_number = avctx->frame_number;
s->m.current_picture.quality = pict->quality;
s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
if(s->pass1_rc)
if (ff_rate_estimate_qscale(&s->m, 0) < 0)
return -1;
if(avctx->flags&CODEC_FLAG_PASS1)
ff_write_pass1_stats(&s->m);
s->m.last_pict_type = s->m.pict_type;
avctx->frame_bits = s->m.frame_bits;
avctx->mv_bits = s->m.mv_bits;
avctx->misc_bits = s->m.misc_bits;
avctx->p_tex_bits = s->m.p_tex_bits;
emms_c();
return ff_rac_terminate(c);
}
static void common_end(SnowContext *s){
int plane_index, level, orientation, i;
av_freep(&s->spatial_dwt_buffer);
av_freep(&s->m.me.scratchpad);
av_freep(&s->m.me.map);
av_freep(&s->m.me.score_map);
av_freep(&s->m.obmc_scratchpad);
av_freep(&s->block);
for(i=0; i<MAX_REF_FRAMES; i++){
av_freep(&s->ref_mvs[i]);
av_freep(&s->ref_scores[i]);
if(s->last_picture[i].data[0])
s->avctx->release_buffer(s->avctx, &s->last_picture[i]);
}
for(plane_index=0; plane_index<3; plane_index++){
for(level=s->spatial_decomposition_count-1; level>=0; level--){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &s->plane[plane_index].band[level][orientation];
av_freep(&b->x_coeff);
}
}
}
}
static int encode_end(AVCodecContext *avctx)
{
SnowContext *s = avctx->priv_data;
common_end(s);
av_free(avctx->stats_out);
return 0;
}
static int decode_init(AVCodecContext *avctx)
{
SnowContext *s = avctx->priv_data;
int block_size;
avctx->pix_fmt= PIX_FMT_YUV420P;
common_init(avctx);
block_size = MB_SIZE >> s->block_max_depth;
slice_buffer_init(&s->sb, s->plane[0].height, (block_size) + (s->spatial_decomposition_count * (s->spatial_decomposition_count + 3)) + 1, s->plane[0].width, s->spatial_dwt_buffer);
return 0;
}
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
SnowContext *s = avctx->priv_data;
RangeCoder * const c= &s->c;
int bytes_read;
AVFrame *picture = data;
int level, orientation, plane_index;
ff_init_range_decoder(c, buf, buf_size);
ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
s->current_picture.pict_type= FF_I_TYPE; //FIXME I vs. P
decode_header(s);
if(!s->block) alloc_blocks(s);
frame_start(s);
//keyframe flag dupliaction mess FIXME
if(avctx->debug&FF_DEBUG_PICT_INFO)
av_log(avctx, AV_LOG_ERROR, "keyframe:%d qlog:%d\n", s->keyframe, s->qlog);
decode_blocks(s);
for(plane_index=0; plane_index<3; plane_index++){
Plane *p= &s->plane[plane_index];
int w= p->width;
int h= p->height;
int x, y;
int decode_state[MAX_DECOMPOSITIONS][4][1]; /* Stored state info for unpack_coeffs. 1 variable per instance. */
if(s->avctx->debug&2048){
memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h);
predict_plane(s, s->spatial_dwt_buffer, plane_index, 1);
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int v= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x];
s->mconly_picture.data[plane_index][y*s->mconly_picture.linesize[plane_index] + x]= v;
}
}
}
{ START_TIMER
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
unpack_coeffs(s, b, b->parent, orientation);
}
}
STOP_TIMER("unpack coeffs");
}
{START_TIMER
const int mb_h= s->b_height << s->block_max_depth;
const int block_size = MB_SIZE >> s->block_max_depth;
const int block_w = plane_index ? block_size/2 : block_size;
int mb_y;
dwt_compose_t cs[MAX_DECOMPOSITIONS];
int yd=0, yq=0;
int y;
int end_y;
ff_spatial_idwt_buffered_init(cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count);
for(mb_y=0; mb_y<=mb_h; mb_y++){
