ffmpeg/libavutil/mips/generic_macros_msa.h
Shivraj Patil a34d902325 avcodec/mips: MSA (MIPS-SIMD-Arch) optimizations for HEVC idct functions
This patch adds MSA (MIPS-SIMD-Arch) optimizations for HEVC idct functions in new file hevc_idct_msa.c
Adds new generic macros (needed for this patch) in libavutil/mips/generic_macros_msa.h

Signed-off-by: Shivraj Patil <shivraj.patil@imgtec.com>
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
2015-06-04 18:39:53 +02:00

2100 lines
101 KiB
C

/*
* Copyright (c) 2015 Manojkumar Bhosale (Manojkumar.Bhosale@imgtec.com)
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVUTIL_MIPS_GENERIC_MACROS_MSA_H
#define AVUTIL_MIPS_GENERIC_MACROS_MSA_H
#include <stdint.h>
#include <msa.h>
#define LD_B(RTYPE, psrc) *((RTYPE *)(psrc))
#define LD_UB(...) LD_B(v16u8, __VA_ARGS__)
#define LD_SB(...) LD_B(v16i8, __VA_ARGS__)
#define LD_H(RTYPE, psrc) *((RTYPE *)(psrc))
#define LD_UH(...) LD_H(v8u16, __VA_ARGS__)
#define LD_SH(...) LD_H(v8i16, __VA_ARGS__)
#define LD_W(RTYPE, psrc) *((RTYPE *)(psrc))
#define LD_UW(...) LD_W(v4u32, __VA_ARGS__)
#define LD_SW(...) LD_W(v4i32, __VA_ARGS__)
#define ST_B(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in)
#define ST_UB(...) ST_B(v16u8, __VA_ARGS__)
#define ST_SB(...) ST_B(v16i8, __VA_ARGS__)
#define ST_H(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in)
#define ST_UH(...) ST_H(v8u16, __VA_ARGS__)
#define ST_SH(...) ST_H(v8i16, __VA_ARGS__)
#define ST_W(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in)
#define ST_UW(...) ST_W(v4u32, __VA_ARGS__)
#define ST_SW(...) ST_W(v4i32, __VA_ARGS__)
#if (__mips_isa_rev >= 6)
#define LW(psrc) \
( { \
uint8_t *psrc_m = (uint8_t *) (psrc); \
uint32_t val_m; \
\
__asm__ volatile ( \
"lw %[val_m], %[psrc_m] \n\t" \
\
: [val_m] "=r" (val_m) \
: [psrc_m] "m" (*psrc_m) \
); \
\
val_m; \
} )
#if (__mips == 64)
#define LD(psrc) \
( { \
uint8_t *psrc_m = (uint8_t *) (psrc); \
uint64_t val_m = 0; \
\
__asm__ volatile ( \
"ld %[val_m], %[psrc_m] \n\t" \
\
: [val_m] "=r" (val_m) \
: [psrc_m] "m" (*psrc_m) \
); \
\
val_m; \
} )
#else // !(__mips == 64)
#define LD(psrc) \
( { \
uint8_t *psrc_m = (uint8_t *) (psrc); \
uint32_t val0_m, val1_m; \
uint64_t val_m = 0; \
\
val0_m = LW(psrc_m); \
val1_m = LW(psrc_m + 4); \
\
val_m = (uint64_t) (val1_m); \
val_m = (uint64_t) ((val_m << 32) & 0xFFFFFFFF00000000); \
val_m = (uint64_t) (val_m | (uint64_t) val0_m); \
\
val_m; \
} )
#endif // (__mips == 64)
#define SH(val, pdst) \
{ \
uint8_t *pdst_m = (uint8_t *) (pdst); \
uint16_t val_m = (val); \
\
__asm__ volatile ( \
"sh %[val_m], %[pdst_m] \n\t" \
\
: [pdst_m] "=m" (*pdst_m) \
: [val_m] "r" (val_m) \
); \
}
#define SW(val, pdst) \
{ \
uint8_t *pdst_m = (uint8_t *) (pdst); \
uint32_t val_m = (val); \
\
__asm__ volatile ( \
"sw %[val_m], %[pdst_m] \n\t" \
\
: [pdst_m] "=m" (*pdst_m) \
: [val_m] "r" (val_m) \
); \
}
#define SD(val, pdst) \
{ \
uint8_t *pdst_m = (uint8_t *) (pdst); \
uint64_t val_m = (val); \
\
__asm__ volatile ( \
"sd %[val_m], %[pdst_m] \n\t" \
\
: [pdst_m] "=m" (*pdst_m) \
: [val_m] "r" (val_m) \
); \
}
#else // !(__mips_isa_rev >= 6)
#define LW(psrc) \
( { \
uint8_t *psrc_m = (uint8_t *) (psrc); \
uint32_t val_m; \
\
__asm__ volatile ( \
"ulw %[val_m], %[psrc_m] \n\t" \
\
: [val_m] "=r" (val_m) \
: [psrc_m] "m" (*psrc_m) \
); \
\
val_m; \
} )
#if (__mips == 64)
#define LD(psrc) \
( { \
uint8_t *psrc_m = (uint8_t *) (psrc); \
uint64_t val_m = 0; \
\
__asm__ volatile ( \
"uld %[val_m], %[psrc_m] \n\t" \
\
: [val_m] "=r" (val_m) \
: [psrc_m] "m" (*psrc_m) \
); \
\
val_m; \
} )
#else // !(__mips == 64)
#define LD(psrc) \
( { \
uint8_t *psrc_m1 = (uint8_t *) (psrc); \
uint32_t val0_m, val1_m; \
uint64_t val_m = 0; \
\
val0_m = LW(psrc_m1); \
val1_m = LW(psrc_m1 + 4); \
\
val_m = (uint64_t) (val1_m); \
val_m = (uint64_t) ((val_m << 32) & 0xFFFFFFFF00000000); \
val_m = (uint64_t) (val_m | (uint64_t) val0_m); \
\
val_m; \
} )
#endif // (__mips == 64)
#define SH(val, pdst) \
{ \
uint8_t *pdst_m = (uint8_t *) (pdst); \
uint16_t val_m = (val); \
\
__asm__ volatile ( \
"ush %[val_m], %[pdst_m] \n\t" \
\
: [pdst_m] "=m" (*pdst_m) \
: [val_m] "r" (val_m) \
); \
}
#define SW(val, pdst) \
{ \
uint8_t *pdst_m = (uint8_t *) (pdst); \
uint32_t val_m = (val); \
\
__asm__ volatile ( \
"usw %[val_m], %[pdst_m] \n\t" \
\
: [pdst_m] "=m" (*pdst_m) \
: [val_m] "r" (val_m) \
); \
}
#define SD(val, pdst) \
{ \
uint8_t *pdst_m1 = (uint8_t *) (pdst); \
uint32_t val0_m, val1_m; \
\
val0_m = (uint32_t) ((val) & 0x00000000FFFFFFFF); \
val1_m = (uint32_t) (((val) >> 32) & 0x00000000FFFFFFFF); \
\
SW(val0_m, pdst_m1); \
SW(val1_m, pdst_m1 + 4); \
}
#endif // (__mips_isa_rev >= 6)
/* Description : Load 4 words with stride
Arguments : Inputs - psrc (source pointer to load from)
- stride
Outputs - out0, out1, out2, out3
Details : Loads word in 'out0' from (psrc)
Loads word in 'out1' from (psrc + stride)
Loads word in 'out2' from (psrc + 2 * stride)
Loads word in 'out3' from (psrc + 3 * stride)
*/
#define LW4(psrc, stride, out0, out1, out2, out3) \
{ \
out0 = LW((psrc)); \
out1 = LW((psrc) + stride); \
out2 = LW((psrc) + 2 * stride); \
out3 = LW((psrc) + 3 * stride); \
}
/* Description : Load double words with stride
Arguments : Inputs - psrc (source pointer to load from)
- stride
Outputs - out0, out1
Details : Loads double word in 'out0' from (psrc)
Loads double word in 'out1' from (psrc + stride)
*/
#define LD2(psrc, stride, out0, out1) \
{ \
out0 = LD((psrc)); \
out1 = LD((psrc) + stride); \
}
#define LD4(psrc, stride, out0, out1, out2, out3) \
{ \
LD2((psrc), stride, out0, out1); \
LD2((psrc) + 2 * stride, stride, out2, out3); \
}
/* Description : Store 4 words with stride
Arguments : Inputs - in0, in1, in2, in3, pdst, stride
Details : Stores word from 'in0' to (pdst)
Stores word from 'in1' to (pdst + stride)
Stores word from 'in2' to (pdst + 2 * stride)
Stores word from 'in3' to (pdst + 3 * stride)
*/
#define SW4(in0, in1, in2, in3, pdst, stride) \
{ \
SW(in0, (pdst)) \
SW(in1, (pdst) + stride); \
SW(in2, (pdst) + 2 * stride); \
SW(in3, (pdst) + 3 * stride); \
}
/* Description : Store 4 double words with stride
Arguments : Inputs - in0, in1, in2, in3, pdst, stride
Details : Stores double word from 'in0' to (pdst)
Stores double word from 'in1' to (pdst + stride)
Stores double word from 'in2' to (pdst + 2 * stride)
Stores double word from 'in3' to (pdst + 3 * stride)
*/
#define SD4(in0, in1, in2, in3, pdst, stride) \
{ \
SD(in0, (pdst)) \
SD(in1, (pdst) + stride); \
SD(in2, (pdst) + 2 * stride); \
SD(in3, (pdst) + 3 * stride); \
}
/* Description : Load vectors with 16 byte elements with stride
Arguments : Inputs - psrc (source pointer to load from)
- stride
Outputs - out0, out1
Return Type - as per RTYPE
Details : Loads 16 byte elements in 'out0' from (psrc)
Loads 16 byte elements in 'out1' from (psrc + stride)
*/
#define LD_B2(RTYPE, psrc, stride, out0, out1) \
{ \
out0 = LD_B(RTYPE, (psrc)); \
out1 = LD_B(RTYPE, (psrc) + stride); \
}
#define LD_UB2(...) LD_B2(v16u8, __VA_ARGS__)
#define LD_SB2(...) LD_B2(v16i8, __VA_ARGS__)
#define LD_B3(RTYPE, psrc, stride, out0, out1, out2) \
{ \
LD_B2(RTYPE, (psrc), stride, out0, out1); \
out2 = LD_B(RTYPE, (psrc) + 2 * stride); \
}
#define LD_UB3(...) LD_B3(v16u8, __VA_ARGS__)
#define LD_SB3(...) LD_B3(v16i8, __VA_ARGS__)
#define LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3) \
{ \
LD_B2(RTYPE, (psrc), stride, out0, out1); \
LD_B2(RTYPE, (psrc) + 2 * stride , stride, out2, out3); \
}
#define LD_UB4(...) LD_B4(v16u8, __VA_ARGS__)
#define LD_SB4(...) LD_B4(v16i8, __VA_ARGS__)
#define LD_B5(RTYPE, psrc, stride, out0, out1, out2, out3, out4) \
{ \
LD_B4(RTYPE, (psrc), stride, out0, out1, out2, out3); \
out4 = LD_B(RTYPE, (psrc) + 4 * stride); \
}
#define LD_UB5(...) LD_B5(v16u8, __VA_ARGS__)
#define LD_SB5(...) LD_B5(v16i8, __VA_ARGS__)
#define LD_B6(RTYPE, psrc, stride, out0, out1, out2, out3, out4, out5) \
{ \
LD_B4(RTYPE, (psrc), stride, out0, out1, out2, out3); \
LD_B2(RTYPE, (psrc) + 4 * stride, stride, out4, out5); \
}
#define LD_SB6(...) LD_B6(v16i8, __VA_ARGS__)
#define LD_B7(RTYPE, psrc, stride, \
out0, out1, out2, out3, out4, out5, out6) \
{ \
LD_B5(RTYPE, (psrc), stride, out0, out1, out2, out3, out4); \
LD_B2(RTYPE, (psrc) + 5 * stride, stride, out5, out6); \
}
#define LD_SB7(...) LD_B7(v16i8, __VA_ARGS__)
#define LD_B8(RTYPE, psrc, stride, \
out0, out1, out2, out3, out4, out5, out6, out7) \
{ \
LD_B4(RTYPE, (psrc), stride, out0, out1, out2, out3); \
