1df441eaa8
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
575 lines
21 KiB
C
575 lines
21 KiB
C
/*
|
|
* Copyright (c) 2014 Muhammad Faiz <mfcc64@gmail.com>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "libavcodec/avfft.h"
|
|
#include "libavutil/avassert.h"
|
|
#include "libavutil/channel_layout.h"
|
|
#include "libavutil/opt.h"
|
|
#include "libavutil/xga_font_data.h"
|
|
#include "libavutil/qsort.h"
|
|
#include "libavutil/time.h"
|
|
#include "avfilter.h"
|
|
#include "internal.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
/* this filter is designed to do 16 bins/semitones constant Q transform with Brown-Puckette algorithm
|
|
* start from E0 to D#10 (10 octaves)
|
|
* so there are 16 bins/semitones * 12 semitones/octaves * 10 octaves = 1920 bins
|
|
* match with full HD resolution */
|
|
|
|
#define VIDEO_WIDTH 1920
|
|
#define VIDEO_HEIGHT 1080
|
|
#define FONT_HEIGHT 32
|
|
#define SPECTOGRAM_HEIGHT ((VIDEO_HEIGHT-FONT_HEIGHT)/2)
|
|
#define SPECTOGRAM_START (VIDEO_HEIGHT-SPECTOGRAM_HEIGHT)
|
|
#define BASE_FREQ 20.051392800492
|
|
#define COEFF_CLAMP 1.0e-4
|
|
|
|
typedef struct {
|
|
FFTSample value;
|
|
int index;
|
|
} SparseCoeff;
|
|
|
|
typedef struct {
|
|
const AVClass *class;
|
|
AVFrame *outpicref;
|
|
FFTContext *fft_context;
|
|
FFTComplex *fft_data;
|
|
FFTComplex *fft_result_left;
|
|
FFTComplex *fft_result_right;
|
|
uint8_t *spectogram;
|
|
SparseCoeff *coeff_sort;
|
|
SparseCoeff *coeffs[VIDEO_WIDTH];
|
|
int coeffs_len[VIDEO_WIDTH];
|
|
uint8_t font_color[VIDEO_WIDTH];
|
|
int64_t frame_count;
|
|
int spectogram_count;
|
|
int spectogram_index;
|
|
int fft_bits;
|
|
int req_fullfilled;
|
|
int remaining_fill;
|
|
double volume;
|
|
double timeclamp; /* lower timeclamp, time-accurate, higher timeclamp, freq-accurate (at low freq)*/
|
|
float coeffclamp; /* lower coeffclamp, more precise, higher coeffclamp, faster */
|
|
int fullhd; /* if true, output video is at full HD resolution, otherwise it will be halved */
|
|
float gamma; /* lower gamma, more contrast, higher gamma, more range */
|
|
int fps; /* the required fps is so strict, so it's enough to be int, but 24000/1001 etc cannot be encoded */
|
|
int count; /* fps * count = transform rate */
|
|
} ShowCQTContext;
|
|
|
|
#define OFFSET(x) offsetof(ShowCQTContext, x)
|
|
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
|
|
|
|
static const AVOption showcqt_options[] = {
|
|
{ "volume", "set volume", OFFSET(volume), AV_OPT_TYPE_DOUBLE, { .dbl = 16 }, 0.1, 100, FLAGS },
|
|
{ "timeclamp", "set timeclamp", OFFSET(timeclamp), AV_OPT_TYPE_DOUBLE, { .dbl = 0.17 }, 0.1, 1.0, FLAGS },
|
|
{ "coeffclamp", "set coeffclamp", OFFSET(coeffclamp), AV_OPT_TYPE_FLOAT, { .dbl = 1 }, 0.1, 10, FLAGS },
|
|
