* commit '9cd4bc41760f8ad879e248920eacbe1e7757152c': ac3dec: set AV_FRAME_DATA_DOWNMIX_INFO side data. Conflicts: libavcodec/version.h Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			608 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			608 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * E-AC-3 decoder
 | 
						|
 * Copyright (c) 2007 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
 | 
						|
 * Copyright (c) 2008 Justin Ruggles
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * There are several features of E-AC-3 that this decoder does not yet support.
 | 
						|
 *
 | 
						|
 * Enhanced Coupling
 | 
						|
 *     No known samples exist.  If any ever surface, this feature should not be
 | 
						|
 *     too difficult to implement.
 | 
						|
 *
 | 
						|
 * Reduced Sample Rates
 | 
						|
 *     No known samples exist.  The spec also does not give clear information
 | 
						|
 *     on how this is to be implemented.
 | 
						|
 *
 | 
						|
 * Dependent Streams
 | 
						|
 *     Only the independent stream is currently decoded. Any dependent
 | 
						|
 *     streams are skipped.  We have only come across two examples of this, and
 | 
						|
 *     they are both just test streams, one for HD-DVD and the other for
 | 
						|
 *     Blu-ray.
 | 
						|
 *
 | 
						|
 * Transient Pre-noise Processing
 | 
						|
 *     This is side information which a decoder should use to reduce artifacts
 | 
						|
 *     caused by transients.  There are samples which are known to have this
 | 
						|
 *     information, but this decoder currently ignores it.
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
#include "avcodec.h"
 | 
						|
#include "internal.h"
 | 
						|
#include "aac_ac3_parser.h"
 | 
						|
#include "ac3.h"
 | 
						|
#include "ac3_parser.h"
 | 
						|
#include "ac3dec.h"
 | 
						|
#include "ac3dec_data.h"
 | 
						|
#include "eac3_data.h"
 | 
						|
 | 
						|
/** gain adaptive quantization mode */
 | 
						|
typedef enum {
 | 
						|
    EAC3_GAQ_NO =0,
 | 
						|
    EAC3_GAQ_12,
 | 
						|
    EAC3_GAQ_14,
 | 
						|
    EAC3_GAQ_124
 | 
						|
} EAC3GaqMode;
 | 
						|
 | 
						|
#define EAC3_SR_CODE_REDUCED  3
 | 
						|
 | 
						|
void ff_eac3_apply_spectral_extension(AC3DecodeContext *s)
 | 
						|
{
 | 
						|
    int bin, bnd, ch, i;
 | 
						|
    uint8_t wrapflag[SPX_MAX_BANDS]={1,0,}, num_copy_sections, copy_sizes[SPX_MAX_BANDS];
 | 
						|
    float rms_energy[SPX_MAX_BANDS];
 | 
						|
 | 
						|
    /* Set copy index mapping table. Set wrap flags to apply a notch filter at
 | 
						|
       wrap points later on. */
 | 
						|
    bin = s->spx_dst_start_freq;
 | 
						|
    num_copy_sections = 0;
 | 
						|
    for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
 | 
						|
        int copysize;
 | 
						|
        int bandsize = s->spx_band_sizes[bnd];
 | 
						|
        if (bin + bandsize > s->spx_src_start_freq) {
 | 
						|
            copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
 | 
						|
            bin = s->spx_dst_start_freq;
 | 
						|
            wrapflag[bnd] = 1;
 | 
						|
        }
 | 
						|
        for (i = 0; i < bandsize; i += copysize) {
 | 
						|
            if (bin == s->spx_src_start_freq) {
 | 
						|
                copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
 | 
						|
                bin = s->spx_dst_start_freq;
 | 
						|
            }
 | 
						|
            copysize = FFMIN(bandsize - i, s->spx_src_start_freq - bin);
 | 
						|