LD_B4(RTYPE, (psrc) + 4 * stride, stride, out4, out5, out6, out7); \
}
#define LD_UB8(...) LD_B8(v16u8, __VA_ARGS__)
#define LD_SB8(...) LD_B8(v16i8, __VA_ARGS__)
/* Description : Load vectors with 8 halfword elements with stride
Arguments : Inputs - psrc (source pointer to load from)
- stride
Outputs - out0, out1
Details : Loads 8 halfword elements in 'out0' from (psrc)
Loads 8 halfword elements in 'out1' from (psrc + stride)
*/
#define LD_H2(RTYPE, psrc, stride, out0, out1) \
{ \
out0 = LD_H(RTYPE, (psrc)); \
out1 = LD_H(RTYPE, (psrc) + (stride)); \
}
#define LD_UH2(...) LD_H2(v8u16, __VA_ARGS__)
#define LD_SH2(...) LD_H2(v8i16, __VA_ARGS__)
#define LD_H4(RTYPE, psrc, stride, out0, out1, out2, out3) \
{ \
LD_H2(RTYPE, (psrc), stride, out0, out1); \
LD_H2(RTYPE, (psrc) + 2 * stride, stride, out2, out3); \
}
#define LD_UH4(...) LD_H4(v8u16, __VA_ARGS__)
#define LD_SH4(...) LD_H4(v8i16, __VA_ARGS__)
#define LD_H6(RTYPE, psrc, stride, out0, out1, out2, out3, out4, out5) \
{ \
LD_H4(RTYPE, (psrc), stride, out0, out1, out2, out3); \
LD_H2(RTYPE, (psrc) + 4 * stride, stride, out4, out5); \
}
#define LD_UH6(...) LD_H6(v8u16, __VA_ARGS__)
#define LD_SH6(...) LD_H6(v8i16, __VA_ARGS__)
#define LD_H8(RTYPE, psrc, stride, \
out0, out1, out2, out3, out4, out5, out6, out7) \
{ \
LD_H4(RTYPE, (psrc), stride, out0, out1, out2, out3); \
LD_H4(RTYPE, (psrc) + 4 * stride, stride, out4, out5, out6, out7); \
}
#define LD_UH8(...) LD_H8(v8u16, __VA_ARGS__)
#define LD_SH8(...) LD_H8(v8i16, __VA_ARGS__)
#define LD_H16(RTYPE, psrc, stride, \
out0, out1, out2, out3, out4, out5, out6, out7, \
out8, out9, out10, out11, out12, out13, out14, out15) \
{ \
LD_H8(RTYPE, (psrc), stride, \
out0, out1, out2, out3, out4, out5, out6, out7); \
LD_H8(RTYPE, (psrc) + 8 * stride, stride, \
out8, out9, out10, out11, out12, out13, out14, out15); \
}
#define LD_SH16(...) LD_H16(v8i16, __VA_ARGS__)
/* Description : Load 2 vectors of signed word elements with stride
Arguments : Inputs - psrc (source pointer to load from)
- stride
Outputs - out0, out1
Return Type - signed word
*/
#define LD_SW2(psrc, stride, out0, out1) \
{ \
out0 = LD_SW((psrc)); \
out1 = LD_SW((psrc) + stride); \
}
/* Description : Store vectors of 16 byte elements with stride
Arguments : Inputs - in0, in1, stride
Outputs - pdst (destination pointer to store to)
Details : Stores 16 byte elements from 'in0' to (pdst)
Stores 16 byte elements from 'in1' to (pdst + stride)
*/
#define ST_B2(RTYPE, in0, in1, pdst, stride) \
{ \
ST_B(RTYPE, in0, (pdst)); \
ST_B(RTYPE, in1, (pdst) + stride); \
}
#define ST_UB2(...) ST_B2(v16u8, __VA_ARGS__)
#define ST_SB2(...) ST_B2(v16i8, __VA_ARGS__)
#define ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride) \
{ \
ST_B2(RTYPE, in0, in1, (pdst), stride); \
ST_B2(RTYPE, in2, in3, (pdst) + 2 * stride, stride); \
}
#define ST_UB4(...) ST_B4(v16u8, __VA_ARGS__)
#define ST_SB4(...) ST_B4(v16i8, __VA_ARGS__)
#define ST_B8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
pdst, stride) \
{ \
ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride); \
ST_B4(RTYPE, in4, in5, in6, in7, (pdst) + 4 * stride, stride); \
}
#define ST_UB8(...) ST_B8(v16u8, __VA_ARGS__)
/* Description : Store vectors of 8 halfword elements with stride
Arguments : Inputs - in0, in1, stride
Outputs - pdst (destination pointer to store to)
Details : Stores 8 halfword elements from 'in0' to (pdst)
Stores 8 halfword elements from 'in1' to (pdst + stride)
*/
#define ST_H2(RTYPE, in0, in1, pdst, stride) \
{ \
ST_H(RTYPE, in0, (pdst)); \
ST_H(RTYPE, in1, (pdst) + stride); \
}
#define ST_UH2(...) ST_H2(v8u16, __VA_ARGS__)
#define ST_SH2(...) ST_H2(v8i16, __VA_ARGS__)
#define ST_H4(RTYPE, in0, in1, in2, in3, pdst, stride) \
{ \
ST_H2(RTYPE, in0, in1, (pdst), stride); \
ST_H2(RTYPE, in2, in3, (pdst) + 2 * stride, stride); \
}
#define ST_SH4(...) ST_H4(v8i16, __VA_ARGS__)
#define ST_H6(RTYPE, in0, in1, in2, in3, in4, in5, pdst, stride) \
{ \
ST_H4(RTYPE, in0, in1, in2, in3, (pdst), stride); \
ST_H2(RTYPE, in4, in5, (pdst) + 4 * stride, stride); \
}
#define ST_SH6(...) ST_H6(v8i16, __VA_ARGS__)
#define ST_H8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) \
{ \
ST_H4(RTYPE, in0, in1, in2, in3, (pdst), stride); \
ST_H4(RTYPE, in4, in5, in6, in7, (pdst) + 4 * stride, stride); \
}
#define ST_SH8(...) ST_H8(v8i16, __VA_ARGS__)
/* Description : Store vectors of word elements with stride
Arguments : Inputs - in0, in1, stride
Outputs - pdst (destination pointer to store to)
Return Type - signed word
Details : Stores 4 word elements from 'in0' to (pdst)
Stores 4 word elements from 'in1' to (pdst + stride)
*/
#define ST_SW2(in0, in1, pdst, stride) \
{ \
ST_SW(in0, (pdst)); \
ST_SW(in1, (pdst) + stride); \
}
/* Description : Store as 2x4 byte block to destination memory from input vector
Arguments : Inputs - in, stidx, pdst, stride
Return Type - unsigned byte
Details : Index stidx halfword element from 'in' vector is copied and
stored on first line
Index stidx+1 halfword element from 'in' vector is copied and
stored on second line
Index stidx+2 halfword element from 'in' vector is copied and
stored on third line
Index stidx+3 halfword element from 'in' vector is copied and
stored on fourth line
*/
#define ST2x4_UB(in, stidx, pdst, stride) \
{ \
uint16_t out0_m, out1_m, out2_m, out3_m; \
uint8_t *pblk_2x4_m = (uint8_t *) (pdst); \
\
out0_m = __msa_copy_u_h((v8i16) in, (stidx)); \
out1_m = __msa_copy_u_h((v8i16) in, (stidx + 1)); \
out2_m = __msa_copy_u_h((v8i16) in, (stidx + 2)); \
out3_m = __msa_copy_u_h((v8i16) in, (stidx + 3)); \
\
SH(out0_m, pblk_2x4_m); \
SH(out1_m, pblk_2x4_m + stride); \
SH(out2_m, pblk_2x4_m + 2 * stride); \
SH(out3_m, pblk_2x4_m + 3 * stride); \
}
/* Description : Store as 4x2 byte block to destination memory from input vector
Arguments : Inputs - in, pdst, stride
Return Type - unsigned byte
Details : Index 0 word element from input vector is copied and stored
on first line
Index 1 word element from input vector is copied and stored
on second line
*/
#define ST4x2_UB(in, pdst, stride) \
{ \
uint32_t out0_m, out1_m; \
uint8_t *pblk_4x2_m = (uint8_t *) (pdst); \
\
out0_m = __msa_copy_u_w((v4i32) in, 0); \
out1_m = __msa_copy_u_w((v4i32) in, 1); \
\
SW(out0_m, pblk_4x2_m); \
SW(out1_m, pblk_4x2_m + stride); \
}
/* Description : Store as 4x4 byte block to destination memory from input vector
Arguments : Inputs - in0, in1, pdst, stride
Return Type - unsigned byte
Details : Idx0 word element from input vector 'in0' is copied and stored
on first line
Idx1 word element from input vector 'in0' is copied and stored
on second line
Idx2 word element from input vector 'in1' is copied and stored
on third line
Idx3 word element from input vector 'in1' is copied and stored
on fourth line
*/
#define ST4x4_UB(in0, in1, idx0, idx1, idx2, idx3, pdst, stride) \
{ \
uint32_t out0_m, out1_m, out2_m, out3_m; \
uint8_t *pblk_4x4_m = (uint8_t *) (pdst); \
\
out0_m = __msa_copy_u_w((v4i32) in0, idx0); \
out1_m = __msa_copy_u_w((v4i32) in0, idx1); \
out2_m = __msa_copy_u_w((v4i32) in1, idx2); \
out3_m = __msa_copy_u_w((v4i32) in1, idx3); \
\
SW4(out0_m, out1_m, out2_m, out3_m, pblk_4x4_m, stride); \
}
#define ST4x8_UB(in0, in1, pdst, stride) \
{ \
uint8_t *pblk_4x8 = (uint8_t *) (pdst); \
\
ST4x4_UB(in0, in0, 0, 1, 2, 3, pblk_4x8, stride); \
ST4x4_UB(in1, in1, 0, 1, 2, 3, pblk_4x8 + 4 * stride, stride); \
}
/* Description : Store as 6x4 byte block to destination memory from input
vectors
Arguments : Inputs - in0, in1, pdst, stride
Return Type - unsigned byte
Details : Index 0 word element from input vector 'in0' is copied and
stored on first line followed by index 2 halfword element
Index 2 word element from input vector 'in0' is copied and
stored on second line followed by index 2 halfword element
Index 0 word element from input vector 'in1' is copied and
stored on third line followed by index 2 halfword element
Index 2 word element from input vector 'in1' is copied and
stored on fourth line followed by index 2 halfword element
*/
#define ST6x4_UB(in0, in1, pdst, stride) \
{ \
uint32_t out0_m, out1_m, out2_m, out3_m; \
uint16_t out4_m, out5_m, out6_m, out7_m; \
uint8_t *pblk_6x4_m = (uint8_t *) (pdst); \
\
out0_m = __msa_copy_u_w((v4i32) in0, 0); \
out1_m = __msa_copy_u_w((v4i32) in0, 2); \
out2_m = __msa_copy_u_w((v4i32) in1, 0); \
out3_m = __msa_copy_u_w((v4i32) in1, 2); \
\
out4_m = __msa_copy_u_h((v8i16) in0, 2); \
out5_m = __msa_copy_u_h((v8i16) in0, 6); \
out6_m = __msa_copy_u_h((v8i16) in1, 2); \