{ "gamma", "set gamma", OFFSET(gamma), AV_OPT_TYPE_FLOAT, { .dbl = 3 }, 1, 7, FLAGS },
|
|
{ "fullhd", "set full HD resolution", OFFSET(fullhd), AV_OPT_TYPE_INT, { .i64 = 1 }, 0, 1, FLAGS },
|
|
{ "fps", "set video fps", OFFSET(fps), AV_OPT_TYPE_INT, { .i64 = 25 }, 10, 100, FLAGS },
|
|
{ "count", "set number of transform per frame", OFFSET(count), AV_OPT_TYPE_INT, { .i64 = 6 }, 1, 30, FLAGS },
|
|
{ NULL }
|
|
};
|
|
|
|
AVFILTER_DEFINE_CLASS(showcqt);
|
|
|
|
static av_cold void uninit(AVFilterContext *ctx)
|
|
{
|
|
int k;
|
|
|
|
ShowCQTContext *s = ctx->priv;
|
|
av_fft_end(s->fft_context);
|
|
s->fft_context = NULL;
|
|
for (k = 0; k < VIDEO_WIDTH; k++)
|
|
av_freep(&s->coeffs[k]);
|
|
av_freep(&s->fft_data);
|
|
av_freep(&s->fft_result_left);
|
|
av_freep(&s->fft_result_right);
|
|
av_freep(&s->coeff_sort);
|
|
av_freep(&s->spectogram);
|
|
av_frame_free(&s->outpicref);
|
|
}
|
|
|
|
static int query_formats(AVFilterContext *ctx)
|
|
{
|
|
AVFilterFormats *formats = NULL;
|
|
AVFilterChannelLayouts *layouts = NULL;
|
|
AVFilterLink *inlink = ctx->inputs[0];
|
|
AVFilterLink *outlink = ctx->outputs[0];
|
|
static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_NONE };
|
|
static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
|
|
static const int64_t channel_layouts[] = { AV_CH_LAYOUT_STEREO, AV_CH_LAYOUT_STEREO_DOWNMIX, -1 };
|
|
static const int samplerates[] = { 44100, 48000, -1 };
|
|
|
|
/* set input audio formats */
|
|
formats = ff_make_format_list(sample_fmts);
|
|
if (!formats)
|
|
return AVERROR(ENOMEM);
|
|
ff_formats_ref(formats, &inlink->out_formats);
|
|
|
|
layouts = avfilter_make_format64_list(channel_layouts);
|
|
if (!layouts)
|
|
return AVERROR(ENOMEM);
|
|
ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts);
|
|
|
|
formats = ff_make_format_list(samplerates);
|
|
if (!formats)
|
|
return AVERROR(ENOMEM);
|
|
ff_formats_ref(formats, &inlink->out_samplerates);
|
|
|
|
/* set output video format */
|
|
formats = ff_make_format_list(pix_fmts);
|
|
if (!formats)
|
|
return AVERROR(ENOMEM);
|
|
ff_formats_ref(formats, &outlink->in_formats);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int qsort_sparsecoeff(const SparseCoeff *a, const SparseCoeff *b)
|
|
{
|
|
if (fabsf(a->value) >= fabsf(b->value))
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
static int config_output(AVFilterLink *outlink)
|
|
{
|
|
AVFilterContext *ctx = outlink->src;
|
|
AVFilterLink *inlink = ctx->inputs[0];
|
|
ShowCQTContext *s = ctx->priv;
|
|
int fft_len, k, x, y;
|
|
int num_coeffs = 0;
|
|
int rate = inlink->sample_rate;
|
|
double max_len = rate * (double) s->timeclamp;
|
|
int64_t start_time, end_time;
|
|
int video_scale = s->fullhd ? 2 : 1;
|
|
int video_width = (VIDEO_WIDTH/2) * video_scale;
|
|
int video_height = (VIDEO_HEIGHT/2) * video_scale;