            bin += copysize;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
 | 
						|
 | 
						|
    for (ch = 1; ch <= s->fbw_channels; ch++) {
 | 
						|
        if (!s->channel_uses_spx[ch])
 | 
						|
            continue;
 | 
						|
 | 
						|
        /* Copy coeffs from normal bands to extension bands */
 | 
						|
        bin = s->spx_src_start_freq;
 | 
						|
        for (i = 0; i < num_copy_sections; i++) {
 | 
						|
            memcpy(&s->transform_coeffs[ch][bin],
 | 
						|
                   &s->transform_coeffs[ch][s->spx_dst_start_freq],
 | 
						|
                   copy_sizes[i]*sizeof(float));
 | 
						|
            bin += copy_sizes[i];
 | 
						|
        }
 | 
						|
 | 
						|
        /* Calculate RMS energy for each SPX band. */
 | 
						|
        bin = s->spx_src_start_freq;
 | 
						|
        for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
 | 
						|
            int bandsize = s->spx_band_sizes[bnd];
 | 
						|
            float accum = 0.0f;
 | 
						|
            for (i = 0; i < bandsize; i++) {
 | 
						|
                float coeff = s->transform_coeffs[ch][bin++];
 | 
						|
                accum += coeff * coeff;
 | 
						|
            }
 | 
						|
            rms_energy[bnd] = sqrtf(accum / bandsize);
 | 
						|
        }
 | 
						|
 | 
						|
        /* Apply a notch filter at transitions between normal and extension
 | 
						|
           bands and at all wrap points. */
 | 
						|
        if (s->spx_atten_code[ch] >= 0) {
 | 
						|
            const float *atten_tab = ff_eac3_spx_atten_tab[s->spx_atten_code[ch]];
 | 
						|
            bin = s->spx_src_start_freq - 2;
 | 
						|
            for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
 | 
						|
                if (wrapflag[bnd]) {
 | 
						|
                    float *coeffs = &s->transform_coeffs[ch][bin];
 | 
						|
                    coeffs[0] *= atten_tab[0];
 | 
						|
                    coeffs[1] *= atten_tab[1];
 | 
						|
                    coeffs[2] *= atten_tab[2];
 | 
						|
                    coeffs[3] *= atten_tab[1];
 | 
						|
                    coeffs[4] *= atten_tab[0];
 | 
						|
                }
 | 
						|
                bin += s->spx_band_sizes[bnd];
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* Apply noise-blended coefficient scaling based on previously
 | 
						|
           calculated RMS energy, blending factors, and SPX coordinates for
 | 
						|
           each band. */
 | 
						|
        bin = s->spx_src_start_freq;
 | 
						|
        for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
 | 
						|
            float nscale = s->spx_noise_blend[ch][bnd] * rms_energy[bnd] * (1.0f / INT32_MIN);
 | 
						|
            float sscale = s->spx_signal_blend[ch][bnd];
 | 
						|
            for (i = 0; i < s->spx_band_sizes[bnd]; i++) {
 | 
						|
                float noise  = nscale * (int32_t)av_lfg_get(&s->dith_state);
 | 
						|
                s->transform_coeffs[ch][bin]   *= sscale;
 | 
						|
                s->transform_coeffs[ch][bin++] += noise;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/** lrint(M_SQRT2*cos(2*M_PI/12)*(1<<23)) */
 | 
						|
#define COEFF_0 10273905LL
 | 
						|
 | 
						|
/** lrint(M_SQRT2*cos(0*M_PI/12)*(1<<23)) = lrint(M_SQRT2*(1<<23)) */
 | 
						|
#define COEFF_1 11863283LL
 | 
						|
 | 
						|
/** lrint(M_SQRT2*cos(5*M_PI/12)*(1<<23)) */
 | 
						|
#define COEFF_2  3070444LL
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 6-point IDCT of the pre-mantissas.
 | 
						|
 * All calculations are 24-bit fixed-point.
