 1ec94b0f06
			
		
	
	1ec94b0f06
	
	
	
		
			
			Coccinelle profile used:
  @@
  expression r, ctx, f, loglevel, str, flags;
  @@
  -if ((r = ff_get_buffer(ctx, f, flags)) < 0) {
  -    av_log(ctx, loglevel, str);
  -    return r;
  -}
  +if ((r = ff_get_buffer(ctx, f, flags)) < 0)
  +    return r;
  @@
  expression r, ctx, f, loglevel, str;
  @@
  -if ((r = ff_reget_buffer(ctx, f)) < 0) {
  -    av_log(ctx, loglevel, str);
  -    return r;
  -}
  +if ((r = ff_reget_buffer(ctx, f)) < 0)
  +    return r;
  @@
  expression r, ctx, f, loglevel, str, flags;
  @@
  -if ((r = ff_thread_get_buffer(ctx, f, flags)) < 0) {
  -    av_log(ctx, loglevel, str);
  -    return r;
  -}
  +if ((r = ff_thread_get_buffer(ctx, f, flags)) < 0)
  +    return r;
...along with some manual patches for the remaining ones.
		
	
		
			
				
	
	
		
			575 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			575 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SIPR / ACELP.NET decoder
 | |
|  *
 | |
|  * Copyright (c) 2008 Vladimir Voroshilov
 | |
|  * Copyright (c) 2009 Vitor Sessak
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stdint.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "libavutil/channel_layout.h"
 | |
| #include "libavutil/float_dsp.h"
 | |
| #include "libavutil/mathematics.h"
 | |
| #include "avcodec.h"
 | |
| #define BITSTREAM_READER_LE
 | |
| #include "get_bits.h"
 | |
| #include "internal.h"
 | |
| 
 | |
| #include "lsp.h"
 | |
| #include "acelp_vectors.h"
 | |
| #include "acelp_pitch_delay.h"
 | |
| #include "acelp_filters.h"
 | |
| #include "celp_filters.h"
 | |
| 
 | |
| #define MAX_SUBFRAME_COUNT   5
 | |
| 
 | |
| #include "sipr.h"
 | |
| #include "siprdata.h"
 | |
| 
 | |
| typedef struct {
 | |
|     const char *mode_name;
 | |
|     uint16_t bits_per_frame;
 | |
|     uint8_t subframe_count;
 | |
|     uint8_t frames_per_packet;
 | |
|     float pitch_sharp_factor;
 | |
| 
 | |
|     /* bitstream parameters */
 | |
|     uint8_t number_of_fc_indexes;
 | |
|     uint8_t ma_predictor_bits;  ///< size in bits of the switched MA predictor
 | |
| 
 | |
|     /** size in bits of the i-th stage vector of quantizer */
 | |
|     uint8_t vq_indexes_bits[5];
 | |
| 
 | |
|     /** size in bits of the adaptive-codebook index for every subframe */
 | |
|     uint8_t pitch_delay_bits[5];
 | |
| 
 | |
|     uint8_t gp_index_bits;
 | |
|     uint8_t fc_index_bits[10]; ///< size in bits of the fixed codebook indexes
 | |
|     uint8_t gc_index_bits;     ///< size in bits of the gain  codebook indexes
 | |
| } SiprModeParam;
 | |
| 
 | |
| static const SiprModeParam modes[MODE_COUNT] = {
 | |
|     [MODE_16k] = {
 | |
|         .mode_name          = "16k",
 | |
|         .bits_per_frame     = 160,
 | |
|         .subframe_count     = SUBFRAME_COUNT_16k,
 | |
|         .frames_per_packet  = 1,
 | |
|         .pitch_sharp_factor = 0.00,
 | |
| 
 | |
|         .number_of_fc_indexes = 10,
 | |
|         .ma_predictor_bits    = 1,
 | |
|         .vq_indexes_bits      = {7, 8, 7, 7, 7},
 | |
|         .pitch_delay_bits     = {9, 6},
 | |
|         .gp_index_bits        = 4,
 | |
|         .fc_index_bits        = {4, 5, 4, 5, 4, 5, 4, 5, 4, 5},
 | |
|         .gc_index_bits        = 5
 | |
|     },
 | |
| 
 | |
|     [MODE_8k5] = {
 | |
|         .mode_name          = "8k5",
 | |
|         .bits_per_frame     = 152,
 | |
|         .subframe_count     = 3,
 | |
|         .frames_per_packet  = 1,
 | |
|         .pitch_sharp_factor = 0.8,
 | |
| 
 | |
|         .number_of_fc_indexes = 3,
 | |
|         .ma_predictor_bits    = 0,
 | |
|         .vq_indexes_bits      = {6, 7, 7, 7, 5},