|
|
int spectogram_height = (SPECTOGRAM_HEIGHT/2) * video_scale;
|
|
|
|
s->fft_bits = ceil(log2(max_len));
|
|
fft_len = 1 << s->fft_bits;
|
|
|
|
if (rate % (s->fps * s->count)) {
|
|
av_log(ctx, AV_LOG_ERROR, "Rate (%u) is not divisible by fps*count (%u*%u)\n", rate, s->fps, s->count);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
s->fft_data = av_malloc_array(fft_len, sizeof(*s->fft_data));
|
|
s->coeff_sort = av_malloc_array(fft_len, sizeof(*s->coeff_sort));
|
|
s->fft_result_left = av_malloc_array(fft_len, sizeof(*s->fft_result_left));
|
|
s->fft_result_right = av_malloc_array(fft_len, sizeof(*s->fft_result_right));
|
|
s->fft_context = av_fft_init(s->fft_bits, 0);
|
|
|
|
if (!s->fft_data || !s->coeff_sort || !s->fft_result_left || !s->fft_result_right || !s->fft_context)
|
|
return AVERROR(ENOMEM);
|
|
|
|
/* initializing font */
|
|
for (x = 0; x < video_width; x++) {
|
|
if (x >= (12*3+8)*8*video_scale && x < (12*4+8)*8*video_scale) {
|
|
float fx = (x-(12*3+8)*8*video_scale) * (2.0f/(192.0f*video_scale));
|
|
float sv = sinf(M_PI*fx);
|
|
s->font_color[x] = sv*sv*255.0f + 0.5f;
|
|
} else {
|
|
s->font_color[x] = 0;
|
|
}
|
|
}
|
|
|
|
av_log(ctx, AV_LOG_INFO, "Calculating spectral kernel, please wait\n");
|
|
start_time = av_gettime_relative();
|
|
for (k = 0; k < VIDEO_WIDTH; k++) {
|
|
int hlen = fft_len >> 1;
|
|
float total = 0;
|
|
float partial = 0;
|
|
double freq = BASE_FREQ * exp2(k * (1.0/192.0));
|
|
double tlen = rate * (24.0 * 16.0) /freq;
|
|
/* a window function from Albert H. Nuttall,
|
|
* "Some Windows with Very Good Sidelobe Behavior"
|
|
* -93.32 dB peak sidelobe and 18 dB/octave asymptotic decay
|
|
* coefficient normalized to a0 = 1 */
|
|
double a0 = 0.355768;
|
|
double a1 = 0.487396/a0;
|
|
double a2 = 0.144232/a0;
|
|
double a3 = 0.012604/a0;
|
|
double sv_step, cv_step, sv, cv;
|
|
double sw_step, cw_step, sw, cw, w;
|
|
|
|
tlen = tlen * max_len / (tlen + max_len);
|
|
s->fft_data[0].re = 0;
|
|
s->fft_data[0].im = 0;
|
|
s->fft_data[hlen].re = (1.0 + a1 + a2 + a3) * (1.0/tlen) * s->volume * (1.0/fft_len);
|
|
s->fft_data[hlen].im = 0;
|
|
sv_step = sv = sin(2.0*M_PI*freq*(1.0/rate));
|
|
cv_step = cv = cos(2.0*M_PI*freq*(1.0/rate));
|
|
/* also optimizing window func */
|
|
sw_step = sw = sin(2.0*M_PI*(1.0/tlen));
|
|
cw_step = cw = cos(2.0*M_PI*(1.0/tlen));
|
|
for (x = 1; x < 0.5 * tlen; x++) {
|
|
double cv_tmp, cw_tmp;
|
|
double cw2, cw3, sw2;
|
|
|
|
cw2 = cw * cw - sw * sw;
|
|
sw2 = cw * sw + sw * cw;
|
|
cw3 = cw * cw2 - sw * sw2;
|
|
w = (1.0 + a1 * cw + a2 * cw2 + a3 * cw3) * (1.0/tlen) * s->volume * (1.0/fft_len);
|
|
s->fft_data[hlen + x].re = w * cv;
|
|
s->fft_data[hlen + x].im = w * sv;
|
|
s->fft_data[hlen - x].re = s->fft_data[hlen + x].re;
|
|