 | 
						|
 */
 | 
						|
static void idct6(int pre_mant[6])
 | 
						|
{
 | 
						|
    int tmp;
 | 
						|
    int even0, even1, even2, odd0, odd1, odd2;
 | 
						|
 | 
						|
    odd1 = pre_mant[1] - pre_mant[3] - pre_mant[5];
 | 
						|
 | 
						|
    even2 = ( pre_mant[2]                * COEFF_0) >> 23;
 | 
						|
    tmp   = ( pre_mant[4]                * COEFF_1) >> 23;
 | 
						|
    odd0  = ((pre_mant[1] + pre_mant[5]) * COEFF_2) >> 23;
 | 
						|
 | 
						|
    even0 = pre_mant[0] + (tmp >> 1);
 | 
						|
    even1 = pre_mant[0] - tmp;
 | 
						|
 | 
						|
    tmp = even0;
 | 
						|
    even0 = tmp + even2;
 | 
						|
    even2 = tmp - even2;
 | 
						|
 | 
						|
    tmp = odd0;
 | 
						|
    odd0 = tmp + pre_mant[1] + pre_mant[3];
 | 
						|
    odd2 = tmp + pre_mant[5] - pre_mant[3];
 | 
						|
 | 
						|
    pre_mant[0] = even0 + odd0;
 | 
						|
    pre_mant[1] = even1 + odd1;
 | 
						|
    pre_mant[2] = even2 + odd2;
 | 
						|
    pre_mant[3] = even2 - odd2;
 | 
						|
    pre_mant[4] = even1 - odd1;
 | 
						|
    pre_mant[5] = even0 - odd0;
 | 
						|
}
 | 
						|
 | 
						|
void ff_eac3_decode_transform_coeffs_aht_ch(AC3DecodeContext *s, int ch)
 | 
						|
{
 | 
						|
    int bin, blk, gs;
 | 
						|
    int end_bap, gaq_mode;
 | 
						|
    GetBitContext *gbc = &s->gbc;
 | 
						|
    int gaq_gain[AC3_MAX_COEFS];
 | 
						|
 | 
						|
    gaq_mode = get_bits(gbc, 2);
 | 
						|
    end_bap = (gaq_mode < 2) ? 12 : 17;
 | 
						|
 | 
						|
    /* if GAQ gain is used, decode gain codes for bins with hebap between
 | 
						|
       8 and end_bap */
 | 
						|
    gs = 0;
 | 
						|
    if (gaq_mode == EAC3_GAQ_12 || gaq_mode == EAC3_GAQ_14) {
 | 
						|
        /* read 1-bit GAQ gain codes */
 | 
						|
        for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
 | 
						|
            if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < end_bap)
 | 
						|
                gaq_gain[gs++] = get_bits1(gbc) << (gaq_mode-1);
 | 
						|
        }
 | 
						|
    } else if (gaq_mode == EAC3_GAQ_124) {
 | 
						|
        /* read 1.67-bit GAQ gain codes (3 codes in 5 bits) */
 | 
						|
        int gc = 2;
 | 
						|
        for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
 | 
						|
            if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < 17) {
 | 
						|
                if (gc++ == 2) {
 | 
						|
                    int group_code = get_bits(gbc, 5);
 | 
						|
                    if (group_code > 26) {
 | 
						|
                        av_log(s->avctx, AV_LOG_WARNING, "GAQ gain group code out-of-range\n");
 | 
						|
                        group_code = 26;
 | 
						|
                    }
 | 
						|
                    gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][0];
 | 
						|
                    gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][1];
 | 
						|
                    gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][2];
 | 
						|
                    gc = 0;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    gs=0;
 | 
						|
    for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
 | 
						|
        int hebap = s->bap[ch][bin];
 | 
						|
        int bits = ff_eac3_bits_vs_hebap[hebap];
 | 
						|
        if (!hebap) {
 | 
						|
            /* zero-mantissa dithering */
 | 
						|
            for (blk = 0; blk < 6; blk++) {
 | 
						|
                s->pre_mantissa[ch][bin][blk] = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
 | 
						|
            }
 | 
						|
        } else if (hebap < 8) {
 | 
						|
            /* Vector Quantization */
 | 
						|
            int v = get_bits(gbc, bits);
 | 
						|
            for (blk = 0; blk < 6; blk++) {
 | 
						|
                s->pre_mantissa[ch][bin][blk] = ff_eac3_mantissa_vq[hebap][v][blk] << 8;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            /* Gain Adaptive Quantization */
 | 
						|
            int gbits, log_gain;
 | 
						|
            if (gaq_mode != EAC3_GAQ_NO && hebap < end_bap) {
 | 
						|
                log_gain = gaq_gain[gs++];
 | 
						|
            } else {
 | 
						|
                log_gain = 0;
 | 
						|
            }
 | 
						|
            gbits = bits - log_gain;
 | 
						|
 | 
						|
            for (blk = 0; blk < 6; blk++) {
 | 
						|