 | |
|         .pitch_delay_bits     = {8, 5, 5},
 | |
|         .gp_index_bits        = 0,
 | |
|         .fc_index_bits        = {9, 9, 9},
 | |
|         .gc_index_bits        = 7
 | |
|     },
 | |
| 
 | |
|     [MODE_6k5] = {
 | |
|         .mode_name          = "6k5",
 | |
|         .bits_per_frame     = 232,
 | |
|         .subframe_count     = 3,
 | |
|         .frames_per_packet  = 2,
 | |
|         .pitch_sharp_factor = 0.8,
 | |
| 
 | |
|         .number_of_fc_indexes = 3,
 | |
|         .ma_predictor_bits    = 0,
 | |
|         .vq_indexes_bits      = {6, 7, 7, 7, 5},
 | |
|         .pitch_delay_bits     = {8, 5, 5},
 | |
|         .gp_index_bits        = 0,
 | |
|         .fc_index_bits        = {5, 5, 5},
 | |
|         .gc_index_bits        = 7
 | |
|     },
 | |
| 
 | |
|     [MODE_5k0] = {
 | |
|         .mode_name          = "5k0",
 | |
|         .bits_per_frame     = 296,
 | |
|         .subframe_count     = 5,
 | |
|         .frames_per_packet  = 2,
 | |
|         .pitch_sharp_factor = 0.85,
 | |
| 
 | |
|         .number_of_fc_indexes = 1,
 | |
|         .ma_predictor_bits    = 0,
 | |
|         .vq_indexes_bits      = {6, 7, 7, 7, 5},
 | |
|         .pitch_delay_bits     = {8, 5, 8, 5, 5},
 | |
|         .gp_index_bits        = 0,
 | |
|         .fc_index_bits        = {10},
 | |
|         .gc_index_bits        = 7
 | |
|     }
 | |
| };
 | |
| 
 | |
| const float ff_pow_0_5[] = {
 | |
|     1.0/(1 <<  1), 1.0/(1 <<  2), 1.0/(1 <<  3), 1.0/(1 <<  4),
 | |
|     1.0/(1 <<  5), 1.0/(1 <<  6), 1.0/(1 <<  7), 1.0/(1 <<  8),
 | |
|     1.0/(1 <<  9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12),
 | |
|     1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16)
 | |
| };
 | |
| 
 | |
| static void dequant(float *out, const int *idx, const float *cbs[])
 | |
| {
 | |
|     int i;
 | |
|     int stride  = 2;
 | |
|     int num_vec = 5;
 | |
| 
 | |
|     for (i = 0; i < num_vec; i++)
 | |
|         memcpy(out + stride*i, cbs[i] + stride*idx[i], stride*sizeof(float));
 | |
| 
 | |
| }
 | |
| 
 | |
| static void lsf_decode_fp(float *lsfnew, float *lsf_history,
 | |
|                           const SiprParameters *parm)
 | |
| {
 | |
|     int i;
 | |
|     float lsf_tmp[LP_FILTER_ORDER];
 | |
| 
 | |
|     dequant(lsf_tmp, parm->vq_indexes, lsf_codebooks);
 | |
| 
 | |
|     for (i = 0; i < LP_FILTER_ORDER; i++)
 | |
|         lsfnew[i] = lsf_history[i] * 0.33 + lsf_tmp[i] + mean_lsf[i];
 | |
| 
 | |
|     ff_sort_nearly_sorted_floats(lsfnew, LP_FILTER_ORDER - 1);
 | |
| 
 | |
|     /* Note that a minimum distance is not enforced between the last value and
 | |
|        the previous one, contrary to what is done in ff_acelp_reorder_lsf() */
 | |
|     ff_set_min_dist_lsf(lsfnew, LSFQ_DIFF_MIN, LP_FILTER_ORDER - 1);
 | |
|     lsfnew[9] = FFMIN(lsfnew[LP_FILTER_ORDER - 1], 1.3 * M_PI);
 | |
| 
 | |
|     memcpy(lsf_history, lsf_tmp, LP_FILTER_ORDER * sizeof(*lsf_history));
 | |
| 
 | |
|     for (i = 0; i < LP_FILTER_ORDER - 1; i++)
 | |
|         lsfnew[i] = cos(lsfnew[i]);
 | |
|     lsfnew[LP_FILTER_ORDER - 1] *= 6.153848 / M_PI;
 | |
| }
 | |
| 
 | |
| /** Apply pitch lag to the fixed vector (AMR section 6.1.2). */
 | |
| static void pitch_sharpening(int pitch_lag_int, float beta,
 | |
|                              float *fixed_vector)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = pitch_lag_int; i < SUBFR_SIZE; i++)
 | |
|         fixed_vector[i] += beta * fixed_vector[i - pitch_lag_int];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Extract decoding parameters from the input bitstream.