out7_m = __msa_copy_u_h((v8i16) in1, 6); \
\
SW(out0_m, pblk_6x4_m); \
SH(out4_m, (pblk_6x4_m + 4)); \
pblk_6x4_m += stride; \
SW(out1_m, pblk_6x4_m); \
SH(out5_m, (pblk_6x4_m + 4)); \
pblk_6x4_m += stride; \
SW(out2_m, pblk_6x4_m); \
SH(out6_m, (pblk_6x4_m + 4)); \
pblk_6x4_m += stride; \
SW(out3_m, pblk_6x4_m); \
SH(out7_m, (pblk_6x4_m + 4)); \
}
/* Description : Store as 8x1 byte block to destination memory from input vector
Arguments : Inputs - in, pdst
Details : Index 0 double word element from input vector 'in' is copied
and stored to destination memory at (pdst)
*/
#define ST8x1_UB(in, pdst) \
{ \
uint64_t out0_m; \
out0_m = __msa_copy_u_d((v2i64) in, 0); \
SD(out0_m, pdst); \
}
/* Description : Store as 8x2 byte block to destination memory from input vector
Arguments : Inputs - in, pdst, stride
Details : Index 0 double word element from input vector 'in' is copied
and stored to destination memory at (pdst)
Index 1 double word element from input vector 'in' is copied
and stored to destination memory at (pdst + stride)
*/
#define ST8x2_UB(in, pdst, stride) \
{ \
uint64_t out0_m, out1_m; \
uint8_t *pblk_8x2_m = (uint8_t *) (pdst); \
\
out0_m = __msa_copy_u_d((v2i64) in, 0); \
out1_m = __msa_copy_u_d((v2i64) in, 1); \
\
SD(out0_m, pblk_8x2_m); \
SD(out1_m, pblk_8x2_m + stride); \
}
/* Description : Store as 8x4 byte block to destination memory from input
vectors
Arguments : Inputs - in0, in1, pdst, stride
Details : Index 0 double word element from input vector 'in0' is copied
and stored to destination memory at (pblk_8x4_m)
Index 1 double word element from input vector 'in0' is copied
and stored to destination memory at (pblk_8x4_m + stride)
Index 0 double word element from input vector 'in1' is copied
and stored to destination memory at (pblk_8x4_m + 2 * stride)
Index 1 double word element from input vector 'in1' is copied
and stored to destination memory at (pblk_8x4_m + 3 * stride)
*/
#define ST8x4_UB(in0, in1, pdst, stride) \
{ \
uint64_t out0_m, out1_m, out2_m, out3_m; \
uint8_t *pblk_8x4_m = (uint8_t *) (pdst); \
\
out0_m = __msa_copy_u_d((v2i64) in0, 0); \
out1_m = __msa_copy_u_d((v2i64) in0, 1); \
out2_m = __msa_copy_u_d((v2i64) in1, 0); \
out3_m = __msa_copy_u_d((v2i64) in1, 1); \
\
SD4(out0_m, out1_m, out2_m, out3_m, pblk_8x4_m, stride); \
}
#define ST8x8_UB(in0, in1, in2, in3, pdst, stride) \
{ \
uint8_t *pblk_8x8_m = (uint8_t *) (pdst); \
\
ST8x4_UB(in0, in1, pblk_8x8_m, stride); \
ST8x4_UB(in2, in3, pblk_8x8_m + 4 * stride, stride); \
}
#define ST12x4_UB(in0, in1, in2, pdst, stride) \
{ \
uint8_t *pblk_12x4_m = (uint8_t *) (pdst); \
\
/* left 8x4 */ \
ST8x4_UB(in0, in1, pblk_12x4_m, stride); \
/* right 4x4 */ \
ST4x4_UB(in2, in2, 0, 1, 2, 3, pblk_12x4_m + 8, stride); \
}
/* Description : Store as 12x8 byte block to destination memory from
input vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride
Details : Index 0 double word element from input vector 'in0' is copied
and stored to destination memory at (pblk_12x8_m) followed by
index 2 word element from same input vector 'in0' at
(pblk_12x8_m + 8)
Similar to remaining lines
*/
#define ST12x8_UB(in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) \
{ \
uint64_t out0_m, out1_m, out2_m, out3_m; \
uint64_t out4_m, out5_m, out6_m, out7_m; \
uint32_t out8_m, out9_m, out10_m, out11_m; \
uint32_t out12_m, out13_m, out14_m, out15_m; \
uint8_t *pblk_12x8_m = (uint8_t *) (pdst); \
\
out0_m = __msa_copy_u_d((v2i64) in0, 0); \
out1_m = __msa_copy_u_d((v2i64) in1, 0); \
out2_m = __msa_copy_u_d((v2i64) in2, 0); \
out3_m = __msa_copy_u_d((v2i64) in3, 0); \
out4_m = __msa_copy_u_d((v2i64) in4, 0); \
out5_m = __msa_copy_u_d((v2i64) in5, 0); \
out6_m = __msa_copy_u_d((v2i64) in6, 0); \
out7_m = __msa_copy_u_d((v2i64) in7, 0); \
\
out8_m = __msa_copy_u_w((v4i32) in0, 2); \
out9_m = __msa_copy_u_w((v4i32) in1, 2); \
out10_m = __msa_copy_u_w((v4i32) in2, 2); \
out11_m = __msa_copy_u_w((v4i32) in3, 2); \
out12_m = __msa_copy_u_w((v4i32) in4, 2); \
out13_m = __msa_copy_u_w((v4i32) in5, 2); \
out14_m = __msa_copy_u_w((v4i32) in6, 2); \
out15_m = __msa_copy_u_w((v4i32) in7, 2); \
\
SD(out0_m, pblk_12x8_m); \
SW(out8_m, pblk_12x8_m + 8); \
pblk_12x8_m += stride; \
SD(out1_m, pblk_12x8_m); \
SW(out9_m, pblk_12x8_m + 8); \
pblk_12x8_m += stride; \
SD(out2_m, pblk_12x8_m); \
SW(out10_m, pblk_12x8_m + 8); \
pblk_12x8_m += stride; \
SD(out3_m, pblk_12x8_m); \
SW(out11_m, pblk_12x8_m + 8); \
pblk_12x8_m += stride; \
SD(out4_m, pblk_12x8_m); \
SW(out12_m, pblk_12x8_m + 8); \
pblk_12x8_m += stride; \
SD(out5_m, pblk_12x8_m); \
SW(out13_m, pblk_12x8_m + 8); \
pblk_12x8_m += stride; \
SD(out6_m, pblk_12x8_m); \
SW(out14_m, pblk_12x8_m + 8); \
pblk_12x8_m += stride; \
SD(out7_m, pblk_12x8_m); \
SW(out15_m, pblk_12x8_m + 8); \
}
/* Description : Immediate number of columns to slide with zero
Arguments : Inputs - in0, in1, slide_val
Outputs - out0, out1
Return Type - as per RTYPE
Details : Byte elements from 'zero_m' vector are slide into 'in0' by
number of elements specified by 'slide_val'
*/
#define SLDI_B2_0(RTYPE, in0, in1, out0, out1, slide_val) \
{ \
v16i8 zero_m = { 0 }; \
out0 = (RTYPE) __msa_sldi_b((v16i8) zero_m, (v16i8) in0, slide_val); \
out1 = (RTYPE) __msa_sldi_b((v16i8) zero_m, (v16i8) in1, slide_val); \
}
#define SLDI_B2_0_UB(...) SLDI_B2_0(v16u8, __VA_ARGS__)
#define SLDI_B4_0(RTYPE, in0, in1, in2, in3, \
out0, out1, out2, out3, slide_val) \
{ \
SLDI_B2_0(RTYPE, in0, in1, out0, out1, slide_val); \
SLDI_B2_0(RTYPE, in2, in3, out2, out3, slide_val); \
}
#define SLDI_B4_0_SB(...) SLDI_B4_0(v16i8, __VA_ARGS__)
/* Description : Immediate number of columns to slide
Arguments : Inputs - in0_0, in0_1, in1_0, in1_1, slide_val
Outputs - out0, out1
Return Type - as per RTYPE
Details : Byte elements from 'in0_0' vector are slide into 'in1_0' by
number of elements specified by 'slide_val'
*/
#define SLDI_B2(RTYPE, in0_0, in0_1, in1_0, in1_1, out0, out1, slide_val) \
{ \
out0 = (RTYPE) __msa_sldi_b((v16i8) in0_0, (v16i8) in1_0, slide_val); \
out1 = (RTYPE) __msa_sldi_b((v16i8) in0_1, (v16i8) in1_1, slide_val); \
}
#define SLDI_B2_UB(...) SLDI_B2(v16u8, __VA_ARGS__)
#define SLDI_B2_SB(...) SLDI_B2(v16i8, __VA_ARGS__)
#define SLDI_B2_SH(...) SLDI_B2(v8i16, __VA_ARGS__)
/* Description : Shuffle byte vector elements as per mask vector
Arguments : Inputs - in0, in1, in2, in3, mask0, mask1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Selective byte elements from in0 & in1 are copied to out0 as
per control vector mask0
Selective byte elements from in2 & in3 are copied to out1 as
per control vector mask1
*/
#define VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) \
{ \
out0 = (RTYPE) __msa_vshf_b((v16i8) mask0, (v16i8) in1, (v16i8) in0); \
out1 = (RTYPE) __msa_vshf_b((v16i8) mask1, (v16i8) in3, (v16i8) in2); \
}
#define VSHF_B2_UB(...) VSHF_B2(v16u8, __VA_ARGS__)
#define VSHF_B2_SB(...) VSHF_B2(v16i8, __VA_ARGS__)
#define VSHF_B2_UH(...) VSHF_B2(v8u16, __VA_ARGS__)
#define VSHF_B2_SH(...) VSHF_B2(v8i16, __VA_ARGS__)
#define VSHF_B3(RTYPE, in0, in1, in2, in3, in4, in5, mask0, mask1, mask2, \
out0, out1, out2) \
{ \
VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1); \
out2 = (RTYPE) __msa_vshf_b((v16i8) mask2, (v16i8) in5, (v16i8) in4); \
}
#define VSHF_B3_SB(...) VSHF_B3(v16i8, __VA_ARGS__)
#define VSHF_B4(RTYPE, in0, in1, mask0, mask1, mask2, mask3, \
out0, out1, out2, out3) \
{ \
VSHF_B2(RTYPE, in0, in1, in0, in1, mask0, mask1, out0, out1); \
VSHF_B2(RTYPE, in0, in1, in0, in1, mask2, mask3, out2, out3); \
}
#define VSHF_B4_SB(...) VSHF_B4(v16i8, __VA_ARGS__)
/* Description : Shuffle byte vector elements as per mask vector
Arguments : Inputs - in0, in1, in2, in3, mask0, mask1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Selective byte elements from in0 & in1 are copied to out0 as
per control vector mask0
Selective byte elements from in2 & in3 are copied to out1 as
per control vector mask1
*/
#define VSHF_W2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) \
{ \
out0 = (RTYPE) __msa_vshf_w((v4i32) mask0, (v4i32) in1, (v4i32) in0); \
out1 = (RTYPE) __msa_vshf_w((v4i32) mask1, (v4i32) in3, (v4i32) in2); \
}
#define VSHF_W2_SB(...) VSHF_W2(v16i8, __VA_ARGS__)
/* Description : Dot product of byte vector elements
Arguments : Inputs - mult0, mult1
cnst0, cnst1
Outputs - out0, out1
Return Type - signed halfword
Details : Signed byte elements from mult0 are multiplied with
signed byte elements from cnst0 producing a result
twice the size of input i.e. signed halfword.