s->fft_data[hlen - x].im = -s->fft_data[hlen + x].im;
|
|
|
|
cv_tmp = cv * cv_step - sv * sv_step;
|
|
sv = sv * cv_step + cv * sv_step;
|
|
cv = cv_tmp;
|
|
cw_tmp = cw * cw_step - sw * sw_step;
|
|
sw = sw * cw_step + cw * sw_step;
|
|
cw = cw_tmp;
|
|
}
|
|
for (; x < hlen; x++) {
|
|
s->fft_data[hlen + x].re = 0;
|
|
s->fft_data[hlen + x].im = 0;
|
|
s->fft_data[hlen - x].re = 0;
|
|
s->fft_data[hlen - x].im = 0;
|
|
}
|
|
av_fft_permute(s->fft_context, s->fft_data);
|
|
av_fft_calc(s->fft_context, s->fft_data);
|
|
|
|
for (x = 0; x < fft_len; x++) {
|
|
s->coeff_sort[x].index = x;
|
|
s->coeff_sort[x].value = s->fft_data[x].re;
|
|
}
|
|
|
|
AV_QSORT(s->coeff_sort, fft_len, SparseCoeff, qsort_sparsecoeff);
|
|
for (x = 0; x < fft_len; x++)
|
|
total += fabsf(s->coeff_sort[x].value);
|
|
|
|
for (x = 0; x < fft_len; x++) {
|
|
partial += fabsf(s->coeff_sort[x].value);
|
|
if (partial > total * s->coeffclamp * COEFF_CLAMP) {
|
|
s->coeffs_len[k] = fft_len - x;
|
|
num_coeffs += s->coeffs_len[k];
|
|
s->coeffs[k] = av_malloc_array(s->coeffs_len[k], sizeof(*s->coeffs[k]));
|
|
if (!s->coeffs[k])
|
|
return AVERROR(ENOMEM);
|
|
for (y = 0; y < s->coeffs_len[k]; y++)
|
|
s->coeffs[k][y] = s->coeff_sort[x+y];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
end_time = av_gettime_relative();
|
|
av_log(ctx, AV_LOG_INFO, "Elapsed time %.6f s (fft_len=%u, num_coeffs=%u)\n", 1e-6 * (end_time-start_time), fft_len, num_coeffs);
|
|
|
|
outlink->w = video_width;
|
|
outlink->h = video_height;
|
|
|
|
s->req_fullfilled = 0;
|
|
s->spectogram_index = 0;
|
|
s->frame_count = 0;
|
|
s->spectogram_count = 0;
|
|
s->remaining_fill = fft_len >> 1;
|
|
memset(s->fft_data, 0, fft_len * sizeof(*s->fft_data));
|
|
|
|
s->outpicref = ff_get_video_buffer(outlink, outlink->w, outlink->h);
|
|
if (!s->outpicref)
|
|
return AVERROR(ENOMEM);
|
|
|
|
s->spectogram = av_calloc(spectogram_height, s->outpicref->linesize[0]);
|
|
if (!s->spectogram)
|
|
return AVERROR(ENOMEM);
|
|
|
|
outlink->sample_aspect_ratio = av_make_q(1, 1);
|
|
outlink->time_base = av_make_q(1, s->fps);
|
|
outlink->frame_rate = av_make_q(s->fps, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int plot_cqt(AVFilterLink *inlink)
|
|
{
|
|
AVFilterContext *ctx = inlink->dst;
|
|
ShowCQTContext *s = ctx->priv;
|
|
AVFilterLink *outlink = ctx->outputs[0];
|
|
int fft_len = 1 << s->fft_bits;
|
|
FFTSample result[VIDEO_WIDTH][4];
|
|
int x, y, ret = 0;
|
|
int linesize = s->outpicref->linesize[0];
|
|
int video_scale = s->fullhd ? 2 : 1;
|
|
int video_width = (VIDEO_WIDTH/2) * video_scale;
|
|
int spectogram_height = (SPECTOGRAM_HEIGHT/2) * video_scale;
|
|
int spectogram_start = (SPECTOGRAM_START/2) * video_scale;
|
|
int font_height = (FONT_HEIGHT/2) * video_scale;
|
|
|
|
