ffmpeg/libavcodec/acelp_pitch_delay.h
Vitor Sessak 083c5a48ec Implement AMR gain function that is used by both AMR and SIPR.
Based on AMR SoC code by Robert Swain and Colin McQuillan.

Originally committed as revision 20421 to svn://svn.ffmpeg.org/ffmpeg/trunk
2009-10-31 02:02:30 +00:00

238 lines
8.1 KiB
C

/*
* gain code, gain pitch and pitch delay decoding
*
* Copyright (c) 2008 Vladimir Voroshilov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_ACELP_PITCH_DELAY_H
#define AVCODEC_ACELP_PITCH_DELAY_H
#include <stdint.h>
#include "dsputil.h"
#define PITCH_DELAY_MIN 20
#define PITCH_DELAY_MAX 143
/**
* \brief Decode pitch delay of the first subframe encoded by 8 bits with 1/3
* resolution.
* \param ac_index adaptive codebook index (8 bits)
*
* \return pitch delay in 1/3 units
*
* Pitch delay is coded:
* with 1/3 resolution, 19 < pitch_delay < 85
* integers only, 85 <= pitch_delay <= 143
*/
int ff_acelp_decode_8bit_to_1st_delay3(int ac_index);
/**
* \brief Decode pitch delay of the second subframe encoded by 5 or 6 bits
* with 1/3 precision.
* \param ac_index adaptive codebook index (5 or 6 bits)
* \param pitch_delay_min lower bound (integer) of pitch delay interval
* for second subframe
*
* \return pitch delay in 1/3 units
*
* Pitch delay is coded:
* with 1/3 resolution, -6 < pitch_delay - int(prev_pitch_delay) < 5
*
* \remark The routine is used in G.729 @8k, AMR @10.2k, AMR @7.95k,
* AMR @7.4k for the second subframe.
*/
int ff_acelp_decode_5_6_bit_to_2nd_delay3(
int ac_index,
int pitch_delay_min);
/**
* \brief Decode pitch delay with 1/3 precision.
* \param ac_index adaptive codebook index (4 bits)
* \param pitch_delay_min lower bound (integer) of pitch delay interval for
* second subframe
*
* \return pitch delay in 1/3 units
*
* Pitch delay is coded:
* integers only, -6 < pitch_delay - int(prev_pitch_delay) <= -2
* with 1/3 resolution, -2 < pitch_delay - int(prev_pitch_delay) < 1
* integers only, 1 <= pitch_delay - int(prev_pitch_delay) < 5
*
* \remark The routine is used in G.729 @6.4k, AMR @6.7k, AMR @5.9k,
* AMR @5.15k, AMR @4.75k for the second subframe.
*/
int ff_acelp_decode_4bit_to_2nd_delay3(
int ac_index,
int pitch_delay_min);
/**
* \brief Decode pitch delay of the first subframe encoded by 9 bits
* with 1/6 precision.
* \param ac_index adaptive codebook index (9 bits)
* \param pitch_delay_min lower bound (integer) of pitch delay interval for
* second subframe
*
* \return pitch delay in 1/6 units
*
* Pitch delay is coded:
* with 1/6 resolution, 17 < pitch_delay < 95
* integers only, 95 <= pitch_delay <= 143
*
* \remark The routine is used in AMR @12.2k for the first and third subframes.
*/
int ff_acelp_decode_9bit_to_1st_delay6(int ac_index);
/**
* \brief Decode pitch delay of the second subframe encoded by 6 bits
* with 1/6 precision.
* \param ac_index adaptive codebook index (6 bits)
* \param pitch_delay_min lower bound (integer) of pitch delay interval for
* second subframe
*
* \return pitch delay in 1/6 units
*
* Pitch delay is coded:
* with 1/6 resolution, -6 < pitch_delay - int(prev_pitch_delay) < 5
*
* \remark The routine is used in AMR @12.2k for the second and fourth subframes.
*/
int ff_acelp_decode_6bit_to_2nd_delay6(
int ac_index,
int pitch_delay_min);
/**
* \brief Update past quantized energies
* \param quant_energy [in/out] past quantized energies (5.10)
* \param gain_corr_factor gain correction factor
* \param log2_ma_pred_order log2() of MA prediction order
* \param erasure frame erasure flag
*
* If frame erasure flag is not equal to zero, memory is updated with