Then this multiplication results of adjacent odd-even elements
are added together and stored to the out vector
(2 signed halfword results)
*/
#define DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \
{ \
out0 = (RTYPE) __msa_dotp_s_h((v16i8) mult0, (v16i8) cnst0); \
out1 = (RTYPE) __msa_dotp_s_h((v16i8) mult1, (v16i8) cnst1); \
}
#define DOTP_SB2_SH(...) DOTP_SB2(v8i16, __VA_ARGS__)
#define DOTP_SB3(RTYPE, mult0, mult1, mult2, cnst0, cnst1, cnst2, \
out0, out1, out2) \
{ \
DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \
out2 = (RTYPE) __msa_dotp_s_h((v16i8) mult2, (v16i8) cnst2); \
}
#define DOTP_SB3_SH(...) DOTP_SB3(v8i16, __VA_ARGS__)
#define DOTP_SB4(RTYPE, mult0, mult1, mult2, mult3, \
cnst0, cnst1, cnst2, cnst3, out0, out1, out2, out3) \
{ \
DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \
DOTP_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \
}
#define DOTP_SB4_SH(...) DOTP_SB4(v8i16, __VA_ARGS__)
/* Description : Dot product of halfword vector elements
Arguments : Inputs - mult0, mult1
cnst0, cnst1
Outputs - out0, out1
Return Type - signed word
Details : Signed halfword elements from mult0 are multiplied with
signed halfword elements from cnst0 producing a result
twice the size of input i.e. signed word.
Then this multiplication results of adjacent odd-even elements
are added together and stored to the out vector
(2 signed word results)
*/
#define DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \
{ \
out0 = (RTYPE) __msa_dotp_s_w((v8i16) mult0, (v8i16) cnst0); \
out1 = (RTYPE) __msa_dotp_s_w((v8i16) mult1, (v8i16) cnst1); \
}
#define DOTP_SH2_SW(...) DOTP_SH2(v4i32, __VA_ARGS__)
#define DOTP_SH4(RTYPE, mult0, mult1, mult2, mult3, \
cnst0, cnst1, cnst2, cnst3, \
out0, out1, out2, out3) \
{ \
DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \
DOTP_SH2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \
}
#define DOTP_SH4_SW(...) DOTP_SH4(v4i32, __VA_ARGS__)
/* Description : Dot product & addition of byte vector elements
Arguments : Inputs - mult0, mult1
cnst0, cnst1
Outputs - out0, out1
Return Type - signed halfword
Details : Signed byte elements from mult0 are multiplied with
signed byte elements from cnst0 producing a result
twice the size of input i.e. signed halfword.
Then this multiplication results of adjacent odd-even elements
are added to the out vector
(2 signed halfword results)
*/
#define DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \
{ \
out0 = (RTYPE) __msa_dpadd_s_h((v8i16) out0, \
(v16i8) mult0, (v16i8) cnst0); \
out1 = (RTYPE) __msa_dpadd_s_h((v8i16) out1, \
(v16i8) mult1, (v16i8) cnst1); \
}
#define DPADD_SB2_SH(...) DPADD_SB2(v8i16, __VA_ARGS__)
#define DPADD_SB4(RTYPE, mult0, mult1, mult2, mult3, \
cnst0, cnst1, cnst2, cnst3, out0, out1, out2, out3) \
{ \
DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \
DPADD_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \
}
#define DPADD_SB4_SH(...) DPADD_SB4(v8i16, __VA_ARGS__)
/* Description : Dot product & addition of halfword vector elements
Arguments : Inputs - mult0, mult1
cnst0, cnst1
Outputs - out0, out1
Return Type - signed word
Details : Signed halfword elements from mult0 are multiplied with
signed halfword elements from cnst0 producing a result
twice the size of input i.e. signed word.
Then this multiplication results of adjacent odd-even elements
are added to the out vector
(2 signed word results)
*/
#define DPADD_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \
{ \
out0 = (RTYPE) __msa_dpadd_s_w((v4i32) out0, \
(v8i16) mult0, (v8i16) cnst0); \
out1 = (RTYPE) __msa_dpadd_s_w((v4i32) out1, \
(v8i16) mult1, (v8i16) cnst1); \
}
#define DPADD_SH2_SW(...) DPADD_SH2(v4i32, __VA_ARGS__)
#define DPADD_SH4(RTYPE, mult0, mult1, mult2, mult3, \
cnst0, cnst1, cnst2, cnst3, out0, out1, out2, out3) \
{ \
DPADD_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \
DPADD_SH2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \
}
#define DPADD_SH4_SW(...) DPADD_SH4(v4i32, __VA_ARGS__)
/* Description : Clips all halfword elements of input vector between min & max
out = ((in) < (min)) ? (min) : (((in) > (max)) ? (max) : (in))
Arguments : Inputs - in (input vector)
- min (min threshold)
- max (max threshold)
Outputs - out_m (output vector with clipped elements)
Return Type - signed halfword
*/
#define CLIP_SH(in, min, max) \
( { \
v8i16 out_m; \
\
out_m = __msa_max_s_h((v8i16) min, (v8i16) in); \
out_m = __msa_min_s_h((v8i16) max, (v8i16) out_m); \
out_m; \
} )
/* Description : Clips all signed halfword elements of input vector
between 0 & 255
Arguments : Inputs - in (input vector)
Outputs - out_m (output vector with clipped elements)
Return Type - signed halfword
*/
#define CLIP_SH_0_255(in) \
( { \
v8i16 max_m = __msa_ldi_h(255); \
v8i16 out_m; \
\
out_m = __msa_maxi_s_h((v8i16) in, 0); \
out_m = __msa_min_s_h((v8i16) max_m, (v8i16) out_m); \
out_m; \
} )
#define CLIP_SH2_0_255(in0, in1) \
{ \
in0 = CLIP_SH_0_255(in0); \
in1 = CLIP_SH_0_255(in1); \
}
#define CLIP_SH4_0_255(in0, in1, in2, in3) \
{ \
CLIP_SH2_0_255(in0, in1); \
CLIP_SH2_0_255(in2, in3); \
}
/* Description : Clips all signed word elements of input vector
between 0 & 255
Arguments : Inputs - in (input vector)
Outputs - out_m (output vector with clipped elements)
Return Type - signed word
*/
#define CLIP_SW_0_255(in) \
( { \
v4i32 max_m = __msa_ldi_w(255); \
v4i32 out_m; \
\
out_m = __msa_maxi_s_w((v4i32) in, 0); \
out_m = __msa_min_s_w((v4i32) max_m, (v4i32) out_m); \
out_m; \
} )
/* Description : Horizontal subtraction of unsigned byte vector elements
Arguments : Inputs - in0, in1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Each unsigned odd byte element from 'in0' is subtracted from
even unsigned byte element from 'in0' (pairwise) and the
halfword result is stored in 'out0'
*/
#define HSUB_UB2(RTYPE, in0, in1, out0, out1) \
{ \
out0 = (RTYPE) __msa_hsub_u_h((v16u8) in0, (v16u8) in0); \
out1 = (RTYPE) __msa_hsub_u_h((v16u8) in1, (v16u8) in1); \
}
#define HSUB_UB2_UH(...) HSUB_UB2(v8u16, __VA_ARGS__)
#define HSUB_UB2_SH(...) HSUB_UB2(v8i16, __VA_ARGS__)
#define INSERT_W4(RTYPE, in0, in1, in2, in3, out) \
{ \
out = (RTYPE) __msa_insert_w((v4i32) out, 0, in0); \
out = (RTYPE) __msa_insert_w((v4i32) out, 1, in1); \
out = (RTYPE) __msa_insert_w((v4i32) out, 2, in2); \
out = (RTYPE) __msa_insert_w((v4i32) out, 3, in3); \
}
#define INSERT_W4_UB(...) INSERT_W4(v16u8, __VA_ARGS__)
#define INSERT_W4_SB(...) INSERT_W4(v16i8, __VA_ARGS__)
#define INSERT_W4_SW(...) INSERT_W4(v4i32, __VA_ARGS__)
/* Description : Insert specified double word elements from input vectors to 1
destination vector
Arguments : Inputs - in0, in1 (2 input vectors)
Outputs - out (output vector)
Return Type - as per RTYPE
*/
#define INSERT_D2(RTYPE, in0, in1, out) \
{ \
out = (RTYPE) __msa_insert_d((v2i64) out, 0, in0); \
out = (RTYPE) __msa_insert_d((v2i64) out, 1, in1); \
}
#define INSERT_D2_UB(...) INSERT_D2(v16u8, __VA_ARGS__)
#define INSERT_D2_SB(...) INSERT_D2(v16i8, __VA_ARGS__)
#define INSERT_D2_SD(...) INSERT_D2(v2i64, __VA_ARGS__)
/* Description : Interleave even halfword elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even halfword elements of 'in0' and even halfword
elements of 'in1' are interleaved and copied to 'out0'
Even halfword elements of 'in2' and even halfword
elements of 'in3' are interleaved and copied to 'out1'
*/
#define ILVEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvev_h((v8i16) in1, (v8i16) in0); \
out1 = (RTYPE) __msa_ilvev_h((v8i16) in3, (v8i16) in2); \
}
#define ILVEV_H2_UB(...) ILVEV_H2(v16u8, __VA_ARGS__)
/* Description : Interleave even word elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even word elements of 'in0' and even word
elements of 'in1' are interleaved and copied to 'out0'
Even word elements of 'in2' and even word
elements of 'in3' are interleaved and copied to 'out1'
*/
#define ILVEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvev_w((v4i32) in1, (v4i32) in0); \
out1 = (RTYPE) __msa_ilvev_w((v4i32) in3, (v4i32) in2); \
}
#define ILVEV_W2_SB(...) ILVEV_W2(v16i8, __VA_ARGS__)
/* Description : Interleave even double word elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even double word elements of 'in0' and even double word
elements of 'in1' are interleaved and copied to 'out0'
Even double word elements of 'in2' and even double word
elements of 'in3' are interleaved and copied to 'out1'
*/
#define ILVEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvev_d((v2i64) in1, (v2i64) in0); \
out1 = (RTYPE) __msa_ilvev_d((v2i64) in3, (v2i64) in2); \
}
#define ILVEV_D2_UB(...) ILVEV_D2(v16u8, __VA_ARGS__)
/* Description : Interleave left half of byte elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Left half of byte elements of in0 and left half of byte
elements of in1 are interleaved and copied to out0.