/* real part contains left samples, imaginary part contains right samples */
|
|
memcpy(s->fft_result_left, s->fft_data, fft_len * sizeof(*s->fft_data));
|
|
av_fft_permute(s->fft_context, s->fft_result_left);
|
|
av_fft_calc(s->fft_context, s->fft_result_left);
|
|
|
|
/* separate left and right, (and multiply by 2.0) */
|
|
s->fft_result_right[0].re = 2.0f * s->fft_result_left[0].im;
|
|
s->fft_result_right[0].im = 0;
|
|
s->fft_result_left[0].re = 2.0f * s->fft_result_left[0].re;
|
|
s->fft_result_left[0].im = 0;
|
|
for (x = 1; x <= fft_len >> 1; x++) {
|
|
FFTSample tmpy = s->fft_result_left[fft_len-x].im - s->fft_result_left[x].im;
|
|
|
|
s->fft_result_right[x].re = s->fft_result_left[x].im + s->fft_result_left[fft_len-x].im;
|
|
s->fft_result_right[x].im = s->fft_result_left[x].re - s->fft_result_left[fft_len-x].re;
|
|
s->fft_result_right[fft_len-x].re = s->fft_result_right[x].re;
|
|
s->fft_result_right[fft_len-x].im = -s->fft_result_right[x].im;
|
|
|
|
s->fft_result_left[x].re = s->fft_result_left[x].re + s->fft_result_left[fft_len-x].re;
|
|
s->fft_result_left[x].im = tmpy;
|
|
s->fft_result_left[fft_len-x].re = s->fft_result_left[x].re;
|
|
s->fft_result_left[fft_len-x].im = -s->fft_result_left[x].im;
|
|
}
|
|
|
|
/* calculating cqt */
|
|
for (x = 0; x < VIDEO_WIDTH; x++) {
|
|
int u;
|
|
float g = 1.0f / s->gamma;
|
|
FFTComplex l = {0,0};
|
|
FFTComplex r = {0,0};
|
|
|
|
for (u = 0; u < s->coeffs_len[x]; u++) {
|
|
FFTSample value = s->coeffs[x][u].value;
|
|
int index = s->coeffs[x][u].index;
|
|
l.re += value * s->fft_result_left[index].re;
|
|
l.im += value * s->fft_result_left[index].im;
|
|
r.re += value * s->fft_result_right[index].re;
|
|
r.im += value * s->fft_result_right[index].im;
|
|
}
|
|
/* result is power, not amplitude */
|
|
result[x][0] = l.re * l.re + l.im * l.im;
|
|
result[x][2] = r.re * r.re + r.im * r.im;
|
|
result[x][1] = 0.5f * (result[x][0] + result[x][2]);
|
|
result[x][3] = result[x][1];
|
|
result[x][0] = 255.0f * powf(FFMIN(1.0f,result[x][0]), g);
|
|
result[x][1] = 255.0f * powf(FFMIN(1.0f,result[x][1]), g);
|
|
result[x][2] = 255.0f * powf(FFMIN(1.0f,result[x][2]), g);
|
|
}
|
|
|
|
if (!s->fullhd) {
|
|
for (x = 0; x < video_width; x++) {
|
|
result[x][0] = 0.5f * (result[2*x][0] + result[2*x+1][0]);
|
|
result[x][1] = 0.5f * (result[2*x][1] + result[2*x+1][1]);
|
|
result[x][2] = 0.5f * (result[2*x][2] + result[2*x+1][2]);
|
|
result[x][3] = 0.5f * (result[2*x][3] + result[2*x+1][3]);
|
|
}
|
|
}
|
|
|
|
for (x = 0; x < video_width; x++) {
|
|
s->spectogram[s->spectogram_index*linesize + 3*x] = result[x][0] + 0.5f;
|
|
s->spectogram[s->spectogram_index*linesize + 3*x + 1] = result[x][1] + 0.5f;
|
|
s->spectogram[s->spectogram_index*linesize + 3*x + 2] = result[x][2] + 0.5f;
|
|
}
|
|
|
|
