Justin Ruggles fde82ca7e4 Move autocorrelation function from flacenc.c to lpc.c. Also rename the
corresponding dsputil functions and remove their dependency on the FLAC
encoder.
Fixes Issue1486.

Originally committed as revision 20266 to svn://svn.ffmpeg.org/ffmpeg/trunk
2009-10-17 21:00:39 +00:00

237 lines
6.7 KiB
C

/**
* LPC utility code
* Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/lls.h"
#include "dsputil.h"
#define LPC_USE_DOUBLE
#include "lpc.h"
/**
* Apply Welch window function to audio block
*/
static void apply_welch_window(const int32_t *data, int len, double *w_data)
{
int i, n2;
double w;
double c;
assert(!(len&1)); //the optimization in r11881 does not support odd len
//if someone wants odd len extend the change in r11881
n2 = (len >> 1);
c = 2.0 / (len - 1.0);
w_data+=n2;
data+=n2;
for(i=0; i<n2; i++) {
w = c - n2 + i;
w = 1.0 - (w * w);
w_data[-i-1] = data[-i-1] * w;
w_data[+i ] = data[+i ] * w;
}
}
/**
* Calculates autocorrelation data from audio samples
* A Welch window function is applied before calculation.
*/
void ff_lpc_compute_autocorr(const int32_t *data, int len, int lag,
double *autoc)
{
int i, j;
double tmp[len + lag + 1];
double *data1= tmp + lag;
apply_welch_window(data, len, data1);
for(j=0; j<lag; j++)
data1[j-lag]= 0.0;
data1[len] = 0.0;
for(j=0; j<lag; j+=2){
double sum0 = 1.0, sum1 = 1.0;
for(i=j; i<len; i++){
sum0 += data1[i] * data1[i-j];
sum1 += data1[i] * data1[i-j-1];
}
autoc[j ] = sum0;
autoc[j+1] = sum1;
}
if(j==lag){
double sum = 1.0;
for(i=j-1; i<len; i+=2){
sum += data1[i ] * data1[i-j ]
+ data1[i+1] * data1[i-j+1];
}
autoc[j] = sum;
}
}
/**
* Quantize LPC coefficients
*/
static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
{
int i;
double cmax, error;
int32_t qmax;
int sh;
/* define maximum levels */
qmax = (1 << (precision - 1)) - 1;
/* find maximum coefficient value */
cmax = 0.0;
for(i=0; i<order; i++) {
cmax= FFMAX(cmax, fabs(lpc_in[i]));
}
/* if maximum value quantizes to zero, return all zeros */
if(cmax * (1 << max_shift) < 1.0) {
*shift = zero_shift;
memset(lpc_out, 0, sizeof(int32_t) * order);
return;
}
/* calculate level shift which scales max coeff to available bits */
sh = max_shift;
while((cmax * (1 << sh) > qmax) && (sh > 0)) {
sh--;
}
/* since negative shift values are unsupported in decoder, scale down
coefficients instead */
if(sh == 0 && cmax > qmax) {
double scale = ((double)qmax) / cmax;
for(i=0; i<order; i++) {
lpc_in[i] *= scale;
}
}
/* output quantized coefficients and level shift */
error=0;
for(i=0; i<order; i++) {
error -= lpc_in[i] * (1 << sh);
lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
error -= lpc_out[i];
}
*shift = sh;
}
static int estimate_best_order(double *ref, int min_order, int max_order)
{
int i, est;
est = min_order;
for(i=max_order-1; i>=min_order-1; i--) {
if(ref[i] > 0.10) {
est = i+1;
break;
}
}
return est;
}
/**
* Calculate LPC coefficients for multiple orders
*
* @param use_lpc LPC method for determining coefficients
* 0 = LPC with fixed pre-defined coeffs
* 1 = LPC with coeffs determined by Levinson-Durbin recursion
* 2+ = LPC with coeffs determined by Cholesky factorization using (use_lpc-1) passes.
*/
int ff_lpc_calc_coefs(DSPContext *s,
const int32_t *samples, int blocksize, int min_order,
int max_order, int precision,
int32_t coefs[][MAX_LPC_ORDER], int *shift, int use_lpc,
int omethod, int max_shift, int zero_shift)
{
double autoc[MAX_LPC_ORDER+1];
double ref[MAX_LPC_ORDER];
double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
int i, j, pass;
int opt_order;
assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER && use_lpc > 0);
if(use_lpc == 1){
s->lpc_compute_autocorr(samples, blocksize, max_order, autoc);
compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
for(i=0; i<max_order; i++)
ref[i] = fabs(lpc[i][i]);
}else{
LLSModel m[2];
double var[MAX_LPC_ORDER+1], av_uninit(weight);
for(pass=0; pass<use_lpc-1; pass++){
av_init_lls(&m[pass&1], max_order);
weight=0;
for(i=max_order; i<blocksize; i++){
for(j=0; j<=max_order; j++)
var[j]= samples[i-j];
if(pass){
double eval, inv, rinv;
eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
eval= (512>>pass) + fabs(eval - var[0]);
inv = 1/eval;
rinv = sqrt(inv);
for(j=0; j<=max_order; j++)
var[j] *= rinv;
weight += inv;
}else
weight++;
av_update_lls(&m[pass&1], var, 1.0);
}
av_solve_lls(&m[pass&1], 0.001, 0);
}
for(i=0; i<max_order; i++){
for(j=0; j<max_order; j++)
lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
}
for(i=max_order-1; i>0; i--)
ref[i] = ref[i-1] - ref[i];
}
opt_order = max_order;
if(omethod == ORDER_METHOD_EST) {
opt_order = estimate_best_order(ref, min_order, max_order);
i = opt_order-1;
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
} else {
for(i=min_order-1; i<max_order; i++) {
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
}
}
return opt_order;
}