Left half of byte elements of in2 and left half of byte
elements of in3 are interleaved and copied to out1.
*/
#define ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvl_b((v16i8) in0, (v16i8) in1); \
out1 = (RTYPE) __msa_ilvl_b((v16i8) in2, (v16i8) in3); \
}
#define ILVL_B2_SB(...) ILVL_B2(v16i8, __VA_ARGS__)
#define ILVL_B2_SH(...) ILVL_B2(v8i16, __VA_ARGS__)
#define ILVL_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVL_B2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVL_B4_SB(...) ILVL_B4(v16i8, __VA_ARGS__)
#define ILVL_B4_UH(...) ILVL_B4(v8u16, __VA_ARGS__)
#define ILVL_B4_SH(...) ILVL_B4(v8i16, __VA_ARGS__)
/* Description : Interleave left half of halfword elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Left half of halfword elements of in0 and left half of halfword
elements of in1 are interleaved and copied to out0.
Left half of halfword elements of in2 and left half of halfword
elements of in3 are interleaved and copied to out1.
*/
#define ILVL_H2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvl_h((v8i16) in0, (v8i16) in1); \
out1 = (RTYPE) __msa_ilvl_h((v8i16) in2, (v8i16) in3); \
}
#define ILVL_H2_SH(...) ILVL_H2(v8i16, __VA_ARGS__)
#define ILVL_H2_SW(...) ILVL_H2(v4i32, __VA_ARGS__)
#define ILVL_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVL_H2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVL_H2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVL_H4_SH(...) ILVL_H4(v8i16, __VA_ARGS__)
/* Description : Interleave left half of word elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Left half of word elements of in0 and left half of word
elements of in1 are interleaved and copied to out0.
Left half of word elements of in2 and left half of word
elements of in3 are interleaved and copied to out1.
*/
#define ILVL_W2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvl_w((v4i32) in0, (v4i32) in1); \
out1 = (RTYPE) __msa_ilvl_w((v4i32) in2, (v4i32) in3); \
}
#define ILVL_W2_SB(...) ILVL_W2(v16i8, __VA_ARGS__)
/* Description : Interleave right half of byte elements from vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7
Outputs - out0, out1, out2, out3
Return Type - as per RTYPE
Details : Right half of byte elements of in0 and right half of byte
elements of in1 are interleaved and copied to out0.
Right half of byte elements of in2 and right half of byte
elements of in3 are interleaved and copied to out1.
Similar for other pairs
*/
#define ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvr_b((v16i8) in0, (v16i8) in1); \
out1 = (RTYPE) __msa_ilvr_b((v16i8) in2, (v16i8) in3); \
}
#define ILVR_B2_UB(...) ILVR_B2(v16u8, __VA_ARGS__)
#define ILVR_B2_SB(...) ILVR_B2(v16i8, __VA_ARGS__)
#define ILVR_B2_UH(...) ILVR_B2(v8u16, __VA_ARGS__)
#define ILVR_B2_SH(...) ILVR_B2(v8i16, __VA_ARGS__)
#define ILVR_B2_SW(...) ILVR_B2(v4i32, __VA_ARGS__)
#define ILVR_B3(RTYPE, in0, in1, in2, in3, in4, in5, out0, out1, out2) \
{ \
ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1); \
out2 = (RTYPE) __msa_ilvr_b((v16i8) in4, (v16i8) in5); \
}
#define ILVR_B3_UB(...) ILVR_B3(v16u8, __VA_ARGS__)
#define ILVR_B3_UH(...) ILVR_B3(v8u16, __VA_ARGS__)
#define ILVR_B3_SH(...) ILVR_B3(v8i16, __VA_ARGS__)
#define ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVR_B2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVR_B4_SB(...) ILVR_B4(v16i8, __VA_ARGS__)
#define ILVR_B4_UH(...) ILVR_B4(v8u16, __VA_ARGS__)
#define ILVR_B4_SH(...) ILVR_B4(v8i16, __VA_ARGS__)
/* Description : Interleave right half of halfword elements from vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7
Outputs - out0, out1, out2, out3
Return Type - signed halfword
Details : Right half of halfword elements of in0 and right half of
halfword elements of in1 are interleaved and copied to out0.
Right half of halfword elements of in2 and right half of
halfword elements of in3 are interleaved and copied to out1.
Similar for other pairs
*/
#define ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvr_h((v8i16) in0, (v8i16) in1); \
out1 = (RTYPE) __msa_ilvr_h((v8i16) in2, (v8i16) in3); \
}
#define ILVR_H2_SH(...) ILVR_H2(v8i16, __VA_ARGS__)
#define ILVR_H2_SW(...) ILVR_H2(v4i32, __VA_ARGS__)
#define ILVR_H3(RTYPE, in0, in1, in2, in3, in4, in5, out0, out1, out2) \
{ \
ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1); \
out2 = (RTYPE) __msa_ilvr_h((v8i16) in4, (v8i16) in5); \
}
#define ILVR_H3_SH(...) ILVR_H3(v8i16, __VA_ARGS__)
#define ILVR_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVR_H2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVR_H4_SH(...) ILVR_H4(v8i16, __VA_ARGS__)
#define ILVR_W2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvr_w((v4i32) in0, (v4i32) in1); \
out1 = (RTYPE) __msa_ilvr_w((v4i32) in2, (v4i32) in3); \
}
#define ILVR_W2_UB(...) ILVR_W2(v16u8, __VA_ARGS__)
#define ILVR_W2_SB(...) ILVR_W2(v16i8, __VA_ARGS__)
#define ILVR_W4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVR_W2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVR_W2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVR_W4_SB(...) ILVR_W4(v16i8, __VA_ARGS__)
/* Description : Interleave right half of double word elements from vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7
Outputs - out0, out1, out2, out3
Return Type - unsigned double word
Details : Right half of double word elements of in0 and right half of
double word elements of in1 are interleaved and copied to out0.
Right half of double word elements of in2 and right half of
double word elements of in3 are interleaved and copied to out1.
*/
#define ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvr_d((v2i64) (in0), (v2i64) (in1)); \
out1 = (RTYPE) __msa_ilvr_d((v2i64) (in2), (v2i64) (in3)); \
}
#define ILVR_D2_SB(...) ILVR_D2(v16i8, __VA_ARGS__)
#define ILVR_D2_SH(...) ILVR_D2(v8i16, __VA_ARGS__)
#define ILVR_D3(RTYPE, in0, in1, in2, in3, in4, in5, out0, out1, out2) \
{ \
ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \
out2 = (RTYPE) __msa_ilvr_d((v2i64) (in4), (v2i64) (in5)); \
}
#define ILVR_D3_SB(...) ILVR_D3(v16i8, __VA_ARGS__)
#define ILVR_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVR_D2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVR_D4_SB(...) ILVR_D4(v16i8, __VA_ARGS__)
/* Description : Interleave both left and right half of input vectors
Arguments : Inputs - in0, in1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Right half of byte elements from 'in0' and 'in1' are
interleaved and stored to 'out0'
Left half of byte elements from 'in0' and 'in1' are
interleaved and stored to 'out1'
*/
#define ILVRL_B2(RTYPE, in0, in1, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvr_b((v16i8) in0, (v16i8) in1); \
out1 = (RTYPE) __msa_ilvl_b((v16i8) in0, (v16i8) in1); \
}
#define ILVRL_B2_SB(...) ILVRL_B2(v16i8, __VA_ARGS__)
#define ILVRL_B2_SH(...) ILVRL_B2(v8i16, __VA_ARGS__)
#define ILVRL_H2(RTYPE, in0, in1, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvr_h((v8i16) in0, (v8i16) in1); \
out1 = (RTYPE) __msa_ilvl_h((v8i16) in0, (v8i16) in1); \
}
#define ILVRL_H2_SB(...) ILVRL_H2(v16i8, __VA_ARGS__)
#define ILVRL_H2_SH(...) ILVRL_H2(v8i16, __VA_ARGS__)
#define ILVRL_H2_SW(...) ILVRL_H2(v4i32, __VA_ARGS__)
#define ILVRL_W2(RTYPE, in0, in1, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvr_w((v4i32) in0, (v4i32) in1); \
out1 = (RTYPE) __msa_ilvl_w((v4i32) in0, (v4i32) in1); \
}
#define ILVRL_W2_UB(...) ILVRL_W2(v16u8, __VA_ARGS__)
#define ILVRL_W2_SH(...) ILVRL_W2(v8i16, __VA_ARGS__)
#define ILVRL_W2_SW(...) ILVRL_W2(v4i32, __VA_ARGS__)
/* Description : Maximum values between signed elements of vector and
5-bit signed immediate value are copied to the output vector
Arguments : Inputs - in0, in1, in2, in3, max_val
Outputs - in0, in1, in2, in3 (in place)