/* drawing */
|
|
if (!s->spectogram_count) {
|
|
uint8_t *data = (uint8_t*) s->outpicref->data[0];
|
|
float rcp_result[VIDEO_WIDTH];
|
|
int total_length = linesize * spectogram_height;
|
|
int back_length = linesize * s->spectogram_index;
|
|
|
|
for (x = 0; x < video_width; x++)
|
|
rcp_result[x] = 1.0f / (result[x][3]+0.0001f);
|
|
|
|
/* drawing bar */
|
|
for (y = 0; y < spectogram_height; y++) {
|
|
float height = (spectogram_height - y) * (1.0f/spectogram_height);
|
|
uint8_t *lineptr = data + y * linesize;
|
|
for (x = 0; x < video_width; x++) {
|
|
float mul;
|
|
if (result[x][3] <= height) {
|
|
*lineptr++ = 0;
|
|
*lineptr++ = 0;
|
|
*lineptr++ = 0;
|
|
} else {
|
|
mul = (result[x][3] - height) * rcp_result[x];
|
|
*lineptr++ = mul * result[x][0] + 0.5f;
|
|
*lineptr++ = mul * result[x][1] + 0.5f;
|
|
*lineptr++ = mul * result[x][2] + 0.5f;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* drawing font */
|
|
for (y = 0; y < font_height; y++) {
|
|
uint8_t *lineptr = data + (spectogram_height + y) * linesize;
|
|
memcpy(lineptr, s->spectogram + s->spectogram_index * linesize, video_width*3);
|
|
}
|
|
for (x = 0; x < video_width; x += video_width/10) {
|
|
int u;
|
|
static const char str[] = "EF G A BC D ";
|
|
uint8_t *startptr = data + spectogram_height * linesize + x * 3;
|
|
for (u = 0; str[u]; u++) {
|
|
int v;
|
|
for (v = 0; v < 16; v++) {
|
|
uint8_t *p = startptr + v * linesize * video_scale + 8 * 3 * u * video_scale;
|
|
int ux = x + 8 * u * video_scale;
|
|
int mask;
|
|
for (mask = 0x80; mask; mask >>= 1) {
|
|
if (mask & avpriv_vga16_font[str[u] * 16 + v]) {
|
|
p[0] = 255 - s->font_color[ux];
|
|
p[1] = 0;
|
|
p[2] = s->font_color[ux];
|
|
if (video_scale == 2) {
|
|
p[linesize] = p[0];
|
|
p[linesize+1] = p[1];
|
|
p[linesize+2] = p[2];
|
|
p[3] = p[linesize+3] = 255 - s->font_color[ux+1];
|
|
p[4] = p[linesize+4] = 0;
|
|
p[5] = p[linesize+5] = s->font_color[ux+1];
|
|
}
|
|
}
|
|
p += 3 * video_scale;
|
|
ux += video_scale;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* drawing spectogram/sonogram */
|
|
data += spectogram_start * linesize;
|
|
memcpy(data, s->spectogram + s->spectogram_index*linesize, total_length - back_length);
|
|
|
|
data += total_length - back_length;
|
|
if (back_length)
|
|
memcpy(data, s->spectogram, back_length);
|
|
|
|
s->outpicref->pts = s->frame_count;
|
|
ret = ff_filter_frame(outlink, av_frame_clone(s->outpicref));
|
|
s->req_fullfilled = 1;
|
|
s->frame_count++;
|
|
}
|
|
s->spectogram_count = (s->spectogram_count + 1) % s->count;
|
|
s->spectogram_index = (s->spectogram_index + spectogram_height - 1) % spectogram_height;
|
|
return ret;
|
|
}
|
|
|
|
static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
|
|
{
|
|
AVFilterContext *ctx = inlink->dst;
|
|