 | |
|  * @param parms          parameters structure
 | |
|  * @param pgb            pointer to initialized GetBitContext structure
 | |
|  */
 | |
| static void decode_parameters(SiprParameters* parms, GetBitContext *pgb,
 | |
|                               const SiprModeParam *p)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     if (p->ma_predictor_bits)
 | |
|         parms->ma_pred_switch       = get_bits(pgb, p->ma_predictor_bits);
 | |
| 
 | |
|     for (i = 0; i < 5; i++)
 | |
|         parms->vq_indexes[i]        = get_bits(pgb, p->vq_indexes_bits[i]);
 | |
| 
 | |
|     for (i = 0; i < p->subframe_count; i++) {
 | |
|         parms->pitch_delay[i]       = get_bits(pgb, p->pitch_delay_bits[i]);
 | |
|         if (p->gp_index_bits)
 | |
|             parms->gp_index[i]      = get_bits(pgb, p->gp_index_bits);
 | |
| 
 | |
|         for (j = 0; j < p->number_of_fc_indexes; j++)
 | |
|             parms->fc_indexes[i][j] = get_bits(pgb, p->fc_index_bits[j]);
 | |
| 
 | |
|         parms->gc_index[i]          = get_bits(pgb, p->gc_index_bits);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void sipr_decode_lp(float *lsfnew, const float *lsfold, float *Az,
 | |
|                            int num_subfr)
 | |
| {
 | |
|     double lsfint[LP_FILTER_ORDER];
 | |
|     int i,j;
 | |
|     float t, t0 = 1.0 / num_subfr;
 | |
| 
 | |
|     t = t0 * 0.5;
 | |
|     for (i = 0; i < num_subfr; i++) {
 | |
|         for (j = 0; j < LP_FILTER_ORDER; j++)
 | |
|             lsfint[j] = lsfold[j] * (1 - t) + t * lsfnew[j];
 | |
| 
 | |
|         ff_amrwb_lsp2lpc(lsfint, Az, LP_FILTER_ORDER);
 | |
|         Az += LP_FILTER_ORDER;
 | |
|         t += t0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Evaluate the adaptive impulse response.
 | |
|  */
 | |
| static void eval_ir(const float *Az, int pitch_lag, float *freq,
 | |
|                     float pitch_sharp_factor)
 | |
| {
 | |
|     float tmp1[SUBFR_SIZE+1], tmp2[LP_FILTER_ORDER+1];
 | |
|     int i;
 | |
| 
 | |
|     tmp1[0] = 1.;
 | |
|     for (i = 0; i < LP_FILTER_ORDER; i++) {
 | |
|         tmp1[i+1] = Az[i] * ff_pow_0_55[i];
 | |
|         tmp2[i  ] = Az[i] * ff_pow_0_7 [i];
 | |
|     }
 | |
|     memset(tmp1 + 11, 0, 37 * sizeof(float));
 | |
| 
 | |
|     ff_celp_lp_synthesis_filterf(freq, tmp2, tmp1, SUBFR_SIZE,
 | |
|                                  LP_FILTER_ORDER);
 | |
| 
 | |
|     pitch_sharpening(pitch_lag, pitch_sharp_factor, freq);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Evaluate the convolution of a vector with a sparse vector.