Return Type - unsigned halfword
Details : Maximum of signed halfword element values from 'in0' and
'max_val' are written to output vector 'in0'
*/
#define MAXI_SH2(RTYPE, in0, in1, max_val) \
{ \
in0 = (RTYPE) __msa_maxi_s_h((v8i16) in0, (max_val)); \
in1 = (RTYPE) __msa_maxi_s_h((v8i16) in1, (max_val)); \
}
#define MAXI_SH2_SH(...) MAXI_SH2(v8i16, __VA_ARGS__)
#define MAXI_SH4(RTYPE, in0, in1, in2, in3, max_val) \
{ \
MAXI_SH2(RTYPE, in0, in1, max_val); \
MAXI_SH2(RTYPE, in2, in3, max_val); \
}
#define MAXI_SH4_UH(...) MAXI_SH4(v8u16, __VA_ARGS__)
/* Description : Saturate the halfword element values to the max
unsigned value of (sat_val+1 bits)
The element data width remains unchanged
Arguments : Inputs - in0, in1, in2, in3, sat_val
Outputs - in0, in1, in2, in3 (in place)
Return Type - unsigned halfword
Details : Each unsigned halfword element from 'in0' is saturated to the
value generated with (sat_val+1) bit range
Results are in placed to original vectors
*/
#define SAT_UH2(RTYPE, in0, in1, sat_val) \
{ \
in0 = (RTYPE) __msa_sat_u_h((v8u16) in0, sat_val); \
in1 = (RTYPE) __msa_sat_u_h((v8u16) in1, sat_val); \
}
#define SAT_UH2_UH(...) SAT_UH2(v8u16, __VA_ARGS__)
#define SAT_UH4(RTYPE, in0, in1, in2, in3, sat_val) \
{ \
SAT_UH2(RTYPE, in0, in1, sat_val); \
SAT_UH2(RTYPE, in2, in3, sat_val) \
}
#define SAT_UH4_UH(...) SAT_UH4(v8u16, __VA_ARGS__)
/* Description : Saturate the halfword element values to the max
unsigned value of (sat_val+1 bits)
The element data width remains unchanged
Arguments : Inputs - in0, in1, in2, in3, sat_val
Outputs - in0, in1, in2, in3 (in place)
Return Type - unsigned halfword
Details : Each unsigned halfword element from 'in0' is saturated to the
value generated with (sat_val+1) bit range
Results are in placed to original vectors
*/
#define SAT_SH2(RTYPE, in0, in1, sat_val) \
{ \
in0 = (RTYPE) __msa_sat_s_h((v8i16) in0, sat_val); \
in1 = (RTYPE) __msa_sat_s_h((v8i16) in1, sat_val); \
}
#define SAT_SH2_SH(...) SAT_SH2(v8i16, __VA_ARGS__)
#define SAT_SH3(RTYPE, in0, in1, in2, sat_val) \
{ \
SAT_SH2(RTYPE, in0, in1, sat_val) \
in2 = (RTYPE) __msa_sat_s_h((v8i16) in2, sat_val); \
}
#define SAT_SH3_SH(...) SAT_SH3(v8i16, __VA_ARGS__)
#define SAT_SH4(RTYPE, in0, in1, in2, in3, sat_val) \
{ \
SAT_SH2(RTYPE, in0, in1, sat_val); \
SAT_SH2(RTYPE, in2, in3, sat_val); \
}
#define SAT_SH4_SH(...) SAT_SH4(v8i16, __VA_ARGS__)
/* Description : Saturate the word element values to the max
unsigned value of (sat_val+1 bits)
The element data width remains unchanged
Arguments : Inputs - in0, in1, in2, in3, sat_val
Outputs - in0, in1, in2, in3 (in place)
Return Type - unsigned word
Details : Each unsigned word element from 'in0' is saturated to the
value generated with (sat_val+1) bit range
Results are in placed to original vectors
*/
#define SAT_SW2(RTYPE, in0, in1, sat_val) \
{ \
in0 = (RTYPE) __msa_sat_s_w((v4i32) in0, sat_val); \
in1 = (RTYPE) __msa_sat_s_w((v4i32) in1, sat_val); \
}
#define SAT_SW2_SW(...) SAT_SW2(v4i32, __VA_ARGS__)
#define SAT_SW4(RTYPE, in0, in1, in2, in3, sat_val) \
{ \
SAT_SW2(RTYPE, in0, in1, sat_val); \
SAT_SW2(RTYPE, in2, in3, sat_val); \
}
#define SAT_SW4_SW(...) SAT_SW4(v4i32, __VA_ARGS__)
/* Description : Indexed halfword element values are replicated to all
elements in output vector
Arguments : Inputs - in, idx0, idx1
Outputs - out0, out1
Return Type - as per RTYPE
Details : 'idx0' element value from 'in' vector is replicated to all
elements in 'out0' vector
Valid index range for halfword operation is 0-7
*/
#define SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1) \
{ \
out0 = (RTYPE) __msa_splati_h((v8i16) in, idx0); \
out1 = (RTYPE) __msa_splati_h((v8i16) in, idx1); \
}
#define SPLATI_H2_SB(...) SPLATI_H2(v16i8, __VA_ARGS__)
#define SPLATI_H2_SH(...) SPLATI_H2(v8i16, __VA_ARGS__)
#define SPLATI_H4(RTYPE, in, idx0, idx1, idx2, idx3, \
out0, out1, out2, out3) \
{ \
SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1); \
SPLATI_H2(RTYPE, in, idx2, idx3, out2, out3); \
}
#define SPLATI_H4_SB(...) SPLATI_H4(v16i8, __VA_ARGS__)
#define SPLATI_H4_SH(...) SPLATI_H4(v8i16, __VA_ARGS__)
/* Description : Indexed word element values are replicated to all
elements in output vector
Arguments : Inputs - in, stidx
Outputs - out0, out1
Return Type - as per RTYPE
Details : 'stidx' element value from 'in' vector is replicated to all
elements in 'out0' vector
'stidx + 1' element value from 'in' vector is replicated to all
elements in 'out1' vector
Valid index range for halfword operation is 0-3
*/
#define SPLATI_W2(RTYPE, in, stidx, out0, out1) \
{ \
out0 = (RTYPE) __msa_splati_w((v4i32) in, stidx); \
out1 = (RTYPE) __msa_splati_w((v4i32) in, (stidx+1)); \
}
#define SPLATI_W2_SH(...) SPLATI_W2(v8i16, __VA_ARGS__)
#define SPLATI_W2_SW(...) SPLATI_W2(v4i32, __VA_ARGS__)
#define SPLATI_W4(RTYPE, in, out0, out1, out2, out3) \
{ \
SPLATI_W2(RTYPE, in, 0, out0, out1); \
SPLATI_W2(RTYPE, in, 2, out2, out3); \
}
#define SPLATI_W4_SH(...) SPLATI_W4(v8i16, __VA_ARGS__)
#define SPLATI_W4_SW(...) SPLATI_W4(v4i32, __VA_ARGS__)
/* Description : Pack even byte elements of vector pairs
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even byte elements of in0 are copied to the left half of
out0 & even byte elements of in1 are copied to the right
half of out0.
Even byte elements of in2 are copied to the left half of
out1 & even byte elements of in3 are copied to the right
half of out1.
*/
#define PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_pckev_b((v16i8) in0, (v16i8) in1); \
out1 = (RTYPE) __msa_pckev_b((v16i8) in2, (v16i8) in3); \
}
#define PCKEV_B2_SB(...) PCKEV_B2(v16i8, __VA_ARGS__)
#define PCKEV_B2_UB(...) PCKEV_B2(v16u8, __VA_ARGS__)
#define PCKEV_B2_SH(...) PCKEV_B2(v8i16, __VA_ARGS__)
#define PCKEV_B2_SW(...) PCKEV_B2(v4i32, __VA_ARGS__)
#define PCKEV_B3(RTYPE, in0, in1, in2, in3, in4, in5, out0, out1, out2) \
{ \
PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1); \
out2 = (RTYPE) __msa_pckev_b((v16i8) in4, (v16i8) in5); \
}
#define PCKEV_B3_UB(...) PCKEV_B3(v16u8, __VA_ARGS__)
#define PCKEV_B3_SB(...) PCKEV_B3(v16i8, __VA_ARGS__)
#define PCKEV_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1); \
PCKEV_B2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define PCKEV_B4_SB(...) PCKEV_B4(v16i8, __VA_ARGS__)
#define PCKEV_B4_UB(...) PCKEV_B4(v16u8, __VA_ARGS__)
#define PCKEV_B4_SH(...) PCKEV_B4(v8i16, __VA_ARGS__)
#define PCKEV_B4_SW(...) PCKEV_B4(v4i32, __VA_ARGS__)
/* Description : Pack even halfword elements of vector pairs
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even halfword elements of in0 are copied to the left half of
out0 & even halfword elements of in1 are copied to the right
half of out0.
Even halfword elements of in2 are copied to the left half of
out1 & even halfword elements of in3 are copied to the right
half of out1.
*/
#define PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_pckev_h((v8i16) in0, (v8i16) in1); \
out1 = (RTYPE) __msa_pckev_h((v8i16) in2, (v8i16) in3); \
}
#define PCKEV_H2_SH(...) PCKEV_H2(v8i16, __VA_ARGS__)
#define PCKEV_H2_SW(...) PCKEV_H2(v4i32, __VA_ARGS__)
#define PCKEV_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1); \
PCKEV_H2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define PCKEV_H4_SH(...) PCKEV_H4(v8i16, __VA_ARGS__)
#define PCKEV_H4_SW(...) PCKEV_H4(v4i32, __VA_ARGS__)
/* Description : Pack even double word elements of vector pairs
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - unsigned byte
Details : Even double elements of in0 are copied to the left half of
out0 & even double elements of in1 are copied to the right
half of out0.
Even double elements of in2 are copied to the left half of
out1 & even double elements of in3 are copied to the right
half of out1.