                int mant = get_sbits(gbc, gbits);
 | 
						|
                if (log_gain && mant == -(1 << (gbits-1))) {
 | 
						|
                    /* large mantissa */
 | 
						|
                    int b;
 | 
						|
                    int mbits = bits - (2 - log_gain);
 | 
						|
                    mant = get_sbits(gbc, mbits);
 | 
						|
                    mant <<= (23 - (mbits - 1));
 | 
						|
                    /* remap mantissa value to correct for asymmetric quantization */
 | 
						|
                    if (mant >= 0)
 | 
						|
                        b = 1 << (23 - log_gain);
 | 
						|
                    else
 | 
						|
                        b = ff_eac3_gaq_remap_2_4_b[hebap-8][log_gain-1] << 8;
 | 
						|
                    mant += ((ff_eac3_gaq_remap_2_4_a[hebap-8][log_gain-1] * (int64_t)mant) >> 15) + b;
 | 
						|
                } else {
 | 
						|
                    /* small mantissa, no GAQ, or Gk=1 */
 | 
						|
                    mant <<= 24 - bits;
 | 
						|
                    if (!log_gain) {
 | 
						|
                        /* remap mantissa value for no GAQ or Gk=1 */
 | 
						|
                        mant += (ff_eac3_gaq_remap_1[hebap-8] * (int64_t)mant) >> 15;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                s->pre_mantissa[ch][bin][blk] = mant;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        idct6(s->pre_mantissa[ch][bin]);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int ff_eac3_parse_header(AC3DecodeContext *s)
 | 
						|
{
 | 
						|
    int i, blk, ch;
 | 
						|
    int ac3_exponent_strategy, parse_aht_info, parse_spx_atten_data;
 | 
						|
    int parse_transient_proc_info;
 | 
						|
    int num_cpl_blocks;
 | 
						|
    GetBitContext *gbc = &s->gbc;
 | 
						|
 | 
						|
    /* An E-AC-3 stream can have multiple independent streams which the
 | 
						|
       application can select from. each independent stream can also contain
 | 
						|
       dependent streams which are used to add or replace channels. */
 | 
						|
    if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
 | 
						|
        avpriv_request_sample(s->avctx, "Dependent substream decoding");
 | 
						|
        return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
 | 
						|
    } else if (s->frame_type == EAC3_FRAME_TYPE_RESERVED) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "Reserved frame type\n");
 | 
						|
        return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
 | 
						|
    }
 | 
						|
 | 
						|
    /* The substream id indicates which substream this frame belongs to. each
 | 
						|
       independent stream has its own substream id, and the dependent streams
 | 
						|
       associated to an independent stream have matching substream id's. */
 | 
						|
    if (s->substreamid) {
 | 
						|
        /* only decode substream with id=0. skip any additional substreams. */
 | 
						|
        avpriv_request_sample(s->avctx, "Additional substreams");
 | 
						|
        return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->bit_alloc_params.sr_code == EAC3_SR_CODE_REDUCED) {
 | 
						|
        /* The E-AC-3 specification does not tell how to handle reduced sample
 | 
						|
           rates in bit allocation.  The best assumption would be that it is
 | 
						|
           handled like AC-3 DolbyNet, but we cannot be sure until we have a
 | 
						|
           sample which utilizes this feature. */
 | 
						|
        avpriv_request_sample(s->avctx, "Reduced sampling rate");
 | 
						|
        return AVERROR_PATCHWELCOME;
 | 
						|
    }
 | 
						|
    skip_bits(gbc, 5); // skip bitstream id
 | 
						|
 | 
						|
    /* volume control params */
 | 
						|
    for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
 | 
						|
        skip_bits(gbc, 5); // skip dialog normalization
 | 
						|
        if (get_bits1(gbc)) {
 | 
						|
            skip_bits(gbc, 8); // skip compression gain word
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* dependent stream channel map */
 | 
						|
    if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
 | 
						|
        if (get_bits1(gbc)) {
 | 
						|
            skip_bits(gbc, 16); // skip custom channel map
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* mixing metadata */
 | 
						|
    if (get_bits1(gbc)) {
 | 
						|