 | |
|  */
 | |
| static void convolute_with_sparse(float *out, const AMRFixed *pulses,
 | |
|                                   const float *shape, int length)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     memset(out, 0, length*sizeof(float));
 | |
|     for (i = 0; i < pulses->n; i++)
 | |
|         for (j = pulses->x[i]; j < length; j++)
 | |
|             out[j] += pulses->y[i] * shape[j - pulses->x[i]];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply postfilter, very similar to AMR one.
 | |
|  */
 | |
| static void postfilter_5k0(SiprContext *ctx, const float *lpc, float *samples)
 | |
| {
 | |
|     float buf[SUBFR_SIZE + LP_FILTER_ORDER];
 | |
|     float *pole_out = buf + LP_FILTER_ORDER;
 | |
|     float lpc_n[LP_FILTER_ORDER];
 | |
|     float lpc_d[LP_FILTER_ORDER];
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < LP_FILTER_ORDER; i++) {
 | |
|         lpc_d[i] = lpc[i] * ff_pow_0_75[i];
 | |
|         lpc_n[i] = lpc[i] * ff_pow_0_5 [i];
 | |
|     };
 | |
| 
 | |
|     memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem,
 | |
|            LP_FILTER_ORDER*sizeof(float));
 | |
| 
 | |
|     ff_celp_lp_synthesis_filterf(pole_out, lpc_d, samples, SUBFR_SIZE,
 | |
|                                  LP_FILTER_ORDER);
 | |
| 
 | |
|     memcpy(ctx->postfilter_mem, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
 | |
|            LP_FILTER_ORDER*sizeof(float));
 | |
| 
 | |
|     ff_tilt_compensation(&ctx->tilt_mem, 0.4, pole_out, SUBFR_SIZE);
 | |
| 
 | |
|     memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem5k0,
 | |
|            LP_FILTER_ORDER*sizeof(*pole_out));
 | |
| 
 | |
|     memcpy(ctx->postfilter_mem5k0, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
 | |
|            LP_FILTER_ORDER*sizeof(*pole_out));
 | |
| 
 | |
|     ff_celp_lp_zero_synthesis_filterf(samples, lpc_n, pole_out, SUBFR_SIZE,
 | |
|                                       LP_FILTER_ORDER);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void decode_fixed_sparse(AMRFixed *fixed_sparse, const int16_t *pulses,
 | |
|                                 SiprMode mode, int low_gain)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     switch (mode) {
 | |
|     case MODE_6k5:
 | |
|         for (i = 0; i < 3; i++) {
 | |
|             fixed_sparse->x[i] = 3 * (pulses[i] & 0xf) + i;
 | |
|             fixed_sparse->y[i] = pulses[i] & 0x10 ? -1 : 1;
 | |
|         }
 | |
|         fixed_sparse->n = 3;
 | |
|         break;
 | |
|     case MODE_8k5:
 | |
|         for (i = 0; i < 3; i++) {
 | |
|             fixed_sparse->x[2*i    ] = 3 * ((pulses[i] >> 4) & 0xf) + i;
 | |
|             fixed_sparse->x[2*i + 1] = 3 * ( pulses[i]       & 0xf) + i;
 | |
| 
 | |
|             fixed_sparse->y[2*i    ] = (pulses[i] & 0x100) ? -1.0: 1.0;
 | |
| 
 | |
|             fixed_sparse->y[2*i + 1] =
 | |
|                 (fixed_sparse->x[2*i + 1] < fixed_sparse->x[2*i]) ?