* averaged energy, attenuated by 4dB:
* max(avg(quant_energy[i])-4, -14), i=0,ma_pred_order
*
* In normal mode memory is updated with
* Er - Ep = 20 * log10(gain_corr_factor)
*
* \remark The routine is used in G.729 and AMR (all modes).
*/
void ff_acelp_update_past_gain(
int16_t* quant_energy,
int gain_corr_factor,
int log2_ma_pred_order,
int erasure);
/**
* \brief Decode the adaptive codebook gain and add
* correction (4.1.5 and 3.9.1 of G.729).
* \param dsp initialized dsputil context
* \param gain_corr_factor gain correction factor (2.13)
* \param fc_v fixed-codebook vector (2.13)
* \param mr_energy mean innovation energy and fixed-point correction (7.13)
* \param quant_energy [in/out] past quantized energies (5.10)
* \param subframe_size length of subframe
* \param ma_pred_order MA prediction order
*
* \return quantized fixed-codebook gain (14.1)
*
* The routine implements equations 69, 66 and 71 of the G.729 specification (3.9.1)
*
* Em - mean innovation energy (dB, constant, depends on decoding algorithm)
* Ep - mean-removed predicted energy (dB)
* Er - mean-removed innovation energy (dB)
* Ei - mean energy of the fixed-codebook contribution (dB)
* N - subframe_size
* M - MA (Moving Average) prediction order
* gc - fixed-codebook gain
* gc_p - predicted fixed-codebook gain
*
* Fixed codebook gain is computed using predicted gain gc_p and
* correction factor gain_corr_factor as shown below:
*
* gc = gc_p * gain_corr_factor
*
* The predicted fixed codebook gain gc_p is found by predicting
* the energy of the fixed-codebook contribution from the energy
* of previous fixed-codebook contributions.
*
* mean = 1/N * sum(i,0,N){ fc_v[i] * fc_v[i] }
*
* Ei = 10log(mean)
*
* Er = 10log(1/N * gc^2 * mean) - Em = 20log(gc) + Ei - Em
*
* Replacing Er with Ep and gc with gc_p we will receive:
*
* Ep = 10log(1/N * gc_p^2 * mean) - Em = 20log(gc_p) + Ei - Em
*
* and from above:
*
* gc_p = 10^((Ep - Ei + Em) / 20)
*
* Ep is predicted using past energies and prediction coefficients:
*
* Ep = sum(i,0,M){ ma_prediction_coeff[i] * quant_energy[i] }
*
* gc_p in fixed-point arithmetic is calculated as following:
*
* mean = 1/N * sum(i,0,N){ (fc_v[i] / 2^13) * (fc_v[i] / 2^13) } =
* = 1/N * sum(i,0,N) { fc_v[i] * fc_v[i] } / 2^26
*
* Ei = 10log(mean) = -10log(N) - 10log(2^26) +
* + 10log(sum(i,0,N) { fc_v[i] * fc_v[i] })
*
* Ep - Ei + Em = Ep + Em + 10log(N) + 10log(2^26) -
* - 10log(sum(i,0,N) { fc_v[i] * fc_v[i] }) =
* = Ep + mr_energy - 10log(sum(i,0,N) { fc_v[i] * fc_v[i] })
*
* gc_p = 10 ^ ((Ep - Ei + Em) / 20) =
* = 2 ^ (3.3219 * (Ep - Ei + Em) / 20) = 2 ^ (0.166 * (Ep - Ei + Em))
*
* where
*
* mr_energy = Em + 10log(N) + 10log(2^26)
*
* \remark The routine is used in G.729 and AMR (all modes).
*/
int16_t ff_acelp_decode_gain_code(
DSPContext *dsp,
int gain_corr_factor,
const int16_t* fc_v,
int mr_energy,
const int16_t* quant_energy,
const int16_t* ma_prediction_coeff,
int subframe_size,
int max_pred_order);
/**
* Calculate fixed gain (part of section 6.1.3 of AMR spec)
*
* @param fixed_gain_factor gain correction factor
* @param fixed_energy decoded algebraic codebook vector energy
* @param prediction_error vector of the quantified predictor errors of
* the four previous subframes. It is updated by this function.
* @param energy_mean desired mean innovation energy
* @param pred_table table of four moving average coefficients
*/
float ff_amr_set_fixed_gain(float fixed_gain_factor, float fixed_mean_energy,
float *prediction_error, float energy_mean,
const float *pred_table);
#endif /* AVCODEC_ACELP_PITCH_DELAY_H */