        /* center and surround mix levels */
 | 
						|
        if (s->channel_mode > AC3_CHMODE_STEREO) {
 | 
						|
            s->preferred_downmix = get_bits(gbc, 2);
 | 
						|
            if (s->channel_mode & 1) {
 | 
						|
                /* if three front channels exist */
 | 
						|
                s->center_mix_level_ltrt = get_bits(gbc, 3);
 | 
						|
                s->center_mix_level      = get_bits(gbc, 3);
 | 
						|
            }
 | 
						|
            if (s->channel_mode & 4) {
 | 
						|
                /* if a surround channel exists */
 | 
						|
                s->surround_mix_level_ltrt = av_clip(get_bits(gbc, 3), 3, 7);
 | 
						|
                s->surround_mix_level      = av_clip(get_bits(gbc, 3), 3, 7);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* lfe mix level */
 | 
						|
        if (s->lfe_on && (s->lfe_mix_level_exists = get_bits1(gbc))) {
 | 
						|
            s->lfe_mix_level = get_bits(gbc, 5);
 | 
						|
        }
 | 
						|
 | 
						|
        /* info for mixing with other streams and substreams */
 | 
						|
        if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT) {
 | 
						|
            for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
 | 
						|
                // TODO: apply program scale factor
 | 
						|
                if (get_bits1(gbc)) {
 | 
						|
                    skip_bits(gbc, 6);  // skip program scale factor
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (get_bits1(gbc)) {
 | 
						|
                skip_bits(gbc, 6);  // skip external program scale factor
 | 
						|
            }
 | 
						|
            /* skip mixing parameter data */
 | 
						|
            switch(get_bits(gbc, 2)) {
 | 
						|
                case 1: skip_bits(gbc, 5);  break;
 | 
						|
                case 2: skip_bits(gbc, 12); break;
 | 
						|
                case 3: {
 | 
						|
                    int mix_data_size = (get_bits(gbc, 5) + 2) << 3;
 | 
						|
                    skip_bits_long(gbc, mix_data_size);
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            /* skip pan information for mono or dual mono source */
 | 
						|
            if (s->channel_mode < AC3_CHMODE_STEREO) {
 | 
						|
                for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
 | 
						|
                    if (get_bits1(gbc)) {
 | 
						|
                        /* note: this is not in the ATSC A/52B specification
 | 
						|
                           reference: ETSI TS 102 366 V1.1.1
 | 
						|
                                      section: E.1.3.1.25 */
 | 
						|
                        skip_bits(gbc, 8);  // skip pan mean direction index
 | 
						|
                        skip_bits(gbc, 6);  // skip reserved paninfo bits
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            /* skip mixing configuration information */
 | 
						|
            if (get_bits1(gbc)) {
 | 
						|
                for (blk = 0; blk < s->num_blocks; blk++) {
 | 
						|
                    if (s->num_blocks == 1 || get_bits1(gbc)) {
 | 
						|
                        skip_bits(gbc, 5);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* informational metadata */
 | 
						|
    if (get_bits1(gbc)) {
 | 
						|
        s->bitstream_mode = get_bits(gbc, 3);
 | 
						|
        skip_bits(gbc, 2); // skip copyright bit and original bitstream bit
 | 
						|
        if (s->channel_mode == AC3_CHMODE_STEREO) {
 | 
						|
            s->dolby_surround_mode  = get_bits(gbc, 2);
 | 
						|
            s->dolby_headphone_mode = get_bits(gbc, 2);
 | 
						|
        }
 | 
						|
        if (s->channel_mode >= AC3_CHMODE_2F2R) {
 | 
						|
            s->dolby_surround_ex_mode = get_bits(gbc, 2);
 | 
						|
        }
 | 
						|
        for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
 | 
						|
            if (get_bits1(gbc)) {
 | 
						|
                skip_bits(gbc, 8); // skip mix level, room type, and A/D converter type
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (s->bit_alloc_params.sr_code != EAC3_SR_CODE_REDUCED) {
 | 
						|
            skip_bits1(gbc); // skip source sample rate code
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* converter synchronization flag
 | 
						|
       If frames are less than six blocks, this bit should be turned on
 | 
						|
       once every 6 blocks to indicate the start of a frame set.