int slice_starty = block_w*mb_y;
int slice_h = block_w*(mb_y+1);
if (!(s->keyframe || s->avctx->debug&512)){
slice_starty = FFMAX(0, slice_starty - (block_w >> 1));
slice_h -= (block_w >> 1);
}
{
START_TIMER
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
int start_y;
int end_y;
int our_mb_start = mb_y;
int our_mb_end = (mb_y + 1);
const int extra= 3;
start_y = (mb_y ? ((block_w * our_mb_start) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra: 0);
end_y = (((block_w * our_mb_end) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra);
if (!(s->keyframe || s->avctx->debug&512)){
start_y = FFMAX(0, start_y - (block_w >> (1+s->spatial_decomposition_count - level)));
end_y = FFMAX(0, end_y - (block_w >> (1+s->spatial_decomposition_count - level)));
}
start_y = FFMIN(b->height, start_y);
end_y = FFMIN(b->height, end_y);
if (start_y != end_y){
if (orientation == 0){
SubBand * correlate_band = &p->band[0][0];
int correlate_end_y = FFMIN(b->height, end_y + 1);
int correlate_start_y = FFMIN(b->height, (start_y ? start_y + 1 : 0));
decode_subband_slice_buffered(s, correlate_band, &s->sb, correlate_start_y, correlate_end_y, decode_state[0][0]);
correlate_slice_buffered(s, &s->sb, correlate_band, correlate_band->buf, correlate_band->stride, 1, 0, correlate_start_y, correlate_end_y);
dequantize_slice_buffered(s, &s->sb, correlate_band, correlate_band->buf, correlate_band->stride, start_y, end_y);
}
else
decode_subband_slice_buffered(s, b, &s->sb, start_y, end_y, decode_state[level][orientation]);
}
}
}
STOP_TIMER("decode_subband_slice");
}
{ START_TIMER
for(; yd<slice_h; yd+=4){
ff_spatial_idwt_buffered_slice(&s->dsp, cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count, yd);
}
STOP_TIMER("idwt slice");}
if(s->qlog == LOSSLESS_QLOG){
for(; yq<slice_h && yq<h; yq++){
DWTELEM * line = slice_buffer_get_line(&s->sb, yq);
for(x=0; x<w; x++){
line[x] <<= FRAC_BITS;
}
}
}
predict_slice_buffered(s, &s->sb, s->spatial_dwt_buffer, plane_index, 1, mb_y);
y = FFMIN(p->height, slice_starty);
end_y = FFMIN(p->height, slice_h);
while(y < end_y)
slice_buffer_release(&s->sb, y++);
}
slice_buffer_flush(&s->sb);
STOP_TIMER("idwt + predict_slices")}
}
emms_c();
if(s->last_picture[s->max_ref_frames-1].data[0])
avctx->release_buffer(avctx, &s->last_picture[s->max_ref_frames-1]);
if(!(s->avctx->debug&2048))
*picture= s->current_picture;
else
*picture= s->mconly_picture;
*data_size = sizeof(AVFrame);
bytes_read= c->bytestream - c->bytestream_start;
if(bytes_read ==0) av_log(s->avctx, AV_LOG_ERROR, "error at end of frame\n"); //FIXME
return bytes_read;
}
static int decode_end(AVCodecContext *avctx)
{
SnowContext *s = avctx->priv_data;
slice_buffer_destroy(&s->sb);
common_end(s);
return 0;
}
AVCodec snow_decoder = {
"snow",
CODEC_TYPE_VIDEO,
CODEC_ID_SNOW,
sizeof(SnowContext),
decode_init,
NULL,
decode_end,
decode_frame,
0 /*CODEC_CAP_DR1*/ /*| CODEC_CAP_DRAW_HORIZ_BAND*/,
NULL
};
#ifdef CONFIG_SNOW_ENCODER
AVCodec snow_encoder = {
"snow",
CODEC_TYPE_VIDEO,
CODEC_ID_SNOW,
sizeof(SnowContext),
encode_init,
encode_frame,
encode_end,
};
#endif
#if 0
#undef malloc
#undef free
#undef printf
#undef random
int main(){
int width=256;
int height=256;
int buffer[2][width*height];
SnowContext s;
int i;
s.spatial_decomposition_count=6;
s.spatial_decomposition_type=1;
printf("testing 5/3 DWT\n");
for(i=0; i<width*height; i++)
buffer[0][i]= buffer[1][i]= random()%54321 - 12345;