*/
#define PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_pckev_d((v2i64) in0, (v2i64) in1); \
out1 = (RTYPE) __msa_pckev_d((v2i64) in2, (v2i64) in3); \
}
#define PCKEV_D2_UB(...) PCKEV_D2(v16u8, __VA_ARGS__)
#define PCKEV_D2_SB(...) PCKEV_D2(v16i8, __VA_ARGS__)
#define PCKEV_D2_SH(...) PCKEV_D2(v8i16, __VA_ARGS__)
#define PCKEV_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1); \
PCKEV_D2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define PCKEV_D4_UB(...) PCKEV_D4(v16u8, __VA_ARGS__)
/* Description : Each byte element is logically xor'ed with immediate 128
Arguments : Inputs - in0, in1
Outputs - in0, in1 (in-place)
Return Type - as per RTYPE
Details : Each unsigned byte element from input vector 'in0' is
logically xor'ed with 128 and result is in-place stored in
'in0' vector
Each unsigned byte element from input vector 'in1' is
logically xor'ed with 128 and result is in-place stored in
'in1' vector
Similar for other pairs
*/
#define XORI_B2_128(RTYPE, in0, in1) \
{ \
in0 = (RTYPE) __msa_xori_b((v16u8) in0, 128); \
in1 = (RTYPE) __msa_xori_b((v16u8) in1, 128); \
}
#define XORI_B2_128_UB(...) XORI_B2_128(v16u8, __VA_ARGS__)
#define XORI_B2_128_SB(...) XORI_B2_128(v16i8, __VA_ARGS__)
#define XORI_B2_128_SH(...) XORI_B2_128(v8i16, __VA_ARGS__)
#define XORI_B3_128(RTYPE, in0, in1, in2) \
{ \
XORI_B2_128(RTYPE, in0, in1); \
in2 = (RTYPE) __msa_xori_b((v16u8) in2, 128); \
}
#define XORI_B3_128_SB(...) XORI_B3_128(v16i8, __VA_ARGS__)
#define XORI_B4_128(RTYPE, in0, in1, in2, in3) \
{ \
XORI_B2_128(RTYPE, in0, in1); \
XORI_B2_128(RTYPE, in2, in3); \
}
#define XORI_B4_128_UB(...) XORI_B4_128(v16u8, __VA_ARGS__)
#define XORI_B4_128_SB(...) XORI_B4_128(v16i8, __VA_ARGS__)
#define XORI_B4_128_SH(...) XORI_B4_128(v8i16, __VA_ARGS__)
#define XORI_B5_128(RTYPE, in0, in1, in2, in3, in4) \
{ \
XORI_B3_128(RTYPE, in0, in1, in2); \
XORI_B2_128(RTYPE, in3, in4); \
}
#define XORI_B5_128_SB(...) XORI_B5_128(v16i8, __VA_ARGS__)
#define XORI_B6_128(RTYPE, in0, in1, in2, in3, in4, in5) \
{ \
XORI_B4_128(RTYPE, in0, in1, in2, in3); \
XORI_B2_128(RTYPE, in4, in5); \
}
#define XORI_B6_128_SB(...) XORI_B6_128(v16i8, __VA_ARGS__)
#define XORI_B7_128(RTYPE, in0, in1, in2, in3, in4, in5, in6) \
{ \
XORI_B4_128(RTYPE, in0, in1, in2, in3); \
XORI_B3_128(RTYPE, in4, in5, in6); \
}
#define XORI_B7_128_SB(...) XORI_B7_128(v16i8, __VA_ARGS__)
#define XORI_B8_128(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7) \
{ \
XORI_B4_128(RTYPE, in0, in1, in2, in3); \
XORI_B4_128(RTYPE, in4, in5, in6, in7); \
}
#define XORI_B8_128_SB(...) XORI_B8_128(v16i8, __VA_ARGS__)
/* Description : Addition of signed halfword elements and signed saturation
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Signed halfword elements from 'in0' are added to signed
halfword elements of 'in1'. The result is then signed saturated
between -32768 to +32767 (as per halfword data type)
Similar for other pairs
*/
#define ADDS_SH2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_adds_s_h((v8i16) in0, (v8i16) in1); \
out1 = (RTYPE) __msa_adds_s_h((v8i16) in2, (v8i16) in3); \
}
#define ADDS_SH2_SH(...) ADDS_SH2(v8i16, __VA_ARGS__)
#define ADDS_SH4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ADDS_SH2(RTYPE, in0, in1, in2, in3, out0, out1); \
ADDS_SH2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ADDS_SH4_UH(...) ADDS_SH4(v8u16, __VA_ARGS__)
#define ADDS_SH4_SH(...) ADDS_SH4(v8i16, __VA_ARGS__)
/* Description : Shift left all elements of vector (generic for all data types)
Arguments : Inputs - in0, in1, in2, in3, shift
Outputs - in0, in1, in2, in3 (in place)
Return Type - as per input vector RTYPE
Details : Each element of vector 'in0' is left shifted by 'shift' and
result is in place written to 'in0'
Similar for other pairs
*/
#define SLLI_4V(in0, in1, in2, in3, shift) \
{ \
in0 = in0 << shift; \
in1 = in1 << shift; \
in2 = in2 << shift; \
in3 = in3 << shift; \
}
/* Description : Arithmetic shift right all elements of vector
(generic for all data types)
Arguments : Inputs - in0, in1, in2, in3, shift
Outputs - in0, in1, in2, in3 (in place)
Return Type - as per input vector RTYPE
Details : Each element of vector 'in0' is right shifted by 'shift' and
result is in place written to 'in0'
Here, 'shift' is GP variable passed in
Similar for other pairs
*/
#define SRA_4V(in0, in1, in2, in3, shift) \
{ \
in0 = in0 >> shift; \
in1 = in1 >> shift; \
in2 = in2 >> shift; \
in3 = in3 >> shift; \
}
/* Description : Shift right logical all halfword elements of vector
Arguments : Inputs - in0, in1, in2, in3, shift
Outputs - in0, in1, in2, in3 (in place)
Return Type - unsigned halfword
Details : Each element of vector 'in0' is shifted right logical by
number of bits respective element holds in vector 'shift' and
result is in place written to 'in0'
Here, 'shift' is a vector passed in
Similar for other pairs
*/
#define SRL_H4(RTYPE, in0, in1, in2, in3, shift) \
{ \
in0 = (RTYPE) __msa_srl_h((v8i16) in0, (v8i16) shift); \
in1 = (RTYPE) __msa_srl_h((v8i16) in1, (v8i16) shift); \
in2 = (RTYPE) __msa_srl_h((v8i16) in2, (v8i16) shift); \
in3 = (RTYPE) __msa_srl_h((v8i16) in3, (v8i16) shift); \
}
#define SRL_H4_UH(...) SRL_H4(v8u16, __VA_ARGS__)
/* Description : Shift right arithmetic rounded halfwords
Arguments : Inputs - in0, in1, shift
Outputs - in0, in1, (in place)
Return Type - unsigned halfword
Details : Each element of vector 'in0' is shifted right arithmetic by
number of bits respective element holds in vector 'shift'.
The last discarded bit is added to shifted value for rounding
and the result is in place written to 'in0'
Here, 'shift' is a vector passed in
Similar for other pairs
*/
#define SRAR_H2(RTYPE, in0, in1, shift) \
{ \
in0 = (RTYPE) __msa_srar_h((v8i16) in0, (v8i16) shift); \
in1 = (RTYPE) __msa_srar_h((v8i16) in1, (v8i16) shift); \
}
#define SRAR_H2_UH(...) SRAR_H2(v8u16, __VA_ARGS__)
#define SRAR_H2_SH(...) SRAR_H2(v8i16, __VA_ARGS__)
#define SRAR_H3(RTYPE, in0, in1, in2, shift) \
{ \
SRAR_H2(RTYPE, in0, in1, shift) \
in2 = (RTYPE) __msa_srar_h((v8i16) in2, (v8i16) shift); \
}
#define SRAR_H3_SH(...) SRAR_H3(v8i16, __VA_ARGS__)
#define SRAR_H4(RTYPE, in0, in1, in2, in3, shift) \
{ \
SRAR_H2(RTYPE, in0, in1, shift) \
SRAR_H2(RTYPE, in2, in3, shift) \
}
#define SRAR_H4_UH(...) SRAR_H4(v8u16, __VA_ARGS__)
#define SRAR_H4_SH(...) SRAR_H4(v8i16, __VA_ARGS__)
/* Description : Shift right arithmetic rounded words
Arguments : Inputs - in0, in1, shift
Outputs - in0, in1, (in place)
Return Type - as per RTYPE
Details : Each element of vector 'in0' is shifted right arithmetic by
number of bits respective element holds in vector 'shift'.
The last discarded bit is added to shifted value for rounding
and the result is in place written to 'in0'
Here, 'shift' is a vector passed in
Similar for other pairs
*/
#define SRAR_W2(RTYPE, in0, in1, shift) \
{ \
in0 = (RTYPE) __msa_srar_w((v4i32) in0, (v4i32) shift); \
in1 = (RTYPE) __msa_srar_w((v4i32) in1, (v4i32) shift); \
}
#define SRAR_W2_SW(...) SRAR_W2(v4i32, __VA_ARGS__)
#define SRAR_W4(RTYPE, in0, in1, in2, in3, shift) \
{ \
SRAR_W2(RTYPE, in0, in1, shift) \
SRAR_W2(RTYPE, in2, in3, shift) \
}
#define SRAR_W4_SW(...) SRAR_W4(v4i32, __VA_ARGS__)
/* Description : Shift right arithmetic rounded (immediate)
Arguments : Inputs - in0, in1, in2, in3, shift
Outputs - in0, in1, in2, in3 (in place)
Return Type - as per RTYPE
Details : Each element of vector 'in0' is shifted right arithmetic by
value in 'shift'.
The last discarded bit is added to shifted value for rounding
and the result is in place written to 'in0'
Similar for other pairs
*/
#define SRARI_H2(RTYPE, in0, in1, shift) \
{ \
in0 = (RTYPE) __msa_srari_h((v8i16) in0, shift); \
in1 = (RTYPE) __msa_srari_h((v8i16) in1, shift); \
}
#define SRARI_H2_UH(...) SRARI_H2(v8u16, __VA_ARGS__)
#define SRARI_H2_SH(...) SRARI_H2(v8i16, __VA_ARGS__)
#define SRARI_H4(RTYPE, in0, in1, in2, in3, shift) \
{ \
SRARI_H2(RTYPE, in0, in1, shift); \
SRARI_H2(RTYPE, in2, in3, shift); \
}
#define SRARI_H4_UH(...) SRARI_H4(v8u16, __VA_ARGS__)
#define SRARI_H4_SH(...) SRARI_H4(v8i16, __VA_ARGS__)
/* Description : Shift right arithmetic rounded (immediate)
Arguments : Inputs - in0, in1, shift
Outputs - in0, in1 (in place)
Return Type - as per RTYPE
Details : Each element of vector 'in0' is shifted right arithmetic by
value in 'shift'.