 | |
|                 -fixed_sparse->y[2*i    ] : fixed_sparse->y[2*i];
 | |
|         }
 | |
| 
 | |
|         fixed_sparse->n = 6;
 | |
|         break;
 | |
|     case MODE_5k0:
 | |
|     default:
 | |
|         if (low_gain) {
 | |
|             int offset = (pulses[0] & 0x200) ? 2 : 0;
 | |
|             int val = pulses[0];
 | |
| 
 | |
|             for (i = 0; i < 3; i++) {
 | |
|                 int index = (val & 0x7) * 6 + 4 - i*2;
 | |
| 
 | |
|                 fixed_sparse->y[i] = (offset + index) & 0x3 ? -1 : 1;
 | |
|                 fixed_sparse->x[i] = index;
 | |
| 
 | |
|                 val >>= 3;
 | |
|             }
 | |
|             fixed_sparse->n = 3;
 | |
|         } else {
 | |
|             int pulse_subset = (pulses[0] >> 8) & 1;
 | |
| 
 | |
|             fixed_sparse->x[0] = ((pulses[0] >> 4) & 15) * 3 + pulse_subset;
 | |
|             fixed_sparse->x[1] = ( pulses[0]       & 15) * 3 + pulse_subset + 1;
 | |
| 
 | |
|             fixed_sparse->y[0] = pulses[0] & 0x200 ? -1 : 1;
 | |
|             fixed_sparse->y[1] = -fixed_sparse->y[0];
 | |
|             fixed_sparse->n = 2;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void decode_frame(SiprContext *ctx, SiprParameters *params,
 | |
|                          float *out_data)
 | |
| {
 | |
|     int i, j;
 | |
|     int subframe_count = modes[ctx->mode].subframe_count;
 | |
|     int frame_size = subframe_count * SUBFR_SIZE;
 | |
|     float Az[LP_FILTER_ORDER * MAX_SUBFRAME_COUNT];
 | |
|     float *excitation;
 | |
|     float ir_buf[SUBFR_SIZE + LP_FILTER_ORDER];
 | |
|     float lsf_new[LP_FILTER_ORDER];
 | |
|     float *impulse_response = ir_buf + LP_FILTER_ORDER;
 | |
|     float *synth = ctx->synth_buf + 16; // 16 instead of LP_FILTER_ORDER for
 | |
|                                         // memory alignment
 | |
|     int t0_first = 0;
 | |
|     AMRFixed fixed_cb;
 | |
| 
 | |
|     memset(ir_buf, 0, LP_FILTER_ORDER * sizeof(float));
 | |
|     lsf_decode_fp(lsf_new, ctx->lsf_history, params);
 | |
| 
 | |
|     sipr_decode_lp(lsf_new, ctx->lsp_history, Az, subframe_count);
 | |
| 
 | |
|     memcpy(ctx->lsp_history, lsf_new, LP_FILTER_ORDER * sizeof(float));
 | |
| 
 | |
|     excitation = ctx->excitation + PITCH_DELAY_MAX + L_INTERPOL;
 | |
| 
 | |
|     for (i = 0; i < subframe_count; i++) {
 | |
|         float *pAz = Az + i*LP_FILTER_ORDER;
 | |
|         float fixed_vector[SUBFR_SIZE];
 | |
|         int T0,T0_frac;
 | |
|         float pitch_gain, gain_code, avg_energy;
 | |
| 
 | |
|         ff_decode_pitch_lag(&T0, &T0_frac, params->pitch_delay[i], t0_first, i,
 | |
|                             ctx->mode == MODE_5k0, 6);
 | |
| 
 | |
|         if (i == 0 || (i == 2 && ctx->mode == MODE_5k0))
 | |
|             t0_first = T0;
 | |
| 
 | |
|         ff_acelp_interpolatef(excitation, excitation - T0 + (T0_frac <= 0),
 | |
|                               ff_b60_sinc, 6,
 | |
|                               2 * ((2 + T0_frac)%3 + 1), LP_FILTER_ORDER,
 | |
|                               SUBFR_SIZE);
 | |
| 
 | |
|         decode_fixed_sparse(&fixed_cb, params->fc_indexes[i], ctx->mode,
 | |
|                             ctx->past_pitch_gain < 0.8);
 | |
| 
 | |
|         eval_ir(pAz, T0, impulse_response, modes[ctx->mode].pitch_sharp_factor);
 | |
| 
 | |
|         convolute_with_sparse(fixed_vector, &fixed_cb, impulse_response,
 | |
|                               SUBFR_SIZE);
 | |
| 
 | |
|         avg_energy = (0.01 + avpriv_scalarproduct_float_c(fixed_vector,
