114 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			114 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * audio resampling
 | 
						|
 * Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * audio resampling
 | 
						|
 * @author Michael Niedermayer <michaelni@gmx.at>
 | 
						|
 */
 | 
						|
 | 
						|
int RENAME(swri_resample)(ResampleContext *c, DELEM *dst, const DELEM *src, int *consumed, int src_size, int dst_size, int update_ctx){
 | 
						|
    int dst_index, i;
 | 
						|
    int index= c->index;
 | 
						|
    int frac= c->frac;
 | 
						|
    int dst_incr_frac= c->dst_incr % c->src_incr;
 | 
						|
    int dst_incr=      c->dst_incr / c->src_incr;
 | 
						|
    int compensation_distance= c->compensation_distance;
 | 
						|
 | 
						|
    av_assert1(c->filter_shift == FILTER_SHIFT);
 | 
						|
    av_assert1(c->felem_size == sizeof(FELEM));
 | 
						|
 | 
						|
    if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
 | 
						|
        int64_t index2= ((int64_t)index)<<32;
 | 
						|
        int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
 | 
						|
        dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
 | 
						|
 | 
						|
        for(dst_index=0; dst_index < dst_size; dst_index++){
 | 
						|
            dst[dst_index] = src[index2>>32];
 | 
						|
            index2 += incr;
 | 
						|
        }
 | 
						|
        index += dst_index * dst_incr;
 | 
						|
        index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr;
 | 
						|
        frac   = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr;
 | 
						|
    }else{
 | 
						|
        for(dst_index=0; dst_index < dst_size; dst_index++){
 | 
						|
            FELEM *filter= ((FELEM*)c->filter_bank) + c->filter_length*(index & c->phase_mask);
 | 
						|
            int sample_index= index >> c->phase_shift;
 | 
						|
            FELEM2 val=0;
 | 
						|
 | 
						|
            if(sample_index + c->filter_length > src_size || -sample_index >= src_size){
 | 
						|
                break;
 | 
						|
            }else if(sample_index < 0){
 | 
						|
                for(i=0; i<c->filter_length; i++)
 | 
						|
                    val += src[FFABS(sample_index + i)] * filter[i];
 | 
						|
            }else if(c->linear){
 | 
						|
                FELEM2 v2=0;
 | 
						|
                for(i=0; i<c->filter_length; i++){
 | 
						|
                    val += src[sample_index + i] * (FELEM2)filter[i];
 | 
						|
                    v2  += src[sample_index + i] * (FELEM2)filter[i + c->filter_length];
 | 
						|
                }
 | 
						|
                val+=(v2-val)*(FELEML)frac / c->src_incr;
 | 
						|
            }else{
 | 
						|
                for(i=0; i<c->filter_length; i++){
 | 
						|
                    val += src[sample_index + i] * (FELEM2)filter[i];
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            OUT(dst[dst_index], val);
 | 
						|
 | 
						|
            frac += dst_incr_frac;
 | 
						|
            index += dst_incr;
 | 
						|
            if(frac >= c->src_incr){
 | 
						|
                frac -= c->src_incr;
 | 
						|
                index++;
 | 
						|
            }
 | 
						|
 | 
						|
            if(dst_index + 1 == compensation_distance){
 | 
						|
                compensation_distance= 0;
 | 
						|
                dst_incr_frac= c->ideal_dst_incr % c->src_incr;
 | 
						|
                dst_incr=      c->ideal_dst_incr / c->src_incr;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    *consumed= FFMAX(index, 0) >> c->phase_shift;
 | 
						|
    if(index>=0) index &= c->phase_mask;
 | 
						|
 | 
						|
    if(compensation_distance){
 | 
						|
        compensation_distance -= dst_index;
 | 
						|
        assert(compensation_distance > 0);
 | 
						|
    }
 | 
						|
    if(update_ctx){
 | 
						|
        c->frac= frac;
 | 
						|
        c->index= index;
 | 
						|
        c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
 | 
						|
        c->compensation_distance= compensation_distance;
 | 
						|
    }
 | 
						|
#if 0
 | 
						|
    if(update_ctx && !c->compensation_distance){
 | 
						|
#undef rand
 | 
						|
        av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
 | 
						|
av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    return dst_index;
 | 
						|
}
 |