The last discarded bit is added to shifted value for rounding
and the result is in place written to 'in0'
Similar for other pairs
*/
#define SRARI_W2(RTYPE, in0, in1, shift) \
{ \
in0 = (RTYPE) __msa_srari_w((v4i32) in0, shift); \
in1 = (RTYPE) __msa_srari_w((v4i32) in1, shift); \
}
#define SRARI_W2_SW(...) SRARI_W2(v4i32, __VA_ARGS__)
#define SRARI_W4(RTYPE, in0, in1, in2, in3, shift) \
{ \
SRARI_W2(RTYPE, in0, in1, shift); \
SRARI_W2(RTYPE, in2, in3, shift); \
}
#define SRARI_W4_SH(...) SRARI_W4(v8i16, __VA_ARGS__)
#define SRARI_W4_SW(...) SRARI_W4(v4i32, __VA_ARGS__)
/* Description : Multiplication of pairs of vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Details : Each element from 'in0' is multiplied with elements from 'in1'
and result is written to 'out0'
Similar for other pairs
*/
#define MUL2(in0, in1, in2, in3, out0, out1) \
{ \
out0 = in0 * in1; \
out1 = in2 * in3; \
}
#define MUL4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \
{ \
MUL2(in0, in1, in2, in3, out0, out1); \
MUL2(in4, in5, in6, in7, out2, out3); \
}
/* Description : Addition of 2 pairs of vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Details : Each element from 2 pairs vectors is added and 2 results are
produced
*/
#define ADD2(in0, in1, in2, in3, out0, out1) \
{ \
out0 = in0 + in1; \
out1 = in2 + in3; \
}
#define ADD4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \
{ \
ADD2(in0, in1, in2, in3, out0, out1); \
ADD2(in4, in5, in6, in7, out2, out3); \
}
/* Description : Zero extend unsigned byte elements to halfword elements
Arguments : Inputs - in (1 input unsigned byte vector)
Outputs - out0, out1 (unsigned 2 halfword vectors)
Return Type - signed halfword
Details : Zero extended right half of vector is returned in 'out0'
Zero extended left half of vector is returned in 'out1'
*/
#define UNPCK_UB_SH(in, out0, out1) \
{ \
v16i8 zero_m = { 0 }; \
\
ILVRL_B2_SH(zero_m, in, out0, out1); \
}
/* Description : Sign extend halfword elements from input vector and return
result in pair of vectors
Arguments : Inputs - in (1 input halfword vector)
Outputs - out0, out1 (sign extended 2 word vectors)
Return Type - signed word
Details : Sign bit of halfword elements from input vector 'in' is
extracted and interleaved right with same vector 'in0' to
generate 4 signed word elements in 'out0'
Then interleaved left with same vector 'in0' to
generate 4 signed word elements in 'out1'
*/
#define UNPCK_SH_SW(in, out0, out1) \
{ \
v8i16 tmp_m; \
\
tmp_m = __msa_clti_s_h((v8i16) in, 0); \
ILVRL_H2_SW(tmp_m, in, out0, out1); \
}
/* Description : Butterfly of 4 input vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1, out2, out3
Details : Butterfly operation
*/
#define BUTTERFLY_4(in0, in1, in2, in3, out0, out1, out2, out3) \
{ \
out0 = in0 + in3; \
out1 = in1 + in2; \
\
out2 = in1 - in2; \
out3 = in0 - in3; \
}
/* Description : Transposes input 4x4 byte block
Arguments : Inputs - in0, in1, in2, in3 (input 4x4 byte block)
Outputs - out0, out1, out2, out3 (output 4x4 byte block)
Return Type - unsigned byte
Details :
*/
#define TRANSPOSE4x4_UB_UB(in0, in1, in2, in3, out0, out1, out2, out3) \
{ \
v16i8 zero_m = { 0 }; \
v16i8 s0_m, s1_m, s2_m, s3_m; \
\
ILVR_D2_SB(in1, in0, in3, in2, s0_m, s1_m); \
ILVRL_B2_SB(s1_m, s0_m, s2_m, s3_m); \
\
out0 = (v16u8) __msa_ilvr_b(s3_m, s2_m); \
out1 = (v16u8) __msa_sldi_b(zero_m, (v16i8) out0, 4); \
out2 = (v16u8) __msa_sldi_b(zero_m, (v16i8) out1, 4); \
out3 = (v16u8) __msa_sldi_b(zero_m, (v16i8) out2, 4); \
}
/* Description : Transposes input 8x4 byte block into 4x8
Arguments : Inputs - in0, in1, in2, in3 (input 8x4 byte block)
Outputs - out0, out1, out2, out3 (output 4x8 byte block)
Return Type - unsigned byte
Details :
*/
#define TRANSPOSE8x4_UB(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
v16i8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \
\
ILVEV_W2_SB(in0, in4, in1, in5, tmp0_m, tmp1_m); \
tmp2_m = __msa_ilvr_b(tmp1_m, tmp0_m); \
ILVEV_W2_SB(in2, in6, in3, in7, tmp0_m, tmp1_m); \
\
tmp3_m = __msa_ilvr_b(tmp1_m, tmp0_m); \
ILVRL_H2_SB(tmp3_m, tmp2_m, tmp0_m, tmp1_m); \
\
ILVRL_W2(RTYPE, tmp1_m, tmp0_m, out0, out2); \
out1 = (RTYPE) __msa_ilvl_d((v2i64) out2, (v2i64) out0); \
out3 = (RTYPE) __msa_ilvl_d((v2i64) out0, (v2i64) out2); \
}
#define TRANSPOSE8x4_UB_UB(...) TRANSPOSE8x4_UB(v16u8, __VA_ARGS__)
/* Description : Transposes 16x8 block into 8x16 with byte elements in vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7,
in8, in9, in10, in11, in12, in13, in14, in15
Outputs - out0, out1, out2, out3, out4, out5, out6, out7
Return Type - unsigned byte
Details :
*/
#define TRANSPOSE16x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, \
in8, in9, in10, in11, in12, in13, in14, in15, \
out0, out1, out2, out3, out4, out5, out6, out7) \
{ \
v16u8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \
v16u8 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \
\
ILVEV_D2_UB(in0, in8, in1, in9, out7, out6); \
ILVEV_D2_UB(in2, in10, in3, in11, out5, out4); \
ILVEV_D2_UB(in4, in12, in5, in13, out3, out2); \
ILVEV_D2_UB(in6, in14, in7, in15, out1, out0); \
\
tmp0_m = (v16u8) __msa_ilvev_b((v16i8) out6, (v16i8) out7); \
tmp4_m = (v16u8) __msa_ilvod_b((v16i8) out6, (v16i8) out7); \
tmp1_m = (v16u8) __msa_ilvev_b((v16i8) out4, (v16i8) out5); \
tmp5_m = (v16u8) __msa_ilvod_b((v16i8) out4, (v16i8) out5); \
out5 = (v16u8) __msa_ilvev_b((v16i8) out2, (v16i8) out3); \
tmp6_m = (v16u8) __msa_ilvod_b((v16i8) out2, (v16i8) out3); \
out7 = (v16u8) __msa_ilvev_b((v16i8) out0, (v16i8) out1); \
tmp7_m = (v16u8) __msa_ilvod_b((v16i8) out0, (v16i8) out1); \
\
ILVEV_H2_UB(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m); \
out0 = (v16u8) __msa_ilvev_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
out4 = (v16u8) __msa_ilvod_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
\
tmp2_m = (v16u8) __msa_ilvod_h((v8i16) tmp1_m, (v8i16) tmp0_m); \
tmp3_m = (v16u8) __msa_ilvod_h((v8i16) out7, (v8i16) out5); \
out2 = (v16u8) __msa_ilvev_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
out6 = (v16u8) __msa_ilvod_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
\
ILVEV_H2_UB(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m); \
out1 = (v16u8) __msa_ilvev_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
out5 = (v16u8) __msa_ilvod_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
\
tmp2_m = (v16u8) __msa_ilvod_h((v8i16) tmp5_m, (v8i16) tmp4_m); \
tmp2_m = (v16u8) __msa_ilvod_h((v8i16) tmp5_m, (v8i16) tmp4_m); \
tmp3_m = (v16u8) __msa_ilvod_h((v8i16) tmp7_m, (v8i16) tmp6_m); \
tmp3_m = (v16u8) __msa_ilvod_h((v8i16) tmp7_m, (v8i16) tmp6_m); \
out3 = (v16u8) __msa_ilvev_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
out7 = (v16u8) __msa_ilvod_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
}
/* Description : Transposes 8x8 block with half word elements in vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7
Outputs - out0, out1, out2, out3, out4, out5, out6, out7
Return Type - signed halfword
Details :
*/
#define TRANSPOSE8x8_H(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3, out4, out5, out6, out7) \
{ \
v8i16 s0_m, s1_m; \
v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \
v8i16 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \
\
ILVR_H2_SH(in6, in4, in7, in5, s0_m, s1_m); \
ILVRL_H2_SH(s1_m, s0_m, tmp0_m, tmp1_m); \
ILVL_H2_SH(in6, in4, in7, in5, s0_m, s1_m); \
ILVRL_H2_SH(s1_m, s0_m, tmp2_m, tmp3_m); \
ILVR_H2_SH(in2, in0, in3, in1, s0_m, s1_m); \
ILVRL_H2_SH(s1_m, s0_m, tmp4_m, tmp5_m); \
ILVL_H2_SH(in2, in0, in3, in1, s0_m, s1_m); \
ILVRL_H2_SH(s1_m, s0_m, tmp6_m, tmp7_m); \
PCKEV_D4(RTYPE, tmp0_m, tmp4_m, tmp1_m, tmp5_m, tmp2_m, tmp6_m, \
tmp3_m, tmp7_m, out0, out2, out4, out6); \
out1 = (RTYPE) __msa_pckod_d((v2i64) tmp0_m, (v2i64) tmp4_m); \
out3 = (RTYPE) __msa_pckod_d((v2i64) tmp1_m, (v2i64) tmp5_m); \
out5 = (RTYPE) __msa_pckod_d((v2i64) tmp2_m, (v2i64) tmp6_m); \
out7 = (RTYPE) __msa_pckod_d((v2i64) tmp3_m, (v2i64) tmp7_m); \
}
#define TRANSPOSE8x8_UH_UH(...) TRANSPOSE8x8_H(v8u16, __VA_ARGS__)
#define TRANSPOSE8x8_SH_SH(...) TRANSPOSE8x8_H(v8i16, __VA_ARGS__)
/* Description : Transposes 4x4 block with word elements in vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1, out2, out3
Return Type - signed word
Details :
*/
#define TRANSPOSE4x4_SW_SW(in0, in1, in2, in3, out0, out1, out2, out3) \
{ \
v4i32 s0_m, s1_m, s2_m, s3_m; \
\
ILVRL_W2_SW(in1, in0, s0_m, s1_m); \
ILVRL_W2_SW(in3, in2, s2_m, s3_m); \
\
out0 = (v4i32) __msa_ilvr_d((v2i64) s2_m, (v2i64) s0_m); \
out1 = (v4i32) __msa_ilvl_d((v2i64) s2_m, (v2i64) s0_m); \
out2 = (v4i32) __msa_ilvr_d((v2i64) s3_m, (v2i64) s1_m); \
out3 = (v4i32) __msa_ilvl_d((v2i64) s3_m, (v2i64) s1_m); \
}
/* Description : Pack even elements of input vectors & xor with 128
Arguments : Inputs - in0, in1
Outputs - out_m
Return Type - unsigned byte
Details : Signed byte even elements from 'in0' and 'in1' are packed
together in one vector and the resulted vector is xor'ed with
128 to shift the range from signed to unsigned byte
*/
#define PCKEV_XORI128_UB(in0, in1) \
( { \
v16u8 out_m; \
out_m = (v16u8) __msa_pckev_b((v16i8) in1, (v16i8) in0); \
out_m = (v16u8) __msa_xori_b((v16u8) out_m, 128); \
out_m; \
} )
/* Description : Pack even byte elements, extract 0 & 2 index words from pair
of results and store 4 words in destination memory as per
stride
Arguments : Inputs - in0, in1, in2, in3, pdst, stride
*/
#define PCKEV_ST4x4_UB(in0, in1, in2, in3, pdst, stride) \
{ \
uint32_t out0_m, out1_m, out2_m, out3_m; \
v16i8 tmp0_m, tmp1_m; \
\
PCKEV_B2_SB(in1, in0, in3, in2, tmp0_m, tmp1_m); \
\
out0_m = __msa_copy_u_w((v4i32) tmp0_m, 0); \
out1_m = __msa_copy_u_w((v4i32) tmp0_m, 2); \
out2_m = __msa_copy_u_w((v4i32) tmp1_m, 0); \
out3_m = __msa_copy_u_w((v4i32) tmp1_m, 2); \
\
SW4(out0_m, out1_m, out2_m, out3_m, pdst, stride); \
}
#endif /* AVUTIL_MIPS_GENERIC_MACROS_MSA_H */