ShowCQTContext *s = ctx->priv;
|
|
int step = inlink->sample_rate / (s->fps * s->count);
|
|
int fft_len = 1 << s->fft_bits;
|
|
int remaining;
|
|
float *audio_data;
|
|
|
|
if (!insamples) {
|
|
while (s->remaining_fill < (fft_len >> 1)) {
|
|
int ret, x;
|
|
memset(&s->fft_data[fft_len - s->remaining_fill], 0, sizeof(*s->fft_data) * s->remaining_fill);
|
|
ret = plot_cqt(inlink);
|
|
if (ret < 0)
|
|
return ret;
|
|
for (x = 0; x < (fft_len-step); x++)
|
|
s->fft_data[x] = s->fft_data[x+step];
|
|
s->remaining_fill += step;
|
|
}
|
|
return AVERROR(EOF);
|
|
}
|
|
|
|
remaining = insamples->nb_samples;
|
|
audio_data = (float*) insamples->data[0];
|
|
|
|
while (remaining) {
|
|
if (remaining >= s->remaining_fill) {
|
|
int i = insamples->nb_samples - remaining;
|
|
int j = fft_len - s->remaining_fill;
|
|
int m, ret;
|
|
for (m = 0; m < s->remaining_fill; m++) {
|
|
s->fft_data[j+m].re = audio_data[2*(i+m)];
|
|
s->fft_data[j+m].im = audio_data[2*(i+m)+1];
|
|
}
|
|
ret = plot_cqt(inlink);
|
|
if (ret < 0) {
|
|
av_frame_free(&insamples);
|
|
return ret;
|
|
}
|
|
remaining -= s->remaining_fill;
|
|
for (m = 0; m < fft_len-step; m++)
|
|
s->fft_data[m] = s->fft_data[m+step];
|
|
s->remaining_fill = step;
|
|
} else {
|
|
int i = insamples->nb_samples - remaining;
|
|
int j = fft_len - s->remaining_fill;
|
|
int m;
|
|
for (m = 0; m < remaining; m++) {
|
|
s->fft_data[m+j].re = audio_data[2*(i+m)];
|
|
s->fft_data[m+j].im = audio_data[2*(i+m)+1];
|
|
}
|
|
s->remaining_fill -= remaining;
|
|
remaining = 0;
|
|
}
|
|
}
|
|
av_frame_free(&insamples);
|
|
return 0;
|
|
}
|
|
|
|
static int request_frame(AVFilterLink *outlink)
|
|
{
|
|
ShowCQTContext *s = outlink->src->priv;
|
|
AVFilterLink *inlink = outlink->src->inputs[0];
|
|
int ret;
|
|
|
|
s->req_fullfilled = 0;
|
|
do {
|
|
ret = ff_request_frame(inlink);
|
|
} while (!s->req_fullfilled && ret >= 0);
|
|
|
|
if (ret == AVERROR_EOF && s->outpicref)
|
|
filter_frame(inlink, NULL);
|
|
return ret;
|
|
}
|
|
|
|
static const AVFilterPad showcqt_inputs[] = {
|
|
{
|
|
.name = "default",
|
|
.type = AVMEDIA_TYPE_AUDIO,
|
|
.filter_frame = filter_frame,
|
|
},
|
|
{ NULL }
|
|
};
|
|
|
|
static const AVFilterPad showcqt_outputs[] = {
|
|
{
|
|
.name = "default",
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.config_props = config_output,
|
|
.request_frame = request_frame,
|
|
},
|
|
{ NULL }
|
|
};
|
|
|
|
AVFilter ff_avf_showcqt = {
|
|
.name = "showcqt",
|
|
.description = NULL_IF_CONFIG_SMALL("Convert input audio to a CQT (Constant Q Transform) spectrum video output."),
|
|
.uninit = uninit,
|
|
.query_formats = query_formats,
|
|
.priv_size = sizeof(ShowCQTContext),
|
|
.inputs = showcqt_inputs,
|
|
.outputs = showcqt_outputs,
|
|
.priv_class = &showcqt_class,
|
|
};
|