ff_spatial_dwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
for(i=0; i<width*height; i++)
if(buffer[0][i]!= buffer[1][i]) printf("fsck: %d %d %d\n",i, buffer[0][i], buffer[1][i]);
printf("testing 9/7 DWT\n");
s.spatial_decomposition_type=0;
for(i=0; i<width*height; i++)
buffer[0][i]= buffer[1][i]= random()%54321 - 12345;
ff_spatial_dwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
for(i=0; i<width*height; i++)
if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %d %d %d\n",i, buffer[0][i], buffer[1][i]);
#if 0
printf("testing AC coder\n");
memset(s.header_state, 0, sizeof(s.header_state));
ff_init_range_encoder(&s.c, buffer[0], 256*256);
ff_init_cabac_states(&s.c, ff_h264_lps_range, ff_h264_mps_state, ff_h264_lps_state, 64);
for(i=-256; i<256; i++){
START_TIMER
put_symbol(&s.c, s.header_state, i*i*i/3*FFABS(i), 1);
STOP_TIMER("put_symbol")
}
ff_rac_terminate(&s.c);
memset(s.header_state, 0, sizeof(s.header_state));
ff_init_range_decoder(&s.c, buffer[0], 256*256);
ff_init_cabac_states(&s.c, ff_h264_lps_range, ff_h264_mps_state, ff_h264_lps_state, 64);
for(i=-256; i<256; i++){
int j;
START_TIMER
j= get_symbol(&s.c, s.header_state, 1);
STOP_TIMER("get_symbol")
if(j!=i*i*i/3*FFABS(i)) printf("fsck: %d != %d\n", i, j);
}
#endif
{
int level, orientation, x, y;
int64_t errors[8][4];
int64_t g=0;
memset(errors, 0, sizeof(errors));
s.spatial_decomposition_count=3;
s.spatial_decomposition_type=0;
for(level=0; level<s.spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
int w= width >> (s.spatial_decomposition_count-level);
int h= height >> (s.spatial_decomposition_count-level);
int stride= width << (s.spatial_decomposition_count-level);
DWTELEM *buf= buffer[0];
int64_t error=0;
if(orientation&1) buf+=w;
if(orientation>1) buf+=stride>>1;
memset(buffer[0], 0, sizeof(int)*width*height);
buf[w/2 + h/2*stride]= 256*256;
ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
for(y=0; y<height; y++){
for(x=0; x<width; x++){
int64_t d= buffer[0][x + y*width];
error += d*d;
if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d);
}
if(FFABS(height/2-y)<9 && level==2) printf("\n");
}
error= (int)(sqrt(error)+0.5);
errors[level][orientation]= error;
if(g) g=ff_gcd(g, error);
else g= error;
}
}
printf("static int const visual_weight[][4]={\n");
for(level=0; level<s.spatial_decomposition_count; level++){
printf(" {");
for(orientation=0; orientation<4; orientation++){
printf("%8"PRId64",", errors[level][orientation]/g);
}
printf("},\n");
}
printf("};\n");
{
int level=2;
int orientation=3;
int w= width >> (s.spatial_decomposition_count-level);
int h= height >> (s.spatial_decomposition_count-level);
int stride= width << (s.spatial_decomposition_count-level);
DWTELEM *buf= buffer[0];
int64_t error=0;
buf+=w;
buf+=stride>>1;
memset(buffer[0], 0, sizeof(int)*width*height);
#if 1
for(y=0; y<height; y++){
for(x=0; x<width; x++){
int tab[4]={0,2,3,1};
buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)];
}
}
ff_spatial_dwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
#else
for(y=0; y<h; y++){
for(x=0; x<w; x++){
buf[x + y*stride ]=169;
buf[x + y*stride-w]=64;
}
}
ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
#endif
for(y=0; y<height; y++){
for(x=0; x<width; x++){
int64_t d= buffer[0][x + y*width];
error += d*d;
if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d);
}
if(FFABS(height/2-y)<9) printf("\n");
}
}
}
return 0;
}
#endif