 | 
						|
       reference: RFC 4598, Section 2.1.3  Frame Sets */
 | 
						|
    if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && s->num_blocks != 6) {
 | 
						|
        skip_bits1(gbc); // skip converter synchronization flag
 | 
						|
    }
 | 
						|
 | 
						|
    /* original frame size code if this stream was converted from AC-3 */
 | 
						|
    if (s->frame_type == EAC3_FRAME_TYPE_AC3_CONVERT &&
 | 
						|
            (s->num_blocks == 6 || get_bits1(gbc))) {
 | 
						|
        skip_bits(gbc, 6); // skip frame size code
 | 
						|
    }
 | 
						|
 | 
						|
    /* additional bitstream info */
 | 
						|
    if (get_bits1(gbc)) {
 | 
						|
        int addbsil = get_bits(gbc, 6);
 | 
						|
        for (i = 0; i < addbsil + 1; i++) {
 | 
						|
            skip_bits(gbc, 8); // skip additional bit stream info
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* audio frame syntax flags, strategy data, and per-frame data */
 | 
						|
 | 
						|
    if (s->num_blocks == 6) {
 | 
						|
        ac3_exponent_strategy = get_bits1(gbc);
 | 
						|
        parse_aht_info        = get_bits1(gbc);
 | 
						|
    } else {
 | 
						|
        /* less than 6 blocks, so use AC-3-style exponent strategy syntax, and
 | 
						|
           do not use AHT */
 | 
						|
        ac3_exponent_strategy = 1;
 | 
						|
        parse_aht_info = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    s->snr_offset_strategy    = get_bits(gbc, 2);
 | 
						|
    parse_transient_proc_info = get_bits1(gbc);
 | 
						|
 | 
						|
    s->block_switch_syntax = get_bits1(gbc);
 | 
						|
    if (!s->block_switch_syntax)
 | 
						|
        memset(s->block_switch, 0, sizeof(s->block_switch));
 | 
						|
 | 
						|
    s->dither_flag_syntax = get_bits1(gbc);
 | 
						|
    if (!s->dither_flag_syntax) {
 | 
						|
        for (ch = 1; ch <= s->fbw_channels; ch++)
 | 
						|
            s->dither_flag[ch] = 1;
 | 
						|
    }
 | 
						|
    s->dither_flag[CPL_CH] = s->dither_flag[s->lfe_ch] = 0;
 | 
						|
 | 
						|
    s->bit_allocation_syntax = get_bits1(gbc);
 | 
						|
    if (!s->bit_allocation_syntax) {
 | 
						|
        /* set default bit allocation parameters */
 | 
						|
        s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[2];
 | 
						|
        s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[1];
 | 
						|
        s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab [1];
 | 
						|
        s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[2];
 | 
						|
        s->bit_alloc_params.floor      = ff_ac3_floor_tab     [7];
 | 
						|
    }
 | 
						|
 | 
						|
    s->fast_gain_syntax  = get_bits1(gbc);
 | 
						|
    s->dba_syntax        = get_bits1(gbc);
 | 
						|
    s->skip_syntax       = get_bits1(gbc);
 | 
						|
    parse_spx_atten_data = get_bits1(gbc);
 | 
						|
 | 
						|
    /* coupling strategy occurrence and coupling use per block */
 | 
						|
    num_cpl_blocks = 0;
 | 
						|
    if (s->channel_mode > 1) {
 | 
						|
        for (blk = 0; blk < s->num_blocks; blk++) {
 | 
						|
            s->cpl_strategy_exists[blk] = (!blk || get_bits1(gbc));
 | 
						|
            if (s->cpl_strategy_exists[blk]) {
 | 
						|
                s->cpl_in_use[blk] = get_bits1(gbc);
 | 
						|
            } else {
 | 
						|
                s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
 | 
						|
            }
 | 
						|
            num_cpl_blocks += s->cpl_in_use[blk];
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        memset(s->cpl_in_use, 0, sizeof(s->cpl_in_use));
 | 
						|
    }
 | 
						|
 | 
						|
    /* exponent strategy data */
 | 
						|
    if (ac3_exponent_strategy) {
 | 
						|
        /* AC-3-style exponent strategy syntax */
 | 
						|
        for (blk = 0; blk < s->num_blocks; blk++) {
 | 
						|
            for (ch = !s->cpl_in_use[blk]; ch <= s->fbw_channels; ch++) {
 | 
						|
                s->exp_strategy[blk][ch] = get_bits(gbc, 2);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* LUT-based exponent strategy syntax */
 | 
						|