 | |
|                                                           fixed_vector,
 | |
|                                                           SUBFR_SIZE)) /
 | |
|                      SUBFR_SIZE;
 | |
| 
 | |
|         ctx->past_pitch_gain = pitch_gain = gain_cb[params->gc_index[i]][0];
 | |
| 
 | |
|         gain_code = ff_amr_set_fixed_gain(gain_cb[params->gc_index[i]][1],
 | |
|                                           avg_energy, ctx->energy_history,
 | |
|                                           34 - 15.0/(0.05*M_LN10/M_LN2),
 | |
|                                           pred);
 | |
| 
 | |
|         ff_weighted_vector_sumf(excitation, excitation, fixed_vector,
 | |
|                                 pitch_gain, gain_code, SUBFR_SIZE);
 | |
| 
 | |
|         pitch_gain *= 0.5 * pitch_gain;
 | |
|         pitch_gain = FFMIN(pitch_gain, 0.4);
 | |
| 
 | |
|         ctx->gain_mem = 0.7 * ctx->gain_mem + 0.3 * pitch_gain;
 | |
|         ctx->gain_mem = FFMIN(ctx->gain_mem, pitch_gain);
 | |
|         gain_code *= ctx->gain_mem;
 | |
| 
 | |
|         for (j = 0; j < SUBFR_SIZE; j++)
 | |
|             fixed_vector[j] = excitation[j] - gain_code * fixed_vector[j];
 | |
| 
 | |
|         if (ctx->mode == MODE_5k0) {
 | |
|             postfilter_5k0(ctx, pAz, fixed_vector);
 | |
| 
 | |
|             ff_celp_lp_synthesis_filterf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
 | |
|                                          pAz, excitation, SUBFR_SIZE,
 | |
|                                          LP_FILTER_ORDER);
 | |
|         }
 | |
| 
 | |
|         ff_celp_lp_synthesis_filterf(synth + i*SUBFR_SIZE, pAz, fixed_vector,
 | |
|                                      SUBFR_SIZE, LP_FILTER_ORDER);
 | |
| 
 | |
|         excitation += SUBFR_SIZE;
 | |
|     }
 | |
| 
 | |
|     memcpy(synth - LP_FILTER_ORDER, synth + frame_size - LP_FILTER_ORDER,
 | |
|            LP_FILTER_ORDER * sizeof(float));
 | |
| 
 | |
|     if (ctx->mode == MODE_5k0) {
 | |
|         for (i = 0; i < subframe_count; i++) {
 | |
|             float energy = avpriv_scalarproduct_float_c(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
 | |
|                                                         ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
 | |
|                                                         SUBFR_SIZE);
 | |
|             ff_adaptive_gain_control(&synth[i * SUBFR_SIZE],
 | |
|                                      &synth[i * SUBFR_SIZE], energy,
 | |
|                                      SUBFR_SIZE, 0.9, &ctx->postfilter_agc);
 | |
|         }
 | |
| 
 | |
|         memcpy(ctx->postfilter_syn5k0, ctx->postfilter_syn5k0 + frame_size,
 | |
|                LP_FILTER_ORDER*sizeof(float));
 | |
|     }
 | |
|     memmove(ctx->excitation, excitation - PITCH_DELAY_MAX - L_INTERPOL,
 | |
|            (PITCH_DELAY_MAX + L_INTERPOL) * sizeof(float));
 | |
| 
 | |
|     ff_acelp_apply_order_2_transfer_function(out_data, synth,
 | |
|                                              (const float[2]) {-1.99997   , 1.000000000},
 | |
|                                              (const float[2]) {-1.93307352, 0.935891986},
 | |
|                                              0.939805806,
 | |
|                                              ctx->highpass_filt_mem,
 | |
|                                              frame_size);
 | |
| }
 | |
| 
 | |
| static av_cold int sipr_decoder_init(AVCodecContext * avctx)
 | |
| {
 | |
|     SiprContext *ctx = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     switch (avctx->block_align) {
 | |
|     case 20: ctx->mode = MODE_16k; break;
 | |
|     case 19: ctx->mode = MODE_8k5; break;
 | |
|     case 29: ctx->mode = MODE_6k5; break;
 | |
|     case 37: ctx->mode = MODE_5k0; break;
 | |
|     default:
 | |
|         if      (avctx->bit_rate > 12200) ctx->mode = MODE_16k;
 | |
|         else if (avctx->bit_rate > 7500 ) ctx->mode = MODE_8k5;
 | |
|         else if (avctx->bit_rate > 5750 ) ctx->mode = MODE_6k5;
 | |
|         else                              ctx->mode = MODE_5k0;
 | |
|         av_log(avctx, AV_LOG_WARNING,
 | |
|                "Invalid block_align: %d. Mode %s guessed based on bitrate: %d\n",
 | |
|                avctx->block_align, modes[ctx->mode].mode_name, avctx->bit_rate);
 | |
|     }
 | |
| 
 | |
|     av_log(avctx, AV_LOG_DEBUG, "Mode: %s\n", modes[ctx->mode].mode_name);
 | |
| 
 | |
|     if (ctx->mode == MODE_16k) {
 | |
|         ff_sipr_init_16k(ctx);
 | |
|         ctx->decode_frame = ff_sipr_decode_frame_16k;
 | |
|     } else {
 | |
|         ctx->decode_frame = decode_frame;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < LP_FILTER_ORDER; i++)
 | |
|         ctx->lsp_history[i] = cos((i+1) * M_PI / (LP_FILTER_ORDER + 1));
 | |
| 
 | |
|     for (i = 0; i < 4; i++)
 | |
|         ctx->energy_history[i] = -14;
 | |
| 
 | |
|     avctx->channels       = 1;
 | |
|     avctx->channel_layout = AV_CH_LAYOUT_MONO;
 | |
|     avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int sipr_decode_frame(AVCodecContext *avctx, void *data,
 | |
|                              int *got_frame_ptr, AVPacket *avpkt)
 | |
| {
 | |
|     SiprContext *ctx = avctx->priv_data;
 | |
|     AVFrame *frame   = data;
 | |
|     const uint8_t *buf=avpkt->data;
 | |
|     SiprParameters parm;
 | |
|     const SiprModeParam *mode_par = &modes[ctx->mode];
 | |
|     GetBitContext gb;
 | |
|     float *samples;
 | |
|     int subframe_size = ctx->mode == MODE_16k ? L_SUBFR_16k : SUBFR_SIZE;
 | |
|     int i, ret;
 | |
| 
 | |
|     ctx->avctx = avctx;
 | |
|     if (avpkt->size < (mode_par->bits_per_frame >> 3)) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "Error processing packet: packet size (%d) too small\n",
 | |
|                avpkt->size);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* get output buffer */
 | |
|     frame->nb_samples = mode_par->frames_per_packet * subframe_size *
 | |
|                         mode_par->subframe_count;
 | |
|     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
 | |
|         return ret;
 | |
|     samples = (float *)frame->data[0];
 | |
| 
 | |
|     init_get_bits(&gb, buf, mode_par->bits_per_frame);
 | |
| 
 | |
|     for (i = 0; i < mode_par->frames_per_packet; i++) {
 | |
|         decode_parameters(&parm, &gb, mode_par);
 | |
| 
 | |
|         ctx->decode_frame(ctx, &parm, samples);
 | |
| 
 | |
|         samples += subframe_size * mode_par->subframe_count;
 | |
|     }
 | |
| 
 | |
|     *got_frame_ptr = 1;
 | |
| 
 | |
|     return mode_par->bits_per_frame >> 3;
 | |
| }
 | |
| 
 | |
| AVCodec ff_sipr_decoder = {
 | |
|     .name           = "sipr",
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = AV_CODEC_ID_SIPR,
 | |
|     .priv_data_size = sizeof(SiprContext),
 | |
|     .init           = sipr_decoder_init,
 | |
|     .decode         = sipr_decode_frame,
 | |
|     .capabilities   = CODEC_CAP_DR1,
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("RealAudio SIPR / ACELP.NET"),
 | |
| };
 |