        for (ch = !((s->channel_mode > 1) && num_cpl_blocks); ch <= s->fbw_channels; ch++) {
 | 
						|
            int frmchexpstr = get_bits(gbc, 5);
 | 
						|
            for (blk = 0; blk < 6; blk++) {
 | 
						|
                s->exp_strategy[blk][ch] = ff_eac3_frm_expstr[frmchexpstr][blk];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /* LFE exponent strategy */
 | 
						|
    if (s->lfe_on) {
 | 
						|
        for (blk = 0; blk < s->num_blocks; blk++) {
 | 
						|
            s->exp_strategy[blk][s->lfe_ch] = get_bits1(gbc);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /* original exponent strategies if this stream was converted from AC-3 */
 | 
						|
    if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT &&
 | 
						|
            (s->num_blocks == 6 || get_bits1(gbc))) {
 | 
						|
        skip_bits(gbc, 5 * s->fbw_channels); // skip converter channel exponent strategy
 | 
						|
    }
 | 
						|
 | 
						|
    /* determine which channels use AHT */
 | 
						|
    if (parse_aht_info) {
 | 
						|
        /* For AHT to be used, all non-zero blocks must reuse exponents from
 | 
						|
           the first block.  Furthermore, for AHT to be used in the coupling
 | 
						|
           channel, all blocks must use coupling and use the same coupling
 | 
						|
           strategy. */
 | 
						|
        s->channel_uses_aht[CPL_CH]=0;
 | 
						|
        for (ch = (num_cpl_blocks != 6); ch <= s->channels; ch++) {
 | 
						|
            int use_aht = 1;
 | 
						|
            for (blk = 1; blk < 6; blk++) {
 | 
						|
                if ((s->exp_strategy[blk][ch] != EXP_REUSE) ||
 | 
						|
                        (!ch && s->cpl_strategy_exists[blk])) {
 | 
						|
                    use_aht = 0;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            s->channel_uses_aht[ch] = use_aht && get_bits1(gbc);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
 | 
						|
    }
 | 
						|
 | 
						|
    /* per-frame SNR offset */
 | 
						|
    if (!s->snr_offset_strategy) {
 | 
						|
        int csnroffst = (get_bits(gbc, 6) - 15) << 4;
 | 
						|
        int snroffst = (csnroffst + get_bits(gbc, 4)) << 2;
 | 
						|
        for (ch = 0; ch <= s->channels; ch++)
 | 
						|
            s->snr_offset[ch] = snroffst;
 | 
						|
    }
 | 
						|
 | 
						|
    /* transient pre-noise processing data */
 | 
						|
    if (parse_transient_proc_info) {
 | 
						|
        for (ch = 1; ch <= s->fbw_channels; ch++) {
 | 
						|
            if (get_bits1(gbc)) { // channel in transient processing
 | 
						|
                skip_bits(gbc, 10); // skip transient processing location
 | 
						|
                skip_bits(gbc, 8);  // skip transient processing length
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* spectral extension attenuation data */
 | 
						|
    for (ch = 1; ch <= s->fbw_channels; ch++) {
 | 
						|
        if (parse_spx_atten_data && get_bits1(gbc)) {
 | 
						|
            s->spx_atten_code[ch] = get_bits(gbc, 5);
 | 
						|
        } else {
 | 
						|
            s->spx_atten_code[ch] = -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* block start information */
 | 
						|
    if (s->num_blocks > 1 && get_bits1(gbc)) {
 | 
						|
        /* reference: Section E2.3.2.27
 | 
						|
           nblkstrtbits = (numblks - 1) * (4 + ceiling(log2(words_per_frame)))
 | 
						|
           The spec does not say what this data is or what it's used for.
 | 
						|
           It is likely the offset of each block within the frame. */
 | 
						|
        int block_start_bits = (s->num_blocks-1) * (4 + av_log2(s->frame_size-2));
 | 
						|
        skip_bits_long(gbc, block_start_bits);
 | 
						|
        avpriv_request_sample(s->avctx, "Block start info");
 | 
						|
    }
 | 
						|
 | 
						|
    /* syntax state initialization */
 | 
						|
    for (ch = 1; ch <= s->fbw_channels; ch++) {
 | 
						|
        s->first_spx_coords[ch] = 1;
 | 
						|
        s->first_cpl_coords[ch] = 1;
 | 
						|
    }
 | 
						|
    s->first_cpl_leak = 1;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |